Skip to main content

Optimization Methods for Synthetic Aperture Radar Imaging

  • Chapter
  • First Online:
Handbook of Convex Optimization Methods in Imaging Science

Abstract

We review recent developments in Synthetic Aperture Radar (SAR) image formation from an optimization perspective. Majority of these methods can be viewed as constrained least squares problems exploiting sparsity. We reviewed analytic and large scale numerical optimization based approaches in both deterministic and Bayesian frameworks. These methods offer substantial improvements in image quality, suppression of noise and clutter. Analytic methods also have the advantage of computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    \(\mathcal{F}^{\dag }\mathcal{F}\) is a pseudo-differential operator.

  2. 2.

    For the deterministic case, we can consider a Gaussian model with large variance to obtain pseudo-inverse solutions.

  3. 3.

    \([\mathcal{I} -\alpha \nabla ^{2}V (\rho _{k})]\) can be expressed as a time-varying convolution and combined with Q, the kernel of the filter \(\mathcal{Q}\) in \(\mathcal{K}\).

  4. 4.

    The passive SAR forward model is formed by correlating two sets of bistatic measurements in fast-time. The resulting forward model is \(\tilde{\mathcal{F}} =\mathcal{ F}_{b}^{\dag }\mathcal{F}_{b}\) where \(\mathcal{F}_{b}\) is (4.1) with phase (4.4). The unknown is then modeled as \(\tilde{\rho }=\rho \otimes \rho\), where ⊗ denotes the tensor product. For the notational simplicity and uniformity \(\tilde{\mathcal{F}} \rightarrow \mathcal{ F}\) and \(\tilde{\rho }\rightarrow \rho\) in this section.

References

  1. Aguilera E, Nannini M, Reigber A (2013) Wavelet-based compressed sensing for SAR tomography of forested areas. IEEE Trans Geosci Remote Sens 51(12):5283–5295

    Article  Google Scholar 

  2. Alliney S, Ruzinsky SA (1994) An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation. IEEE Trans Signal Process 42(3):618–627

    Article  Google Scholar 

  3. Alonso MT, Lopez-Dekker P, Mallorqui JJ (2010) A novel strategy for radar imaging based on compressive sensing. IEEE Trans Geosci Remote Sens 48(12):4285–4295

    Article  Google Scholar 

  4. Baraniuk R, Steeghs P (2007) Compressive radar imaging. In: 2007 IEEE radar conference, pp 128–133

    Google Scholar 

  5. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  6. Besag J (1993) Towards bayesian image analysis. J Appl Stat 20(5–6):107–119

    Article  Google Scholar 

  7. Biondi F (2014) Sar tomography optimization by interior point methods via atomic decomposition – the convex optimization approach. In: 2014 IEEE geoscience and remote sensing symposium, pp 1879–1882

    Google Scholar 

  8. Blake A (1989) Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Trans Pattern Anal Mach Intell 11(1):2–12

    Article  MATH  Google Scholar 

  9. Bouman C, Sauer K (1993) A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans Image Process 2(3):296–310

    Article  Google Scholar 

  10. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  11. Budillon A, Evangelista A, Schirinzi G (2009) SAR tomography from sparse samples. In: 2009 IEEE international geoscience and remote sensing symposium, vol 4, pp IV–865–IV–868

    Google Scholar 

  12. Budillon A, Evangelista A, Schirinzi G (2011) Three-dimensional SAR focusing from multipass signals using compressive sampling. IEEE Trans Geosci Remote Sens 49(1):488–499

    Article  Google Scholar 

  13. Burns JW, Subotic NS, Pandelis D (1997) Adaptive decomposition in electromagnetics. In: Antennas and propagation society international symposium, IEEE, 1997 digest, vol 3, pp 1984–1987

    Google Scholar 

  14. Chai A, Moscoso M, Papanicolaou G (2013) Robust imaging of localized scatterers using the singular value decomposition and1 minimization. Inverse Problems 29(2):025016

    Article  MathSciNet  MATH  Google Scholar 

  15. Cafforio C, Prati C, Rocca F (1991) SAR data focusing using seismic migration techniques. IEEE Trans Aerosp Electron Syst 27(2):194–207

    Article  Google Scholar 

  16. Cai J-F, Candes EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  MATH  Google Scholar 

  17. Candes EJ (2008) The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9):589–592

    Article  MathSciNet  MATH  Google Scholar 

  18. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  19. Candes EJ, Tao T (2007) The Dantzig selector: Statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Article  MathSciNet  MATH  Google Scholar 

  20. Candes EJ, Demanet L, Ying L (2007) Fast computation of fourier integral operators. SIAM J Sci Comput 29(6): 2464–2493

    Article  MathSciNet  MATH  Google Scholar 

  21. Candes EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  22. Candes EJ, Strohmer T (2013) Phaselift: Exact and stable recovery from magnitude measurements via convex programming. Comm Pure Appl Math 66:1241–1274

    Article  MathSciNet  MATH  Google Scholar 

  23. Carlin M, Rocca P, Oliveri G, Massa A (2013) Bayesian compressive sensing as applied to directions-of-arrival estimation in planar arrays. JECE 2013:1:1–1:1

    Google Scholar 

  24. Cetin M, Karl WC (2001) Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans Image Process 10(4):623–631

    Article  MATH  Google Scholar 

  25. Cetin M, Karl WC, Willsky AS (2006) Feature-preserving regularization method for complex-valued inverse problems with application to coherent imaging. Opt Eng 45(1):017003–017003 017003-017003-11

    Google Scholar 

  26. Cetin M, Stojanovic I, Onhon O, Varshney K, Samadi S, Karl WC, Willsky AS (2014) Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process Mag 31(4):27–40

    Article  Google Scholar 

  27. Chai A, Moscoso M, Papanicolaou G (2011) Array imaging using intensity-only measurements. Inverse Problems 27(1):015005

    Article  MathSciNet  MATH  Google Scholar 

  28. Chai A, Moscoso M, Papanicolaou G (2014) Imaging strong localized scatterers with sparsity promoting optimization. SIAM J Imaging Sci 7(2):1358–1387

    Article  MathSciNet  MATH  Google Scholar 

  29. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145

    Article  MathSciNet  MATH  Google Scholar 

  30. Chan TF, Esedoglu S (2005) Aspects of total variation regularized l1 function approximation. SIAM J Appl Math 65(5):1817–1837

    Article  MathSciNet  MATH  Google Scholar 

  31. Chandrasekaran V, Recht B, Parrilo PA, Willsky AS (2012) The convex geometry of linear inverse problems. Found Comput Math 12(6): 805–849

    Article  MathSciNet  MATH  Google Scholar 

  32. Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38(5):826–844

    Article  Google Scholar 

  33. Combettes PL, Wajs VR (2005) Signal recovery by proximal forward-backward splitting. Multisc Model Simul 4(4):1168–1200. https://doi.org/10.1137/050626090

    Article  MathSciNet  MATH  Google Scholar 

  34. Combettes PL, Pesquet J-C (2011) Proximal splitting methods in signal processing. In: Bauschke HH, Burachik RS, Combettes PL, Elser V, Luke DR, Wolkowicz H (eds) Fixed-point algorithms for inverse problems in science and engineering. Springer, New York, pp 185–212. https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  Google Scholar 

  35. Cetin M, Stojanović, Onhon NO, Varshney KR, Samadi S, Karl WC, Willsky AS (2014) Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Process Mag 31(4):27–40

    Article  Google Scholar 

  36. Dao M, Nguyen L, Tran TD (2013) Temporal rate up-conversion of synthetic aperture radar via low-rank matrix recovery. In: 20th IEEE international conference on image processing, pp 2358–2362

    Google Scholar 

  37. Delaney AH, Bresler Y (1996) A fast and accurate fourier algorithm for iterative parallel-beam tomography. IEEE Trans Image Process 5(5):740–753

    Article  Google Scholar 

  38. Demanet L, Ferrara M, Maxwell N, Poulson J, Ying L (2012) A butterfly algorithm for synthetic aperture radar imaging. SIAM J Imaging Sci 5(1):203–243

    Article  MathSciNet  MATH  Google Scholar 

  39. Doerry AW (2012) Basics of polar-format algorithm for processing synthetic aperture radar images. Sandia National Laboratories report SAND2012-3369, Unlimited Release

    Google Scholar 

  40. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  41. Duistermaat JJ, Hormander L (1972) Fourier integral operators. II. Acta Mathematica 128(1): 183–269

    Article  MathSciNet  MATH  Google Scholar 

  42. Duman K, Yazici B (2015) Moving target artifacts in bistatic synthetic aperture radar images. IEEE Trans Comput Imaging 1(1):30–43

    Article  MathSciNet  Google Scholar 

  43. Dungan KE, Austin C, Nehrbass J, Potter LC (2010) Civilian vehicle radar data domes. Proc SPIE 7699:76990P–76990P-12. http://dx.doi.org/10.1117/12.850151

  44. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  45. Elad M (2010) Sparse and redundant representations: from theory to applications in signal and image processing, 1st edn. Springer Publishing Company, Incorporated

    Book  MATH  Google Scholar 

  46. Ertin E, Moses RL, Potter LC (2010). Interferometric methods for three-dimensional target reconstruction with multipass circular SAR. IET Radar Sonar Navigation 4(3):464–473

    Article  Google Scholar 

  47. Esser E, Zhang X, Chan TF (2010) A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J Imaging Sci 3(4):1015–1046

    Article  MathSciNet  MATH  Google Scholar 

  48. Faul AC, Tipping ME (2001) Analysis of sparse bayesian learning. Adv Neural Inf Process Syst, MIT Press 14:383–389

    Google Scholar 

  49. Ferrara M, Parker JT, Cheney M (2013) Resolution optimization with irregularly sampled fourier data. Inverse Problems 29(5):054007

    Article  MATH  Google Scholar 

  50. Figueiredo MAT, Nowak RD (2003) An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 12(8):906–916. doi:10.1109/TIP.2003.814255

    Article  MathSciNet  MATH  Google Scholar 

  51. Figueiredo MAT, Bioucas-Dias JM, Nowak RD (2007) Majorization-minimization algorithms for wavelet-based image restoration. IEEE Trans Image Process 16(12):2980–2991. doi:10.1109/TIP.2007.909318

    Article  MathSciNet  Google Scholar 

  52. Fornaro G, Lombardini F, Serafino F (2005) Three-dimensional multipass SAR focusing: experiments with long-term spaceborne data. IEEE Trans Geosci Remote Sens 43(4):702–714

    Article  Google Scholar 

  53. Ganan S, McClure D (1985) Bayesian image analysis: an application to single photon emission tomography. Am Stat Assoc, pp 12–18

    Google Scholar 

  54. Geman D, Reynolds G (1992) Constrained restoration and the recovery of discontinuities. IEEE Trans Pattern Anal Mach Intell 14(3):367–383

    Article  Google Scholar 

  55. Gorham LA, Rigling BD (2016) Scene size limits for polar format algorithm. IEEE Trans Aerosp Electron Syst 52(1):73–84

    Article  Google Scholar 

  56. Gorodnitsky IF, Rao BD (1997) Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans Signal Process 45(3):600–616

    Article  Google Scholar 

  57. Green PJ (1990) Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 9(1):84–93

    Article  Google Scholar 

  58. Haupt J, Nowak R (2006) Signal reconstruction from noisy random projections. IEEE Trans Inf Theory 52(9):4036–4048

    Article  MathSciNet  MATH  Google Scholar 

  59. Hebert T, Leahy R (1989) A generalized EM algorithm for 3-D bayesian reconstruction from poisson data using gibbs priors. IEEE Trans Med Imaging 8(2):194–202

    Article  Google Scholar 

  60. Hernandez-Lobato D, Hernandez-Lobato JM, Dupont P et al (2013) Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation. J Mach Learn Res 14(1):1891–1945

    MathSciNet  MATH  Google Scholar 

  61. Hiriart-Urruty JB, Lemarechal C (2004) Fundamentals of convex analysis. Springer

    Google Scholar 

  62. Hormander L (1971) Fourier integral operators. I. Acta Mathematica 127(1):79–183

    Article  MathSciNet  MATH  Google Scholar 

  63. Hou X, Zhang L, Gong C, Xiao L, Sun J, Qian X (2014) SAR image bayesian compressive sensing exploiting the interscale and intrascale dependencies in directional lifting wavelet transform domain. Neurocomputing 133:358–368

    Article  Google Scholar 

  64. Hu J, Fomel S, Demanet L, Ying L (2013) A fast butterfly algorithm for generalized radon transforms. Geophysics 78(4):U41–U51

    Article  Google Scholar 

  65. Hunter DR, Lange K (2004). A tutorial on MM algorithms. Am Stat 58(1):30–37. http://dx.doi.org/10.1198/0003130042836

    Article  MathSciNet  Google Scholar 

  66. Jao JK (2001) Theory of synthetic aperture radar imaging of a moving target. IEEE Trans Geosci Remote Sens 39(9):1984–1992

    Article  Google Scholar 

  67. Ji S, Xue Y, Carin L (2008) Bayesian compressive sensing. IEEE Trans Signal Process 56(6):2346–2356

    Article  MathSciNet  Google Scholar 

  68. Jakowatz Jr CV, Wahl DE, Eichel PH, Ghiglia DC, Thompson PA (1996) Spotlight-mode synthetic aperture radar: a signal processing approach. Springer

    Google Scholar 

  69. Kaipio J, Somersalo E (2006) Statistical and computational inverse problems, vol 160. Springer

    Google Scholar 

  70. Kelly S, Yaghoobi M, Davies M (2014) Sparsity-based autofocus for undersampled synthetic aperture radar. IEEE Trans Aerosp Electron Syst 50(2):972–986

    Article  Google Scholar 

  71. Kelly SI, Du C, Rilling G, Davies ME (2012) Advanced image formation and processing of partial synthetic aperture radar data. IET Signal Process 6(5):511–520

    Article  MathSciNet  Google Scholar 

  72. Kirk JC (1975) A discussion of digital processing in synthetic aperture radar. IEEE Trans Aerosp Electron Syst 11(3):326–337

    Article  Google Scholar 

  73. Kragh TJ, Kharbouch AA (2006) Monotonic iterative algorithms for SAR image restoration. In: 2006 international conference on image processing, pp 645–648

    Google Scholar 

  74. Krishnan V, Swoboda J, Yarman CE, Yazici B (2010) Multistatic synthetic aperture radar image formation. IEEE Trans Image Process 19(5):1290–1306

    Article  MathSciNet  MATH  Google Scholar 

  75. Levy S, Fullagar PK (1981) Reconstruction of a sparse spike train from a portion of its spectrum and application to highresolution deconvolution. Geophysics 46(9):1235–1243

    Article  Google Scholar 

  76. Li G, Zhang H, Wang X, Xia X-G (2012) ISAR 2-D imaging of uniformly rotating targets via matching pursuit. IEEE Trans Aerosp Electron Syst 48(2):1838–1846

    Article  Google Scholar 

  77. Liu KH, Wiesel A, Munson DC (2013) Synthetic aperture radar autofocus via semidefinite relaxation. IEEE Trans Image Process 22(6):2317–2326

    Article  MathSciNet  MATH  Google Scholar 

  78. Mason E, Son I-Y, Yazici B (2015) Passive synthetic aperture radar imaging using low-rank matrix recovery methods. IEEE J Sel Top Signal Process 9(8):1570–1582

    Article  Google Scholar 

  79. Mason E, Yazici B (2016) Moving target imaging using sparse and low-rank structure. In: SPIE defense, security, and sensing, International Society for Optics and Photonics, vol 9843, pp 98430D–98430D–10

    Google Scholar 

  80. Milman AS (1993) SAR imaging by migration. Int J Remote Sens 14(10):1965–1979

    Article  Google Scholar 

  81. Mohan K, Fazel M (2012) Iterative reweighted algorithms for matrix rank minimization. J Mach Learn Res 13(Nov):3441–3473

    MathSciNet  MATH  Google Scholar 

  82. Morrison RL, Do MN, Munson DC (2007) Sar image autofocus by sharpness optimization: A theoretical study. IEEE Trans Image Process 16(9):2309–2321

    Article  MathSciNet  Google Scholar 

  83. Munson DC, O’Brien JD, Jenkins WK (1983) A tomographic formulation of spotlight-mode synthetic aperture radar. Proc IEEE 71(8):917–925

    Article  Google Scholar 

  84. Needell D, Vershynin R (2010) Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Top Signal Process 4(2):310–316

    Article  Google Scholar 

  85. Newstadt G, Zelnio E, Hero A (2014) Moving target inference with bayesian models in SAR imagery. IEEE Trans Aerosp Electron Syst 50(3):2004–2018

    Article  Google Scholar 

  86. Nilsson S (1997) Application of fast backprojection techniques for some inverse problems in integral geometry. PhD thesis, Linkoping Studies in Science and Technology

    Google Scholar 

  87. Nolan CJ, Cheney M (2002) Synthetic aperture inversion. Inverse Problems 18(1):221

    Article  MathSciNet  MATH  Google Scholar 

  88. Onhon N, Cetin M (2012) A sparsity-driven approach for joint SAR imaging and phase error correction. IEEE Trans Image Process 21(4):2075–2088

    Article  MathSciNet  MATH  Google Scholar 

  89. Patel VM, Easley GR, Chellappa R, Nasrabadi NM (2014) Separated component-based restoration of speckled sar images. IEEE Trans Geosci Remote Sens 52(2):1019–1029

    Article  Google Scholar 

  90. Patel VM, Easley GR, Healy Jr DM, Chellappa R (2010) Compressed synthetic aperture radar. IEEE J Sel Top Signal Process 4(2):244–254

    Article  Google Scholar 

  91. Plumbley MD (2007) On polar polytopes and the recovery of sparse representations. IEEE Trans Inf Theory 53(9):3188–3195

    Article  MathSciNet  MATH  Google Scholar 

  92. Potter LC, Ertin E, Parker JT, Cetin M (2010) Sparsity and compressed sensing in radar imaging. Proc IEEE 98(6):1006–1020

    Article  Google Scholar 

  93. Prnte L (2010) Application of compressed sensing to SAR/GMTI-data. In: 8th European conference on synthetic aperture radar, pp 1–4

    Google Scholar 

  94. Prnte L (2013) GMTI from multichannel SAR images using compressed sensing under off-grid conditions. In: 2013 14th international radar symposium (IRS), vol 1, pp 95–100

    Google Scholar 

  95. Ramm AG, Katsevich AI (1996) The Radon transform and local tomography. CRC Press

    Google Scholar 

  96. Raney RK (1971) Synthetic aperture imaging radar and moving targets. IEEE Trans Aerosp Electron Syst 7(3):499–505

    Article  Google Scholar 

  97. Raney RK, Runge H, Bamler R, Cumming IG, Wong FH (1994) Precision SAR processing using chirp scaling. IEEE Trans Geosci Remote Sens 32(4):786–799

    Article  Google Scholar 

  98. Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52(3):471–501

    Article  MathSciNet  MATH  Google Scholar 

  99. Ren X, Chen L, Yang J (2014) 3D imaging algorithm for down-looking MIMO array SAR based on Bayesian compressive sensing. Int J Antennas Prop 2014, Article ID 612326, 9 pp. doi:10.1155/2014/612326

  100. Rigling BD, Moses RL (2005) Taylor expansion of the differential range for monostatic SAR. IEEE Trans Aerosp Electron Syst 41(1): 60–64

    Article  Google Scholar 

  101. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  102. Samadi S, Cetin M, Masnadi-Shirazi MA (2011) Sparse representation-based synthetic aperture radar imaging. IET Radar Sonar Navigation 5(2):182–193

    Article  Google Scholar 

  103. Santosa F, Symes WW (1986) Linear inversion of band-limited reflection seismograms. SIAM J Sci Statist Comput 7(4):1307–1330

    Article  MathSciNet  MATH  Google Scholar 

  104. Soumekh M (1990) A system model and inversion for synthetic aperture radar imaging. In: International conference on acoustics, speech, and signal processing, vol 4, pp 1873–1876

    Google Scholar 

  105. Stevenson RL, Delp EJ (1990) Viewpoint invariant recovery of visual surfaces from sparse data. In: Proceedings third international conference on computer vision, pp 309–312

    Google Scholar 

  106. Stojanovic I, Karl WC (2010) Imaging of moving targets with multi-static SAR using an overcomplete dictionary. IEEE J Sel Top Signal Process 4(1):164–176

    Article  Google Scholar 

  107. Stojanovic I, Novak L, Karl WC (2014) Interrupted SAR persistent surveillance via group sparse reconstruction of multipass data. IEEE Trans Aerosp Electron Syst 50(2):987–1003

    Article  Google Scholar 

  108. Thibault J-B, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. J Med Phys 34(11):4526–4544

    Article  Google Scholar 

  109. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B (Methodological), 267–288

    Google Scholar 

  110. Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    MathSciNet  MATH  Google Scholar 

  111. Tipping ME, Faul AC (2003) Fast marginal likelihood maximisation for sparse bayesian models. In: Proceedings on the ninth international workshop on artificial intelligence and statistics, pp 3–6

    Google Scholar 

  112. Tropp JA (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory 50(10):2231–2242

    Article  MathSciNet  MATH  Google Scholar 

  113. Tropp JA (2009) Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans Inf Theory 55(2):917–918

    Article  MathSciNet  MATH  Google Scholar 

  114. Ulander LMH, Hellsten H, Stenstrom G (2003) Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans Aerosp Electron Syst 39(3):760–776

    Article  Google Scholar 

  115. Uur S, Arkan O (2012) Sar image reconstruction and autofocus by compressed sensing. Digital Signal Process 22(6):923–932

    Article  MathSciNet  Google Scholar 

  116. Vu VT, Sjögren TK, Pettersson MI (2011) Fast backprojection algorithm for UWB bistatic SAR. In: 2011 IEEE RadarCon (RADAR), IEEE, pp 431–434

    Google Scholar 

  117. Wacks S, Yazici B (2014) Bistatic Doppler-SAR DPCA imaging of ground moving targets. In: 2014 Radar conference, IEEE, pp 1071–1074

    Google Scholar 

  118. Wacks S, Yazici B (2014) Passive synthetic aperture hitchhiker imaging of ground moving targets – part 1: Image formation and velocity estimation. IEEE Trans Image Process 23(6):2487–2500

    Article  MathSciNet  MATH  Google Scholar 

  119. Wacks S, Yazici B (2014) Passive synthetic aperture hitchhiker imaging of ground moving targets – part 2: Performance analysis. IEEE Trans Image Process 23(9):4126–4138

    Article  MathSciNet  MATH  Google Scholar 

  120. Walker JL (1980) Range-doppler imaging of rotating objects. IEEE Trans Aerosp Electron Syst 16(1):23–52

    Article  Google Scholar 

  121. Wang F-F, Zhang Y-R, Zhang H-M, Hai L, Chen G (2015) Through wall detection with relevance vector machine. Prog Electromagn Res M 42:169–177

    Article  Google Scholar 

  122. Wang L, Son I-Y, Yazici B (2010) Passive imaging using distributed apertures in multiple-scattering environments. Inverse Problems 26(6):065002

    Article  MathSciNet  MATH  Google Scholar 

  123. Wang L, Yarman CE, Yazici B (2011) Doppler-Hitchhiker: A novel passive synthetic aperture radar using ultranarrowband sources of opportunity. IEEE Trans Geosci Remote Sens 49(10):3521–3537

    Article  Google Scholar 

  124. Wang L, Yazici B (2012) Bistatic synthetic aperture radar imaging using narrowband continuous waveforms. IEEE Trans Image Process 21(8):3673–3686

    Article  MathSciNet  MATH  Google Scholar 

  125. Wang L, Yazici B (2012) Bistatic synthetic aperture radar imaging using ultranarrowband continuous waveforms. IEEE Trans Image Process 21(8):3673–3686

    Article  MathSciNet  MATH  Google Scholar 

  126. Wang L, Yazici B (2012) Passive imaging of moving targets exploiting multiple scattering using sparse distributed apertures. Inverse Problems 28(12):125009

    Article  MathSciNet  MATH  Google Scholar 

  127. Wang L, Yazici B (2012) Passive imaging of moving targets using sparse distributed apertures. SIAM J Imaging Sci 5(3):769–808

    Article  MathSciNet  MATH  Google Scholar 

  128. Wang L, Yazici B (2013) Ground moving target imaging using ultranarrowband continuous wave synthetic aperture radar. IEEE Trans Geosci Remote Sens 51(9):4893–4910

    Article  Google Scholar 

  129. Wang L, Yazici B (2014) Bistatic synthetic aperture radar imaging of moving targets using ultra-narrowband continuous waveforms. SIAM J Imaging Sci 7(2):824–866

    Article  MathSciNet  MATH  Google Scholar 

  130. Wei SJ, Zhang XL, Shi J (2012) An autofocus approach for model error correction in compressed sensing SAR imaging. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp 3987–3990

    Google Scholar 

  131. Wei SJ, Zhang XL, Shi J, Xiang G (2010) Sparse reconstruction for SAR imaging based on compressed sensing. Progress In: Electromagnetics Research 109:63–81

    Google Scholar 

  132. Weng Z, Wang X (2012) Low-rank matrix completion for array signal processing. In: 2012 IEEE international conference on acoustics, speech, and signal processing, pp 2697–2700

    Google Scholar 

  133. Wu J, Liu F, Jiao LC, Wang X (2011) Compressive sensing sar image reconstruction based on bayesian framework and evolutionary computation. IEEE Trans Image Process 20(7):1904–1911

    Article  MathSciNet  MATH  Google Scholar 

  134. Wu Q, Zhang YD, Amin MG, Himed B (2014) Multi-static passive SAR imaging based on bayesian compressive sensing. In: Proc. SPIE, vol 9109, pp 910902–910902–9

    Google Scholar 

  135. Wu Q, Zhang YD, Amin MG, Himed B (2015) High-resolution passive SAR imaging exploiting structured bayesian compressive sensing. IEEE J Sel Top Signal Process 9(8):1484–1497

    Article  Google Scholar 

  136. Wu Q, Zhang YD, Amin MG, Himed B (2015) Structured Bayesian compressive sensing exploiting spatial location dependence. In: 2015 IEEE international conference on acoustics, speech, and signal processing, pp 3831–3835

    Google Scholar 

  137. Yang D, Liao G, Zhu S, Yang X, Zhang X (2014) Sar imaging with undersampled data via matrix completion. IEEE Geoscience and Remote Sensing Letters 11(9):1539–1543

    Article  Google Scholar 

  138. Yanik HC (2014) Analytic methods for SAR image formation in the presence of noise and clutter. PhD thesis, Rensselaer Polytechnic Institute

    Google Scholar 

  139. Yanik HC, Yazici B (2012) Mono-static synthetic aperture radar interferometry with arbitrary flight trajectories. In: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, vol 8394, pp 83940B–83940B–8

    Google Scholar 

  140. Yanik H, Yazici B (2015) Synthetic aperture inversion for statistically nonstationary target and clutter scenes. SIAM J Imaging Sci 8(3):1658–1686

    Article  MathSciNet  MATH  Google Scholar 

  141. Yarman CE, Wang L, Yazici B (2010) Doppler synthetic aperture hitchhiker imaging. Inverse Problems 26(6):065006

    Article  MathSciNet  MATH  Google Scholar 

  142. Yarman CE, Yazici B (2008) Synthetic aperture hitchhiker imaging. IEEE Transactions on Imaging Processing, pp 2156–2173

    Google Scholar 

  143. Yarman CE, Yazici B, Cheney M (2008) Bistatic synthetic aperture radar imaging for arbitrary flight trajectories. IEEE Trans Image Process 17(1):84–93

    Article  MathSciNet  Google Scholar 

  144. Yazici B, Yanik HC (2014) Synthetic aperture radar interferometry by using ultra-narrowband continuous waveforms. In: SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, vol 9093, pp 909305–909305–8

    Google Scholar 

  145. Yazici B, Cheney M, Yarman CE (2006) Synthetic-aperture inversion in the presence of noise and clutter. Inverse Problems 22(5): 1705

    Article  MathSciNet  MATH  Google Scholar 

  146. Yegulalp AF (1999) Fast backprojection algorithm for synthetic aperture radar. In: Radar Conference, 1999. The Record of the 1999 IEEE, pp 60–65

    Google Scholar 

  147. Yu L, Sun H, Barbot J-P, Zheng G (2012) Bayesian compressive sensing for cluster structured sparse signals. Signal Processing 92(1):259–269

    Article  Google Scholar 

  148. Zhang S, Zhang Y, Wang W-Q, Hu C, Yeo TS (2016) Sparsity-inducing super-resolution passive radar imaging with illuminators of opportunity. Remote Sensing 8(11):929

    Article  Google Scholar 

  149. Zhu XX, Bamler R (2010) Tomographic sar inversion by l 1-norm regularization the compressive sensing approach. IEEE Trans Geosci Remote Sens 48(10):3839–3846

    Article  Google Scholar 

  150. Zhu XX, Bamler R (2010) Very high resolution spaceborne SAR tomography in urban environment. IEEE Trans Geosci Remote Sens 48(12):4296–4308

    Article  Google Scholar 

  151. Zhu XX, Bamler R (2012) Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Trans Geosci Remote Sens 50(1):247–258

    Article  Google Scholar 

  152. Zhu XX, Bamler R (2014) Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based tomosar inversion. IEEE Signal Process Mag 31(4):51–58

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0234, and by the National Science Foundation (NSF) under Grant No. CCF-1421496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birsen Yazici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mason, E., Bayram, I., Yazici, B. (2018). Optimization Methods for Synthetic Aperture Radar Imaging. In: Monga, V. (eds) Handbook of Convex Optimization Methods in Imaging Science. Springer, Cham. https://doi.org/10.1007/978-3-319-61609-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61609-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61608-7

  • Online ISBN: 978-3-319-61609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics