
Answer Set Solving with Bounded Treewidth Revisited∗

Johannes K. Fichte†, Michael Morak, Markus Hecher and Stefan Woltran

TU Wien, Austria
lastname@dbai.tuwien.ac.at

Abstract

Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter
of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this
end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter.
Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main
contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the
treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle
the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for
benchmark instances of low treewidth, especially for counting answer sets.

1 Introduction

Parameterized algorithms [14, 5] have attracted considerable interest in recent years and allow to tackle
hard problems by directly exploiting a small parameter of the input problem. One particular goal in this
field is to find guarantees that the runtime is exponential exclusively in the parameter, and polynomial
in the input size (so-called fixed-parameter tractable algorithms). A parameter that has been researched
extensively is treewidth [16, 2]. Generally speaking, treewidth measures the closeness of a graph to a tree,
based on the observation that problems on trees are often easier than on arbitrary graphs. A parameterized
algorithm exploiting small treewidth takes a tree decomposition, which is an arrangement of a graph into a
tree, and evaluates the problem in parts, via dynamic programming (DP) on the tree decomposition.

ASP [3, 13] is a logic-based declarative modelling language and problem solving framework where
solutions, so called answer sets, of a given logic program directly represent the solutions of the modelled
problem. Jakl et al. [11] give a DP algorithm for disjunctive rules only, whose runtime is linear in the input
size of the program and double exponential in the treewidth of a particular graph representation of the
program structure. However, modern ASP systems allow for an extended syntax that includes, among
others, weight rules and choice rules. Pichler et al. [15] investigated the complexity of programs with weight
rules. They also presented DP algorithms for programs with cardinality rules (i.e., restricted version of
weight rules), but without disjunction.

In this paper, we propose DP algorithms for finding answer sets that are able to directly treat all
kinds of ASP rules. While such rules can be transformed into disjunctive rules, we avoid the resulting
polynomial overhead with our algorithms. In particular, we present two approaches based on two different
types of graphs representing the program structure. Firstly, we consider the primal graph, which allows
for an intuitive algorithm that also treats the extended ASP rules. While for a given disjunctive program
the treewidth of the primal graph may be larger than treewidth of the graph representation used by

∗This is the authors self-archived copy including detailed proofs. A preliminary version of the paper was presented on the
workshop TAASP’16. Research was supported by the Austrian Science Fund (FWF), Grant Y698.
†Also affiliated with the Institute of Computer Science and Computational Science at University of Potsdam, Germany.

1

ar
X

iv
:1

70
2.

02
89

0v
1

 [
cs

.L
O

]
 9

 F
eb

 2
01

7

d a
c b {a, b, c}

t1
{a, d}

t2
{a}t3 d a b c

r3 r1 r2 {b, c, r1, r2}t1

{a, r1, r2}t2

{a, d, r3}
t3

{a} t4

Figure 1 Graph G1 with a TD of G1 (left) and graph G2 with a TD of G2 (right).

Jakl et al. [11], our algorithm uses simpler data structures and lays the foundations to understand how we
can handle also extended rules. Our second graph representation is the incidence graph, a generalization of
the representation used by Jakl et al.. Algorithms for this graph representation are more sophisticated,
since weight and choice rules can no longer be completely evaluated in the same computation step. Our
algorithms yield upper bounds that are linear in the program size, double-exponential in the treewidth,
and single-exponential in the maximum weights. We extend two algorithms to count optimal answer sets.
For this particular task, experiments show that we are able to outperform existing systems from multiple
domains, given input instances of low treewidth, both randomly generated and obtained from real-world
graphs of traffic networks. Our system is publicly available on github1.

2 Formal Background

2.1 Answer Set programming (ASP)

ASP is a declarative modeling and problem solving framework; for a full introduction, see, e.g., [3, 13]. State-
of-the-art ASP grounders support the full ASP-Core-2 language [4] and output smodels input format [19],
which we will use for our algorithms. Let `, m, n be non-negative integers such that ` ≤ m ≤ n, a1, . . .,
an distinct propositional atoms, w, w1, . . ., wn non-negative integers, and l ∈ {a1,¬a1}. A choice rule
is an expression of the form, {a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an, a disjunctive rule is of the
form a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an and a weight rule is of the form a` ← w 6 {a`+1 =
w`+1, . . . , am = wm, ¬am+1 = wm+1, . . . ,¬an = wn}. Finally, an optimization rule is an expression of the
form l[w]. A rule is either a disjunctive, a choice, a weight, or an optimization rule.

For a choice, disjunctive, or weight rule r, let Hr := {a1, . . . , a`}, B+
r := {a`+1, . . . , am}, and B−r :=

{am+1, . . . , an}. For a weight rule r, let wght(r, a) map atom a to its corresponding weight wi in rule r if
a = ai for `+ 1 ≤ i ≤ n and to 0 otherwise, let wght(r,A) :=

∑
a∈A wght(r, a) for a set A of atoms, and

let bnd(r) := w be its bound. For an optimization rule r, let cst(r) := w and if l = a1, let B+
r := {a1} and

B−r := ∅; or if l = ¬a1, let B−r := {a1} and B+
r := ∅. For a rule r, let at(r) := Hr ∪B+

r ∪B−r denote its
atoms and Br := B+

r ∪ {¬b | b ∈ B−r } its body. A program Π is a set of rules. Let at(Π) := {at(r) | r ∈ Π}
and let CH(Π),DISJ(Π),OPT(Π) and WGT(Π) denote the set of all choice, disjunctive, optimization and
weight rules in Π, respectively.

A set M ⊆ at(Π) satisfies a rule r if (i) (Hr∪B−r)∩M 6= ∅ or B+
r 6⊆M for r ∈ DISJ(Π), (ii) Hr∩M 6= ∅

or Σai∈M∩B+
r
wi + Σai∈B−r \M wi < bnd(r) for r ∈WGT(Π), or (iii) r ∈ CH(Π) ∪OPT(Π). M is a model

of Π, denoted by M � Π, if M satisfies every rule r ∈ Π. Further, let Mod(C,Π) := {C | C ∈ C, C � Π} for
C ⊆ 2at(Π).

The reduct rM (i) of a choice rule r is the set {a ← B+
r | a ∈ Hr ∩ M,B−r ∩ M = ∅} of rules,

(ii) of a disjunctive rule r is the singleton {Hr ← B+
r | B−r ∩ M = ∅}, and (iii) of a weight rule r

is the singleton {Hr ← w′ 6 [a = wght(r, a) | a ∈ B+
r]} where w′ = bnd(r) − Σa∈B−r \M wght(r, a).

ΠM := {r′ | r′ ∈ rM , r ∈ Π} is called GL reduct of Π with respect to M . A set M ⊆ at(Π) is an answer set
of program Π if (i) M � Π and (ii) there is no M ′ (M such that M ′ � ΠM , that is, M is subset minimal
with respect to ΠM .

We call cst(Π,M,A) := Σr∈OPT(Π), A∩[(B+
r ∩M)∪(B−r \M)] 6=∅ cst(r) the cost of model M for Π with respect

to the set A ⊆ at(Π). An answer set M of Π is optimal if its cost is minimal over all answer sets.

1See https://github.com/daajoe/dynasp.

2

https://github.com/daajoe/dynasp

Example 1. Let Π := {
r1︷ ︸︸ ︷

{a; b} ← c;

r2︷ ︸︸ ︷
c← 1 6 {b = 1,¬a = 1};

r3︷ ︸︸ ︷
d ∨ a←}. Then, the sets {a}, {c, d} and

{b, c, d} are answer sets of Π.

Given a program Π, we consider the problems of computing an answer set (called AS) and outputting
the number of optimal answer sets (called #AspO).

Next, we show that under standard complexity-theoretic assumptions #Asp is strictly harder than
#SAT.

Theorem 1. #Asp for programs without optimization is #·coNP-complete.

Proof. Observe that programs containing choice and weight rules can be compiled to disjunctive ones
(normalization) without these rule types (see [8]) using a polynomial number (in the original program size)
of rules. Membership follows from the fact that, given such a nice program Π and an interpretation I,
checking whether I is an answer of Π is coNP-complete, see e.g., [12]. Hardness is a direct consequence
of #·coNP-hardness for the problem of counting subset minimal models of a CNF formula [6], since
answer sets of negation-free programs and subset-minimal models of CNF formulas are essentially the same
objects.

Remark 1. The counting complexity of #Asp including optimization rules (i.e., where only optimal
answer sets are counted) is slightly higher; exact results can be established employing hardness results from
other sources [10].

2.2 Tree Decompositions

Let G = (V,E) be a graph, T = (N,F, n) a rooted tree, and χ : N → 2V a function that maps each
node t ∈ N to a set of vertices. We call the sets χ(·) bags and N the set of nodes. Then, the pair T = (T, χ)
is a tree decomposition (TD) of G if the following conditions hold: (i) all vertices occur in some bag, that
is, for every vertex v ∈ V there is a node t ∈ N with v ∈ χ(t); (ii) all edges occur in some bag, that is,
for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and (iii) the connectedness condition: for any
three nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2). We call
max{|χ(t)| − 1 | t ∈ N} the width of the TD. The treewidth tw(G) of a graph G is the minimum width
over all possible TDs of G.

Note that each graph has a trivial TD (T, χ) consisting of the tree ({n}, ∅, n) and the mapping χ(n) = V .
It is well known that the treewidth of a tree is 1, and a graph containing a clique of size k has at least
treewidth k− 1. For some arbitrary but fixed integer k and a graph of treewidth at most k, we can compute
a TD of width 6 k in time 2O(k3) · |V | [2]. Given a TD (T, χ) with T = (N, ·, ·), for a node t ∈ N we say
that type(t) is leaf if t has no children; join if t has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′);
int (“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem (“removal”) if t has
a single child t′, χ(t) ⊆ χ(t′) and |χ(t′)| = |χ(t)| + 1. If every node t ∈ N has at most two children,
type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and the root are empty, then the TD is called nice.
For every TD, we can compute a nice TD in linear time without increasing the width [2]. In our algorithms,
we will traverse a TD bottom up, therefore, let post-order(T, t) be the sequence of nodes in post-order of
the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Example 2. Figure 1 (left) shows a graph G1 together with a TD of G1 that is of width 2. Note that G1

has treewidth 2, since it contains a clique on the vertices {a, b, c}. Further, the TD T in Figure 2 is a nice
TD of G1.

3

Algorithm 1: Algorithm DPA(T) for Dynamic Programming on TD T for ASP.

In: Table algorithm A, nice TD T = (T, χ) with T = (N, ·, n) of G(Π) according to A.
Out: Table: maps each TD node t ∈ T to some computed table τt.

1 for iterate t in post-order(T,n) do
2 Child-Tabs := {Tables[t′] | t′ is a child of t in T}
3 Tables[t] := A(t, χ(t),Πt, at≤t,Child-Tabs)

2.3 Graph Representations of Programs

In order to use TDs for ASP solving, we need dedicated graph representations of ASP programs. The
primal graph P (Π) of program Π has the atoms of Π as vertices and an edge a b if there exists a rule r ∈ Π
and a, b ∈ at(r). The incidence graph I(Π) of Π is the bipartite graph that has the atoms and rules of Π as
vertices and an edge a r if a ∈ at(r) for some rule r ∈ Π. These definitions adapt similar concepts from
SAT [17].

Example 3. Recall program Π of Example 1. We observe that graph G1 (G2) in the left (right) part of
Figure 1 is the primal (incidence) graph of Π.

2.4 Sub-Programs

Let T = (T, χ) be a nice TD of graph representation H ∈ {I(Π), P (Π)} of a program Π. Further,
let T = (N, ·, n) and t ∈ N . The bag-rules are defined as Πt := {r | r ∈ Π, at(r) ⊆ χ(t)} if H
is the primal graph and as Πt := Π ∩ χ(t) if H is the incidence graph. Further, the set at≤t :=
{a | a ∈ at(Π) ∩ χ(t′), t′ ∈ post-order(T, t)} is called atoms below t, the program below t is defined as
Π≤t := {r | r ∈ Πt′ , t

′ ∈ post-order(T, t)}, and the program strictly below t is Π<t := Π≤t \ Πt. It holds
that Π≤n = Π<n = Π and at≤n = at(Π).

Example 4. Intuitively, TDs of Figure 1 enable us to evaluate Π by analyzing sub-programs ({r1, r2} and
{r3}) and combining results agreeing on a. Indeed, for the given TD of Figure 1 (left), Π≤t1 = {r1, r2},
Π≤t2 = {r3} and Π = Π≤t3 = Π<t3 = Πt1 ∪Πt2 . For the TD of Figure 1 (right), we have Π≤t1 = {r1, r2}
and at≤t1 = {b, c}, as well as Π≤t3 = {r3} and at≤t3 = {a, d}. Moreover, for TD T of Figure 2,
Π≤t1 = Π≤t2 = Π≤t3 = Π<t4 = ∅, at≤t3 = {a, b} and Π≤t4 = {r1, r2}.

3 ASP via Dynamic Programming on TDs

In the next two sections, we propose two dynamic programming (DP) algorithms, DPPRIM and DP INC,
for ASP without optimization rules based on two different graph representations, namely the primal and
the incidence graph. Both algorithms make use of the fact that answer sets of a given program Π are
(i) models of Π and (ii) subset minimal with respect to ΠM . Intuitively, our algorithms compute, for each
TD node t, (i) sets of atoms—(local) witnesses—representing parts of potential models of Π, and (ii) for
each local witness M subsets of M—(local) counterwitnesses—representing subsets of potential models
of ΠM which (locally) contradict that M can be extended to an answer set of Π. We give the the basis of
our algorithms in Algorithm 1 (DPA), which sketches the general DP scheme for ASP solving on TDs.
Roughly, the algorithm splits the search space based on a given nice TD and evaluates the input program Π
in parts. The results are stored in so-called tables, that is, sets of all possible tuples of witnesses and
counterwitnesses for a given TD node. To this end, we define the table algorithms PRIM and INC, which
compute tables for a node t of the TD using the primal graph P (Π) and incidence graph I(Π), respectively.
To be more concrete, given a table algorithm A ∈ {PRIM, INC}, algorithm DPA visits every node t ∈ T
in post-order; then, based on Πt, computes a table τt for node t from the tables of the children of t, and

4

Algorithm 2: Table algorithm PRIM(t, χt,Πt, ·,Child-Tabs).

In: Bag χt, bag-rules Πt and child tables Child-Tabs of node t. Out: Table τt.
1 if type(t) = leaf then τt := {〈∅, ∅〉} /* Abbreviations see Footnote 2. */

2 else if type(t) = int, a ∈ χt is introduced and τ ′ ∈ Child-Tabs then

3 τt := {〈M+
a , Mod({M} ∪ [C t {a}] ∪ C,ΠM+

a
t)〉 | 〈M, C〉 ∈ τ ′,M+

a � Πt}
⋃

4 {〈M, Mod(C,ΠM
t)〉 | 〈M, C〉 ∈ τ ′,M � Πt}

5 else if type(t) = rem, a 6∈ χt is removed and τ ′ ∈ Child-Tabs then
6 τt := {〈M−a , {C−a | C ∈ C}〉 | 〈M, C〉 ∈ τ ′}
7 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then
8 τt := {〈M, (C′ ∩ C′′) ∪ (C′ ∩ {M}) ∪ ({M} ∩ C′′)〉 | 〈M, C′〉 ∈ τ ′, 〈M, C′′〉 ∈ τ ′′}

stores τt in Tables[t].

3.1 Using Decompositions of Primal Graphs

In this section, we present our algorithm PRIM in two parts: (i) finding models of Π and (ii) finding models
which are subset minimal with respect to ΠM . For sake of clarity, we first present only the first tuple
positions (red parts) of Algorithm 2 (PRIM) to solve (i). We call the resulting table algorithm MOD.

Example 5. Consider program Π from Example 1 and in Figure 2 (left) TD T = (·, χ) of P (Π) and the
tables τ1, . . ., τ12, which illustrate computation results obtained during post-order traversal of T by DPMOD.
Table τ1 = {〈∅〉} as type(t1) = leaf. Since type(t2) = int, we construct table τ2 from τ1 by taking M1.i and
M1.i ∪ {a} for each M1.i ∈ τ1 (corresponding to a guess on a). Then, t3 introduces b and t4 introduces c.
Πt1 = Πt2 = Πt3 = ∅, but since χ(t4) ⊆ at(r1) ∪ at(r2) we have Πt4 = {r1, r2} for t4. In consequence, for
each M4.i of table τ4, we have M4.i � {r1, r2} since MOD enforces satisfiability of Πt in node t. We derive
tables τ7 to τ9 similarly. Since type(t5) = rem, we remove atom b from all elements in τ4 to construct τ5.
Note that we have already seen all rules where b occurs and hence b can no longer affect witnesses during
the remaining traversal. We similarly construct τt6 = τ10 = {〈∅〉, 〈a〉}. Since type(t11) = join, we construct
table τ11 by taking the intersection τ6 ∩ τ10. Intuitively, this combines witnesses agreeing on a. Node t12 is
again of type rem. By definition (primal graph and TDs) for every r ∈ Π, atoms at(r) occur together in at
least one common bag. Hence, Π = Π≤t12 and since τ12 = {〈∅〉}, we can construct a model of Π from the
tables. For example, we obtain the model {a, d} = M11.2 ∪M4.2 ∪M9.3.

Observation 1. Let Π be a program and T a TD of the primal graph of Π. Then, for every rule r ∈ Π
there is at least one bag in T containing all atoms of r.

Proof. By Definition the primal graph contains a clique on all atoms a participating in a rule r. Since a
TD must contain each edge of the original graph in some bag and has to be connected, it follows that there
is at least one bag containing all (clique) atoms a of r.

PRIM is given in Algorithm 2. Tuples in τt are of the form 〈M, C〉. Witness M ⊆ χ(t) represents a model
of Πt witnessing the existence of M ′ ⊇M with M ′ � Π≤t. The family C ⊆ 2M contains sets of models C ⊆M
of the GL reduct (Πt)

M . C witnesses the existence of a set C ′ with counterwitness C ⊆ C ′ (M ′ and
C ′ � (Π≤t)

M ′ . There is an answer set of Π if table tn for root n contains 〈∅, ∅〉. Since in Example 5 we
already explained the first tuple position and thus the witness part, we only briefly describe the parts for
counterwitnesses. In the introduce case, we want to store only counterwitnesses for not being minimal
with respect to the GL reduct of the bag-rules. Therefore, in Line 3 we construct for M+

a counterwitnesses
from either some witness M (M (M+

a), or of any C ∈ C, or of any C ∈ C extended by a (every C ∈ C
was already a counterwitness before). Line 4 ensures that only counterwitnesses that are models of the

2 S t {e} := {S ∪ {e} | S ∈ S}, S+
e := S ∪ {e}, and S−e := S \ {e}

5

∅ t1

{a} t2

{a, b} t3

{a, b, c} t4

{a, c} t5

{a} t6

∅t7

{d}t8

{a, d}t9

{a}t10

{a} t11

∅ t12T :

〈M4.i〉
〈{c}〉
〈{a}〉
〈{a, c}〉
〈{b, c}〉
〈{a, b, c}〉

τ4

i

1
2
3
4
5

i

1
2
3

〈M9.i〉
〈{a}〉
〈{d}〉
〈{a, d}〉

τ9

〈M11.i〉
〈∅〉
〈{a}〉

τ11

i

1
2

i

1

〈M1.i〉
〈∅〉

τ1

〈M4.i, C4.i〉
〈{c}, ∅〉
〈{a}, ∅〉
〈{a, c}, {{a}}〉
〈{b, c}, ∅〉
〈{a, b, c}, {{a}}〉

τ4

i

1
2
3
4
5

j

1

1

〈M1.i, C1.i〉
〈∅, ∅〉

τ1

i

1

j

1

i

1
2

3

〈M9.i, C9.i〉
〈{a}, ∅〉
〈{d}, ∅〉
〈{a, d}, {{a},

{d}}〉

τ9

j

1
2

〈M11.i, C11.i〉
〈∅, ∅〉
〈{a}, ∅〉
〈{a}, {{a}}〉

τ11

i

1
2
3

j

1

Figure 2 Selected DP tables of MOD (left) and PRIM (right) for nice TD T .

GL reduct ΠM
t are stored (via Mod(·, ·)). Line 6 restricts counterwitnesses to its bag content, and Line 8

enforces that child tuples agree on counterwitnesses.

Example 6. Consider Example 5, its TD T = (·, χ), Figure 2 (right), and the tables τ1, . . ., τ12 ob-
tained by DPPRIM. Since we have at(r1) ∪ at(r2) ⊆ χ(t4), we require C4.i.j � {r1, r2}M4.i for each
counterwitness C4.i.j ∈ C4.i in tuples of τ4. For M4.5 = {a, b, c} observe that the only counterwitness of
{r1, r2}M4.5 = {a← c, b← c, c← 1 ≤ {b = 1}} is C4.5.1 = {a}. Note that witness M11.2 of table τ11 is the
result of joining M4.2 with M9.1 and witness M11.3 (counterwitness C11.3.1) is the result of joining M4.3 with
M9.3 (C4.3.1 with C9.3.1), and M4.5 with M9.3 (C4.5.1 with C9.3.2). C11.3.1 witnesses that neither M4.3∪M9.3

nor M4.5 ∪M9.3 forms an answer set of Π. Since τ12 contains 〈∅, ∅〉 there is no counterwitness for M11.2,
we can construct an answer set of Π from the tables, e.g., {a} can be constructed from M4.2 ∪M9.1.

Theorem 2. Given a program Π, the algorithm DPPRIM is correct and runs in time O(22k+2 · ‖P (Π)‖)
where k is the treewidth of the primal graph P (Π).

Proof. We refer to Appendix B.1.

3.2 Using Decompositions of Incidence Graphs

Our next algorithm (DP INC) takes the incidence graph as graph representation of the input program. The
treewidth of the incidence graph is smaller than the treewidth of the primal graph plus one, cf., [17, 7].
More importantly, the incidence graph does not enforce cliques on at(r) for some rule r. The incidence
graph, compared to the primal graph, additionally contains rules as vertices and its relationship to the
atoms in terms of edges. By definition, we have no guarantee that all atoms of a rule occur together in the
same bag of TDs of the incidence graph. For that reason, we cannot locally check the satisfiability of a
rule when traversing the TD without additional stored information (so-called rule-states that intuitively
represent how much of a rule is already (dis-)satisfied). We only know that for each rule r there is a
path p = tint, t1, . . . , tm, trem where tint introduces r and trem removes r and when considering trem in the
table algorithm we have seen all atoms that occur in rule r. Thus, on removal of r in trem we ensure that r
is satisfied while taking rule-states for choice and weight rules into account. Consequently, our tuples will
contain a witness, its rule-state, and counterwitnesses and their rule-states.

A tuple in τt for Algorithm 3 (INC) is a triple 〈M,σ, C〉. The set M ⊆ at(Π) ∩ χ(t) represents again a
witness. A rule-state σ is a mapping σ : Πt → N0∪{∞}. A rule state for M represents whether rules of χ(t)
are either (i) satisfied by a superset of M or (ii) undecided for M . Formally, the set SR(Πt, σ) of satisfied
bag-rules Πt consists of each rule r ∈ Πt such that σ(r) =∞. Hence, M witnesses a model M ′ ⊇M where
M ′ � Π<t ∪ SR(Πt, σ). C concerns counterwitnesses.

3σ] ρ := {(x,Σ(x,c1)∈σc1 + Σ(x,c2)∈ρc2) | (x, ·) ∈ σ ∪ ρ}; σ+
r := σ ∪ {(r, 0)}; σ−S := {(x, y) ∈ σ | x 6∈ S}.

6

Algorithm 3: Table algorithm INC(t, χt,Πt, at≤t,Child-Tabs).

In: Bag χt, bag-rules Πt, atoms-below at≤t, child tables Child-Tabs of t. Out: Tab. τt.
1 if type(t) = leaf then τt := {〈∅, ∅, ∅〉} /* Abbreviations see Footnote 3. */

2 else if type(t) = int, a ∈ χt \Πt is introduced and τ ′ ∈ Child-Tabs then

3 τt := {〈M+
a , σ] SatRules(Π̇

(t,σ)
t ,M+

a), {〈M,σ] SatRules(Π̇
(t,σ,M+

a)
t ,M)〉} ∪

4 {〈C+
a , ρ] SatRules(Π̇

(t,ρ,M+
a)

t , C+
a)〉 | 〈C, ρ〉 ∈ C} ∪

5 {〈C, ρ] SatRules(Π̇
(t,ρ,M+

a)
t , C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

⋃
6 {〈M,σ] SatRules(Π̇

(t,σ)
t ,M),

7 {〈C, ρ] SatRules(Π̇
(t,ρ,M)
t , C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

8 else if type(t) = int, r ∈ χt ∩Πt is introduced and τ ′ ∈ Child-Tabs then

9 τt := {〈M,σ+
r] SatRules({ṙ}(t,σ

+
r }),M),

10 {〈C, ρ+r] SatRules({ṙ}(t,ρ
+
r ,M), C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

11 else if type(t) = rem, a 6∈ χt is removed atom and τ ′ ∈ Child-Tabs then
12 τt := {〈M−a , σ] UpdtWgt(Πt,M, a),
13 {〈C−a , ρ] UpdtWgt&Ch(Πt,M,C, a)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}
14 else if type(t) = rem, r 6∈ χt is removed rule and τ ′ ∈ Child-Tabs then
15 τt := {〈M,σ−{r},

{
〈C, ρ−{r}〉 | 〈C, ρ〉 ∈ C, ρ(r) =∞

}
〉 | 〈M,σ, C〉 ∈ τ ′, σ(r) =∞}

16 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then
17 τt := {〈M,σ′] σ′′, {〈C, ρ′] ρ′′〉 | 〈C, ρ′〉 ∈ C′, 〈C, ρ′′〉 ∈ C′′} ∪
18 {〈M,ρ] σ′′〉 | 〈M,ρ〉 ∈ C′} ∪
19 {〈M,σ′] ρ〉 | 〈M,ρ〉 ∈ C′′}〉 | 〈M,σ′, C′〉 ∈ τ ′, 〈M,σ′′, C′′〉 ∈ τ ′′}

We compute a new rule-state σ from a rule-state, “updated” bounds for weight rules (UpdtWgt), and
satisfied rules (SatRules, defined below). We define UpdtWgt(Πt,M, a) := σ′ depending on an atom a
with σ′(r) := wght(r, {a} ∩ [(B−r \M) ∪ (B+

r ∩M)]), if r ∈ WGT(Πt). We use binary operator]3 to
combine rule-states, which ensures that rules satisfied in at least one operand remain satisfied. Next, we
explain the meaning of rule-states.

Example 7. Consider program Π from Example 1 and TD T ′ = (·, χ) of I(Π) and the tables τ1, . . ., τ18

in Figure 3 (left). We are only interested in the first two tuple positions (red and green parts) and implicitly
assume that “i” refers to Line i in the respective table. Consider M4.1 = {c} in table τ4. Since Hr2 = {c},
witness M4.1 = {c} satisfies rule r2. As a result, σ4.1(r2) = ∞ remembering satisfied rule r2 for M4.1.
Since c /∈ M4.2 and B+

r1 = {c}, M4.2 satisfies rule r1, resulting in σ4.2(r1) = ∞. Rule-state σ4.1(r1)
represents that r1 is undecided for M4.2. For weight rule r2, rule-states remember the sum of body weights
involving removed atoms. Consider M6.2 = M6.3 = ∅ of table τ6. We have σ6.2(r2) 6= σ6.3(r2), because
M6.2 was obtained from some M5.i of table τ5 with b 6∈M5.i and b occurs in B+

r2 with weight 1, resulting in
σ6.3(r2) = 1; whereas M6.3 extends some M5.j with b /∈M5.j.

In order to decide in node t whether a witness satisfies rule r ∈ Πt, we check satisfiability of program Ṙ(r)
constructed by Ṙ, which maps rules to state-programs. Formally, for M ⊆ χ(t) \Πt, SatRules(Ṙ,M) := σ
where σ(r) :=∞ if (r,R) ∈ Ṙ and M � R.

Definition 1. Let Π be a program, T = (·, χ) be a TD of I(Π), t be a node of T , P ⊆ Πt, and σ : Πt →
N0 ∪ {∞} be a rule-state. The state-program P(t,σ) is obtained from P ∪ {← Br | r ∈ CH(P), Hr (at≤t}4
by

1. removing rules r with σ(r) =∞ (“already satisfied rules”);

2. removing from every rule all literals a,¬a with a 6∈ χ(t); and

4We require to add {← Br | r ∈ CH(P), Hr (at≤t} in order to decide satisfiability for corner cases of choice rules involving
counterwitnesses of Line 3 in Algorithm 3.

7

∅ t1

{c} t2

{c, r1} t3

{c, r1, r2} t4

{b, c, r1, r2}

{c, r1, r2} t6

{r1, r2}

{a, r1, r2}

{a, r1}
t9

{a}

∅ t11

{a} t12

{a, r3} t13

{a, d, r3} t14

{a, d} t15

{a}

{a}t17

∅t18
T ′:

〈M4.i, σ4.i〉 τ4

〈{c}, {r1:0, r2:∞}〉
〈∅, {r1:∞, r2:0}〉

〈M15.i, σ15.i〉
〈{a}, ∅〉
〈{d}, ∅〉
〈{a, d}, ∅〉

τ15

〈M6.i, σ6.i〉 τ6

〈{c}, {r1:0, r2:∞}〉
〈∅, {r1:∞, r2:0}〉
〈∅, {r1:∞, r2:1}〉

〈M9.i, σ9.i〉
〈{a}, {r1:∞}〉
〈∅, {r1:∞}〉

τ9

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

〈M4.i, σ4.i, C4.i〉 τ4

〈{c}, {r1:0, r2:∞}, {
(∅, {r1:∞, r2:0})}〉

〈∅, {r1:∞, r2:0}, ∅〉

〈M1.i, σ1.i, C1.i〉 τ1
〈∅, ∅, ∅〉

〈M6.i, σ6.i, C6.i〉 τ6

〈{c}, {r1:0, r2:∞}, {
(∅, {r1:∞, r2:0})}〉

〈{c}, {r1:0, r2:∞}, {
({c}, {r1:1, r2:∞}),
(∅, {r1:∞, r2:0}),
(∅, {r1:∞, r2:1})}〉

〈∅, {r1:∞, r2:0}, ∅〉
〈∅, {r1:∞, r2:1}, {

(∅, {r1:∞, r2:0})}〉

〈M9.i, σ9.i, C9.i〉 τ9

〈{a}, {r1:∞}, ∅〉
〈{a}, {r1:∞}, {(∅,{r1:0}),

({a}, {r1:∞})}〉
〈{a}, {r1:∞}, {

(∅, {r1:0}),(∅, {r1:1}),
({a}, {r1:∞}),
({a}, {r1:1})}〉

〈∅, {r1:∞}, ∅〉
〈∅, {r1:∞}, {(∅, {r1:1})}〉

〈M15.i, σ15.i, C15.i〉 τ15
〈{a}, ∅, ∅〉
〈{d}, ∅, ∅〉
〈{a, d}, ∅, {({a}, ∅),

({d}, ∅)}〉

Figure 3 Selected DP tables of IMOD (left) and INC (right) for nice TD T ′.

3. setting new bound max{0,bnd(r)− σ(r)−wght(r, at(r) \ at≤t)} for weight rule r.

We define Ṗ(t,σ) : P → 2P
(t,σ)

by Ṗ(t,σ)(r) := {r}(t,σ) for r ∈ P.

Example 8. Observe Π
(t1,∅)
t1 = {{b} ← c,← c, c← 0 ≤ {b = 1}} and Π

(t2,∅)
t2 = {{a} ←,← 1 ≤ {¬a = 1}}

for Πt1 , Πt2 of Figure 1(right).

The following example provides an idea how we compute models of a given program using the incidence
graph. The resulting algorithm IMOD is the same as INC, except that only the first two tuple positions
(red and green parts) are considered.

Example 9. Again, we consider Π of Example 1 and in Figure 3 (left) T ′ as well as tables τ1, . . ., τ18. Table
τ1 = {〈∅, ∅〉} as type(t1) = leaf. Since type(t2) = int and t2 introduces atom c, we construct τ2 from τ1 by
taking M2.1 := M1.1∪{c} and M2.2 := M1.1 as well as rule-state ∅. Because type(t3) = int and t3 introduces
rule r1, we consider state program L3 := {r1}(t3,{(r1,0)}) = {← c} for SatRules(L̇3,M2.1) = {(r1, 0)} as
well as SatRules(L̇3,M2.2) = {(r1,∞)} (according to Line 9 of Algorithm 3). Because type(t4) = int and t4
introduces rule r2, we consider M3.1 := M2.1 and M3.2 := M2.2 and state program L4 := {r2}(t4,{(r2,0)}) =
{c ← 0 6 {}} = {c←} for SatRules(L̇4,M3.1) = {(r2,∞)} as well as SatRules(L̇4,M3.2) = {(r2, 0)}
(see Line 9). Node t5 introduces b (table not shown) and node t6 removes b. Table τ6 was discussed in
Example 7. When we remove b in t6 we have decided the “influence” of b on the satisfiability of r1 and
r2 and thus all rules where b occurs. Tables τ7 and τ8 can be derived similarly. Then, t9 removes rule r2

and we ensure that every witness M9.1 can be extended to a model of r2, i.e., witness candidates for τ9
are M8.i with σ8.i(r2) = ∞. The remaining tables are derived similarly. For example, table τ17 for join
node t17 is derived analogously to table τ17 for algorithm PRIM in Figure 2, but, in addition, also combines
the rule-states as specified in Algorithm 3.

Since we already explained how to obtain models, we only briefly describe how we handle the coun-
terwitness part. Family C consists of tuples (C, ρ) where C ⊆ at(Π) ∩ χ(t) is a counterwitness in t to M .
Similar to the rule-state σ the rule-state ρ for C under M represents whether rules of the GL reduct ΠM

t are
either (i) satisfied by a superset of C or (ii) undecided for C. Thus, C witnesses the existence of C ′ (M ′

satisfying C ′ � (Π<t ∪ SR(Πt, ρ))M
′

since M witnesses a model M ′ ⊇M where M ′ � Π<t ∪ SR(Πt, ρ). In
consequence, there exists an answer set of Π if the root table contains 〈∅, ∅, ∅〉. In order to locally decide
rule satisfiability for counterwitnesses, we require state-programs under witnesses.

8

Algorithm 4: Algorithm #OINC(t, χt,Πt, at≤t,Child-Tabs).

In: Bag χt, bag-rules Πt, atoms-below at≤t, child tables Child-Tabs of t. Out: Tab. τt.
/* For 〈M,σ, C, c, n〉, we only state affected parts (cost c and count n); ‘‘. . . ’’ indicates

computation as before. * . . . + denotes a multiset. */

1 if type(t) = leaf then τt := {〈∅, . . . , 0, 1〉}
2 else if type(t) = int, a ∈ χt \Πt is introduced and τ ′ ∈ Child-Tabs then
3 τt := {〈M, . . . , cst(Π, ∅, {a}) + c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′}

⋃
4 {〈M+

a , . . . , cst(Π, {a}, {a}) + c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′}
5 else if type(t) = int or rem, removed or introduced r ∈ Πt, τ

′ ∈ Child-Tabs then
6 τt := {〈M, . . . , c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′, . . .}
7 else if type(t) = rem, a /∈ χt is removed atom and τ ′ ∈ Child-Tabs then
8 τt := cnt(kmin(*〈M−a , . . . , c, n〉 | 〈M,σ, C, c, n〉 ∈ τ ′+))
9 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabs with τ ′ 6= τ ′′ then

10 τt := cnt(kmin(*〈M, . . . , c′ + c′′ − cst(Π,M, χt), n
′ · n′′〉

11 | 〈M,σ′, C′, c′, n′〉 ∈ τ ′, 〈M,σ′′, C′′, c′′, n′′〉 ∈ τ ′′+))

Definition 2. Let Π be a program, T = (·, χ) be a TD of I(Π), t be a node of T , P ⊆ Πt, ρ : Πt → N0∪{∞}
be a rule-state and M ⊆ at(Π). We define state-program P(t,ρ,M) by [S(t,ρ)]

M
where S := P ∪ {← Br |

r ∈ CH(P), ρ(r) > 0}, and Ṗ(t,ρ,M) : P → 2P
(t,ρ,M)

by Ṗ(t,ρ,M)(r) := {r}(t,ρ,M) for r ∈ P.

We compute a new rule-state ρ for a counterwitness from an earlier rule-state, satisfied rules (SatRules),
and both (a) “updated” bounds for weight rules or (b) “updated” value representing whether the head can
still be satisfied (ρ(r) ≤ 0) for choice rules r (UpdtWgt&Ch). Formally, UpdtWgt&Ch(Πt,M,C, a) := σ′

depending on an atom a with (a) σ′(r) := wght(r, {a} ∩ [(B−r \M) ∪ (B+
r ∩ C)]), if r ∈ WGT(Πt); and

(b) |{a} ∩Hr ∩ (M \ C)|, if r ∈ CH(Πt).

Theorem 3. The algorithm DP INC is correct.

Proof. (Idea) A tuple at a node t guarantees that there exists a model for the ASP sub-program induced
by the subtree rooted at t. Since this can be done for each node type, we obtain soundness. Completeness
follows from the fact that while traversing the tree decomposition every answer set is indeed considered.
The full proof is rather tedious as each node type needs to be investigated separately. For more details, we
refer the reader to Appendix B.2.

Theorem 4. Given a program Π, algorithm DP INC runs in time O(22k+2·`k+1 ·‖I(Π)‖), where k := tw(I(Π)),
and ` := max{3,bnd(r) | r ∈WGT(Π)}.

Proof. We refer the reader to Appendix B.3.

The runtime bounds stated in Theorem 4 appear to be worse than in Theorem 2. However, tw(I(Π)) ≤
tw(P (Π)) + 1 and tw(P (Π)) ≥ max{|at(r)| | r ∈ Π} for a given program Π. Further, there are programs
where tw(I(Π)) = 1, but tw(P (Π)) = k, e.g., a program consisting of a single rule r with |at(r)| = k.
Consequently, worst-case runtime bounds of DPPRIM are at least double-exponential in the rule size and
DPPRIM will perform worse than DP INC on input programs containing large rules. However, due to the
rule-states, data structures of DP INC are much more complex than of DPPRIM. In consequence, we expect
DPPRIM to perform better in practice if rules are small and incidence and primal treewidth are therefore
almost equal. In summary, we have a trade-off between (i) a more general parameter decreasing the
theoretical worst-case runtime and (ii) less complex data structures decreasing the practical overhead to
solve AS.

9

0.1

1

10

60
120

300

0 50 100 150

C
P

U
 ti

m
e

[s
]

Cachet 1.21
Clasp 3.1.4(usc)
DynASP 2(INC)
DynASP 2(PRIM)
SharpSAT 12.08

ASP/SAT-TGrid

inst. #

C
P

U

s][
tim

e

0.1

1

10

60
120

300

0 50 100 150 200

C
P

U
 ti

m
e

[s
]

Clasp 3.1.4(usc)
DepQBF0
DynASP 2(INC)
DynASP 2(PRIM)

2ASP/2QBF-TGrid

inst. # 0.1

1

10

60
120

300

0 50 100 150 200 250

C
P

U
 ti

m
e

[s
]

Clasp 3.1.4(usc)
DynASP 2(INC)
DynASP 2(PRIM)

sVc

inst. #

Figure 4 Results of randomly generated and selected real-world instances.

3.3 Extensions for Optimization and Counting

In order to find an answer set of a program with optimization statements or the number of optimal
answer sets (#AspO), we extend our algorithms PRIM and INC. Therefore, we augment tuples stored
in tables with an integers c and n describing the cost and the number of witnessed sets. Due to space
restrictions, we only present adaptions for INC. We state which parts of INC we adapt to compute
the number of optimal answer sets in Algorithm 4 (#OINC). To slightly simplify the presentation of
optimization rules, we assume without loss of generality that whenever an atom a is introduced in bag χ(t)
for some node t of the TD, the optimization rule r, where a occurs, belongs to the bag χ(t). First, we
explain how to handle costs making use of function cst(Π,M,A) as defined in Section 2. In a leaf (Line 1)
we set the (current) cost to 0. If we introduce an atom a (Line 2–4) the cost depends on whether a
is set to true or false in M and we add the cost of the “child” tuple. Removal of rules (Line 5–6) is
trivial, as we only store the same values. If we remove an atom (Line 7–8), we compute the minimum
costs only for tuples 〈M−a , σ, C, c, n〉 where c is minimal among M−a , σ, C, that is, for a multiset S we
let kmin(S) := *〈M−a , σ, C, c, n〉 | c = min{c′ : 〈M−a , σ, C, c′, ·〉 ∈ S}, 〈M−a , σ, C, c, n〉 ∈ S+. We require a
multiset notation for counting (see below). If we join two nodes (Line 9–11), we compute the minimum
value in the table of one child plus the minimum value of the table of the other child minus the value of the
cost for the current bag, which is exactly the value we added twice. Next, we explain how to handle the
number of witnessed sets that are minimal with respect to the cost. In a leaf (Line 1), we set the counter
to 1. If we introduce/remove a rule or introduce an atom (Line 2–6), we can simply take the number n
from the child. If we remove an atom (Line 7–8) we first obtain a multiset from computing kmin, which
can contain several tuples for M−a , σ, C, c as we obtained M−a either from M \ {a} if a ∈M or M if a /∈M
giving rise multiple solutions, that is, cnt(S) := {〈M,σ, C, c,

∑
〈M,σ,C,c,n′〉∈S n

′〉 | 〈M,σ, C, c, n〉 ∈ S}. If we

join nodes (Line 7–9), we multiply the number n′ from the tuple of one child with the number n′′ from the
tuple of the other child, restrict results with respect to minimum costs, and sum up the resulting numbers.

Corollary 1. Given a program Π, algorithm #OINC runs in time O(log(m) · 22k+2·`k+1‖I(Π)‖2), where
k := tw(I(Π)), ` := max{3,bnd(r) : r ∈WGT(Π)}, and m := Σr∈OPT(Π) wght(r).

4 Experimental Evaluation

We implemented the algorithms DPPRIM and DP INC into a prototypical solver DynASP2(·) and performed
experiments to evaluate its runtime behavior. Clearly, we cannot hope to solve programs with graph
representations of high treewidth. However, programs involving real-world graphs such as graph problems
on transit graphs admit TDs of small width. We used both random and structured instances for our
benchmarks. We refer to Appendix C for instance, machine and solver configurations and descriptions. The
random instances (Sat-TGrid, 2QBF-TGrid, ASP-TGrid, 2ASP-TGrid) were designed to have a high
number of variables and solutions and treewidth at most three. The structured instances model various
graph problems (2Col, 3Col, Ds, St cVc, sVc) on real world mass transit graphs. For a graph, program
2Col counts all 2-colorings, 3Col counts all 3-colorings, Ds counts all minimal dominating sets, St counts

10

2Col 3Col Ds St cVc sVc

Clasp(usc) 31.72 (21) 0.10 (0) 8.99 (3) 0.21 (0) 29.88 (21) 98.34 (71)
DynASP2(PRIM) 1.54 (0) 0.53 (0) 0.68 (0) 79.36 (221) 0.99 (0) 1.30 (0)
DynASP2(INC) 1.43 (0) 0.58 (0) 0.54 (0) 115.02 (498) 0.68 (0) 0.78 (0)

Table 1 Runtimes (given in sec.; #timeouts in brackets) on real-world instances.

all Steiner trees, cVc counts all cardinality-minimal vertex covers, and sVc counts all subset-minimal
vertex covers. In order to draw conclusions about the efficiency of DynASP2, we mainly inspected the cpu
running time and number of timeouts using the average over three runs per instance (three fixed seeds
allow certain variance [1] for heuristic TD computation). We limited available memory (RAM) to 4GB (to
run SharpSAT on large instances), and cpu time to 300 seconds, and then compared DynASP2 with the
dedicated #SAT solvers SharpSAT [20] and Cachet [18], the QBF solver DepQBF0, and the ASP solver
Clasp [9]. Figure 4 illustrates runtime results as a cactus plot. Table 1 reports on the average running
times, numbers of solved instances and timeouts on the structured instance sets.

Summary. Our empirical benchmark results confirm that DynASP2 exhibits competitive runtime behavior
if the input instance has small treewidth. Compared to state-of-the-art Asp and Qbf solvers, DynASP2
has an advantage in case of many solutions, whereas Clasp and DepQBF0 perform well if the number of
solutions is relatively small. However, DynASP2 is still reasonably fast on structured instances with few
solutions as it yields the result mostly within less than 10 seconds. We observed that INC seems to be the
better algorithm in our setting, indicating that the smaller width obtained by decomposing the incidence
graph generally outweighs the benefits of simpler solving algorithms for the primal graph. However, if INC
and PRIM run with graphs of similar width, PRIM benefits from its simplicity. A comparison to existing
#SAT solvers suggests that, on random instances, they have a lower overhead (which is not surprising,
since our algorithms are built for ASP), but, after about 150 seconds, our algorithms were still able to
solve more instances than all other #SAT competitors.

5 Conclusion

In this paper, we presented novel DP algorithms for ASP, extending previous work [11] in order to cover
the full ASP syntax. Our algorithms are based on two graph representations of programs and run in linear
time with respect to the treewidth of these graphs and weights used in the program. Experiments indicate
that our approach seems to be suitable for practical use, at least for certain classes of instances with low
treewidth, and hence could fit into a portfolio-based solver.

References

[1] M. Abseher, F. Dusberger, N. Musliu, and S. Woltran. Improving the efficiency of dynamic programming
on tree decompositions via machine learning. In IJCAI’15, 2015.

[2] H. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded treewidth.
The Computer Journal, 51(3):255–269, 2008.

[3] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communications of
the ACM, 54(12):92–103, 2011.

[4] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, and
T. Schaub. ASP-core-2 input language format, 2013.

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, and S. Saurabh.
Parameterized Algorithms. Springer, 2015.

11

[6] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and complete problems for
counting complexity classes. Th. Comput. Sc., 340(3), 2005.

[7] Johannes K. Fichte and Stefan Szeider. Backdoors to tractable answer-set programming. AIJ, 220(0):64–
103, 2015. Extended and updated version of a paper that appeared in Proc. of the 22nd International
Conference on Artificial Intelligence (IJCAI’11).

[8] M. Gebser, J. Bomanson, and T. Janhunen. Rewriting optimization statements in answer-set programs.
Technical Communications of ICLP 2016, 2016.

[9] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory to practice.
AIJ, 187–188, 2012.

[10] M. Hermann and R. Pichler. Complexity of counting the optimal solutions. Th. Comput. Sc.,
410(38–40), 2009.

[11] M. Jakl, R. Pichler, and S. Woltran. Answer-set programming with bounded treewidth. In IJCAI’09,
volume 2, 2009.

[12] C. Koch and N. Leone. Stable model checking made easy. In IJCAI’99, 1999.

[13] V. Lifschitz. What is answer set programming? In AAAI’08, 2008.

[14] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univ. Pr., 2006.

[15] R. Pichler, S. Rümmele, S. Szeider, and S. Woltran. Tractable answer-set programming with weight
constraints: bounded treewidth is not enough. Theory Pract. Log. Program., 14(2), 2014.

[16] N. Robertson and P.D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J. Alg.,
7(3):309–322, 1986.

[17] M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algorithms, 8(1),
2010.

[18] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combining component caching and
clause learning for effective model counting. In SAT’04, 2004.

[19] T. Syrjänen. Lparse 1.0 user’s manual. tcs.hut.fi/Software/smodels/lparse.ps, 2002.

[20] M. Thurley. sharpSAT – counting models with advanced component caching and implicit BCP. In
SAT’06, 2006.

12

tcs.hut.fi/Software/smodels/lparse.ps

A Additional Examples

In the following example, we briefly describe how we compute counterwitnesses using Algorithm 3 (INC)
for selected interesting cases. The example is similar to Example 6, which, however, describes handling
counterwitnesses for Algorithm PRIM.

Example 10. We consider Π of Example 1 and T ′ = (·, χ) of Figure 3 and explain how we compute
tables τ1, . . ., τ18 in Figure 3 (right) using DP INC. Table τ1 = 〈∅, ∅, ∅〉 as type(t1) = leaf. Node t2 introduces
atom c, resulting in table {〈{c}, ∅, {(∅, ∅)}〉, 〈∅, ∅, ∅〉}. Then, node t3 introduces rule r1 and node t4 introduces
rule r2. As a result, table τ4 additionally contains computed rule-states (see SatRules) for witnesses and
counterwitnesses of τ3. Node t5 introduces atom b, while t6 removes b. Next, we focus on table τ6, since
rule-states for counterwitnesses require updates for choice rule r1 (see UpdtWgt&Ch). Witness M6.2 = {c}
is obtained by extending some witness M5.i ⊇ {b} of τ5. For counterwitness C6.2.1 = {c} we require to
remember σ6.2.1(r1) = 1 (see UpdtWgt&Ch), since t6 removes b and C6.2.1 stems from some C5.i.j1 with

b 6∈ C5.i.j1 . The set C5.i.j1 cannot be a model of the GL reduct {r1}M5.i unless r1 is satisfied because of
its body, since b ∈ M5.i and b 6∈ C5.i.j1 . For choice rule r1, σ6.2.1(r1) 6= ∞ and σ6.2.1(r1) 6= 0 indicates
that we can satisfy r1 only by B+(r1) \M 6= ∅ (see P ∪ {· · · , ρ(r) > 0} in Definition 2). The remaining
counterwitness C6.2.2 = ∅ was obtained by some C5.i.j2 with b 6∈ C5.i.j2 , since σ6.2.2(r2) = 0). Further,
C6.2.3 = ∅ stems from C5.i.j3 ⊇ {b}, since σ6.2.3(r2) = 1.

B Omitted Proofs

B.1 Proof of Theorem 2 (Correctness result of PRIM)

Proposition 1. The algorithm DPPRIM is correct.

Proof (Sketch). Let Π be the given program and T = (T, χ) the TD, where T = (N, ·, n). We obtain
correctness by slightly modifying the proof of Theorem 2 as well as relevant definitions and propositions
following Appendix B.2. More precisely, we drop the mappings σ and relevant conditions for mappings σ
and replace them by satisfiability of the respective rules. By definition of a primal graph of a program, we
know that for every rule r ∈ Π there is a node t ∈ N such that χ(t) ⊆ at(r). Hence, for a node t we can
decide satisfiability of a rule directly, if bag χ(t) contains all atoms of a rule, when computing the tables.
We directly obtain completeness and soundness, which yields the proposition.

Proposition 2. Given a program Π and a TD T = (T, χ) of the primal graph P (Π) of width k with

T = (N, ·, ·). For every node t ∈ N , there are at most 2k+1 · 22k+1

tuples in table τt, which is constructed
by algorithm DP INC.

Proof. Let Π be a program, P (Π) its primal graph, and T = (T, χ) a TD of P (Π) with T = (N, ·, ·).
For every node t ∈ T , we have by definition of a tree decomposition and its width a maximum bag size
of k + 1, i.e., |χ(t)| − 1 ≤ k. Therefore, we can have 2k+1 many witnesses and for each witness a subset

of the set of witnesses consisting of at most 22k+1

many counterwitnesses. Consequently, there are at

most 2k+1 · 22k+1

tuples per node. Hence, the proposition is true.

Now, we are in situation to prove Theorem 2.

Proof of Theorem 2. Let Π be a program, I(Π) = (V, ·) its incidence graph, and k be the treewidth of

P (Π). Proposition 1 establishes correctness. Then, we can compute in time 2O(k3) · |V | a TD of width
at most k [1]. We take such a TD and compute in linear time a nice TD [7]. Let T = (T, χ) be such a
nice TD with T = (N, ·, n). Since the number of nodes in N is linear in the graph size and since for every

node t ∈ N the table τt is bounded by 2k+1 · 22k+1

according to Proposition 2, we obtain a running time

of O(22k+2 · ‖P (Π)‖). Consequently, the theorem sustains.

13

B.2 Proof of Theorem 3 (Correctness result of INC)

In the following, we provide insights on the correctness of Algorithm 3 (INC). The correctness proof of
these algorithms need to investigate each node type separately. We have to show that a tuple at a node t
guarantees existence of a model for the program Π≤t, proving soundness. Conversely, one can show that
each candidate answer set is indeed evaluated while traversing the TD, which provides completeness. We
employ this idea using the notions of (i) partial solutions consisting of partial models and the notion of
(ii) local partial solutions.

Definition 3. Let Π be a program, T = (T, χ) be a TD of the incidence graph I(Π) of Π, where T = (N, ·, ·),
and t ∈ N be a node. Further, let M,C ⊆ at≤t be sets and σ : Π≤t → N0 ∪ {∞} a mapping. The tuple
(C, σ) is a partial model for t under M if the following conditions hold:

1. C � (Π<t)
M ,

2. for r ∈ Π≤t we have σ(r) = 0 or σ(r) =∞,

3. (a) for r ∈ DISJ(Π≤t) we have B−r ∩M 6= ∅ or B+
r ∩ at≤t 6⊆ C or Hr ∩ C 6= ∅ if and only if σ(r) =∞,

(b) for r ∈WGT(Π≤t) we have wght(r, (at(r) \ at≤t) ∪ (B−r \M) ∪ (B+
r ∩C)) < bnd(r) or Hr ∩C 6= ∅

if and only if σ(r) =∞, and

(c) for r ∈ CH(Π≤t) we have B−r ∩M 6= ∅ or B+
r ∩ at≤t 6⊆ C or both Hr ⊆ at≤t and Hr ∩ (M \ C) = ∅

if and only if σ(r) =∞.

Definition 4. Let Π be a program, T = (T, χ) where T = (N, ·, n) be a TD of I(Π), and t ∈ N be a node.
A partial solution for t is a tuple (M,σ, C) where (M,σ) is a partial model under M and C is a set of partial
models (C, ρ) under M with C (M .

The following lemma establishes correspondence between answer sets and partial solutions.

Lemma 1. Let Π be a program, T = (T, χ) be a TD of the incidence graph I(Π) of program Π, where
T = (·, ·, n), and χ(n) = ∅. Then, there exists an answer set M for Π if and only if there exists a partial
solution u = (M,σ, ∅) with σ−1(∞) = Π for root n.

Proof. Given an answer set M of Π we construct u = (M,σ, ∅) with σ(r) :=∞ for r ∈ Π such that u is a
partial solution for n (according to Definition 4). For the other direction, Definitions 3 and 4 guarantee
that M is an answer set if there exists some tuple u. In consequence, the lemma holds.

Next, we require the notion of local partial solutions corresponding to the tuples obtained in Algorithm 3.

Definition 5. Let Π be a program, T = (T, χ) a TD of I(Π), where T = (N, ·, n), t ∈ N be a node,
M,C ⊆ at(Π) sets, and σ : Π→ N0∪{∞} be a mapping. We define the local rule-state σt,M,C := (σ]σ′)−Π<t
for C under M of node t where σ′ : Πt → N0 ∪ {∞} by

σ′(r) :=

{
wght(r, (at≤t \ χ(t)) ∩ [(B−r \M) ∪ (B+

r ∩ C)]) r ∈WGT(Πt)

|(at≤t \ χ(t)) ∩Hr ∩ (M \ C)| r ∈ CH(Πt)

Definition 6. Let Π be a program, T = (T, χ) a TD of the incidence graph I(Π), where T = (N, ·, n), and
t ∈ N be a node. A tuple u = 〈M,σ, C〉 is a local partial solution for t if there exists a partial solution
û = (M̂, σ̂, Ĉ) for t such that the following conditions hold:

1. M = M̂ ∩ χ(t),

2. σ = σ̂t,M̂,M̂ , and

14

3. C = {〈Ĉ ∩ χ(t), ρ̂t,M̂,Ĉ〉 | (Ĉ, ρ̂) ∈ Ĉ}.

We denote by ût the local partial solution u for t given partial solution û.

The following proposition provides justification that it suffices to store local partial solutions instead of
partial solutions for a node t ∈ N .

Lemma 2. Let Π be a program, T = (T, χ) a TD of I(Π), where T = (N, ·, n), and χ(n) = ∅. Then, there
exists an answer set for Π if and only if there exists a local partial solution of the form 〈∅, ∅, ∅〉 for the
root n ∈ N .

Proof. Since χ(n) = ∅, every partial solution for the root n is an extension of the local partial solution u
for the root n ∈ N according to Definition 6. By Lemma 1, we obtain that the lemma is true.

In the following, we abbreviate atoms occurring in bag χ(t) by att, i.e., att := χ(t) \Πt.

Proposition 3 (Soundness). Let Π be a program, T = (T, χ) a TD of incidence graph I(Π), where
T = (N, ·, ·), and t ∈ N a node. Given a local partial solution u′ of child table τ ′ (or local partial solution
u′ of table τ ′ and local partial solution u′′ of table τ ′′), each tuple u of table τt constructed using table
algorithm INC is also a local partial solution.

Proof. Let u′ be a local partial solution for t′ ∈ N and u a tuple for node t ∈ N such that u was derived
from u′ using table algorithm INC. Hence, node t′ is the only child of t and t is either removal or introduce
node.

Assume that t is a removal node and r ∈ Πt′ \ Πt for some rule r. Observe that u = 〈M,σ, C〉 and
u′ = 〈M,σ′, C′〉 are the same in witness M . According to Algorithm 3 and since u is derived from u′, we
have σ′(r) = ∞. Similarly, for any 〈C ′, ρ′〉 ∈ C′, ρ′(r) = ∞. Since u′ is a local partial solution, there
exists a partial solution û′ of t′, satisfying the conditions of Definition 6. Then, û′ is also a partial solution
for node t, since it satisfies all conditions of Definitions 3 and 4. Finally, note that u = (û′)t since the
projection of û′ to the bag χ(t) is u itself. In consequence, the tuple u is a local partial solution.

For a ∈ att′ \ att as well as for introduce nodes, we can analogously check the proposition.
Next, assume that t is a join node. Therefore, let u′ and u′′ be local partial solutions for t′, t′′ ∈ N ,

respectively, and u be a tuple for node t ∈ N such that u can be derived using both u′ and u′′ in
accordance with the INC algorithm. Since u′ and u′′ are local partial solutions, there exists partial solution
û′ = (M̂ ′, σ̂′, Ĉ′) for node t′ and partial solution û′′ = (M̂ ′′, σ̂′′, Ĉ′′) for node t′′. Using these two partial
solutions, we can construct û = (M̂ ′ ∪ M̂ ′′, σ̂′] σ̂′′, Ĉ′ ./ Ĉ′′) where ./ (·, ·) is defined in accordance with
Algorithm 3 as follows:

Ĉ′ ./ Ĉ′′ :={(Ĉ ′ ∪ Ĉ ′′, ρ̂′] ρ̂′′) | (Ĉ ′, ρ̂′) ∈ Ĉ′, (Ĉ ′′, ρ̂′′) ∈ Ĉ′′, Ĉ ′ ∩ att = Ĉ ′′ ∩ att}∪
{(Ĉ ′ ∪ M̂ ′′, ρ̂′] σ̂′′) | (Ĉ ′, ρ̂′) ∈ Ĉ′, Ĉ ′ ∩ att = M̂ ′′ ∩ att}∪
{(M̂ ′ ∪ Ĉ ′′, σ̂′] ρ̂′′) | (Ĉ ′′, ρ̂′′) ∈ Ĉ′′, M̂ ′ ∩ att = Ĉ ′′ ∩ att}.

Then, we check all conditions of Definitions 3 and 4 in order to verify that û is a partial solution for t.
Moreover, the projection ût of û to the bag χ(t) is exactly u by construction and hence, u = ût is a local
partial solution.

Since we have provided arguments for each node type, we established soundness in terms of the statement
of the proposition.

Proposition 4 (Completeness). Let Π be a program, T = (T, χ) where T = (N, ·, ·) be a TD of I(Π) and
t ∈ N be a node. Given a local partial solution u of table τt, either t is a leaf node, or there exists a local
partial solution u′ of child table τ ′ (or local partial solution u′ of table τ ′ and local partial solution u′′ of
table τ ′′) such that u can be constructed by u′ (or u′ and u′′, respectively) and using table algorithm INC.

15

Proof. Let t ∈ N be a removal node and r ∈ Πt′ \Πt with child node t′ ∈ N . We show that there exists a
tuple u′ in table τt′ for node t′ such that u can be constructed using u′ by INC (Algorithm 3). Since u is a
local partial solution, there exists a partial solution û = (M̂, σ̂, Ĉ) for node t, satisfying the conditions of
Definition 6. Since r is the removed rule, we have σ̂(r) = ∞. By similar arguments, we have ρ̂(r) = ∞
for any tuple (Ĉ, ρ̂) ∈ Ĉ. Hence, û is also a partial solution for t′ and we define u′ := ût

′
, which is the

projection of û onto the bag of t′. Apparently, the tuple u′ is a local partial solution for node t′ according
to Definition 6. Then, u can be derived using INC algorithm and u′. By similar arguments, we establish the
proposition for a ∈ att′ \ att and the remaining (three) node types. Hence, the propositions sustains.

Now, we are in situation to prove Theorem 3.

Proof of Theorem 3. We first show soundness. Let T = (T, χ) be the given TD, where T = (N, ·, n). By
Lemma 2 we know that there is an answer set for Π if and only if there exists a local partial solution for
the root n. Note that the tuple is of the form 〈∅, ∅, ∅〉 by construction. Hence, we proceed by induction
starting from the leaf nodes. In fact, the tuple 〈∅, ∅, ∅〉 is trivially a partial solution by Definitions 3 and 4
and also a local partial solution of 〈∅, ∅, ∅〉 by Definition 6. We already established the induction step in
Proposition 3. Hence, when we reach the root n, when traversing the TD in post-order by Algorithm DP INC,
we obtain only valid tuples inbetween and a tuple of the form 〈∅, ∅, ∅〉 in the table of the root n witnesses
an answer set. Next, we establish completeness by induction starting from the root n. Let therefore, M be
an arbitrary answer set of Π. By Lemma 2, we know that for the root n there exists a local partial solution
of the form 〈∅, ∅, ∅〉 for partial solution 〈M,σ, ∅〉 with σ(r) = ∞ for r ∈ Π. We already established the
induction step in Proposition 4. Hence, we obtain some (corresponding) tuples for every node t. Finally,
stopping at the leaves n. In consequence, we have shown both soundness and completeness resulting in the
fact that Theorem 3 is true.

Theorem 3 states that we can decide the problem Cons by means of Algorithm DP INC, which uses
Algorithm 3.

B.3 Proof of Theorem 4 (Worst-case Runtime Bounds of INC)

First, we give a proposition on worst-case space requirements in tables for the nodes of our algorithm.

Proposition 5. Given a program Π, a TD T = (T, χ) with T = (N, ·, ·) of the incidence graph I(Π), and

a node t ∈ N . Then, there are at most 2k+1 · `k+1 · 22k+1·`k+1

tuples in τt using algorithm DP INC for width
k of T and bound ` = max{3,bnd(r) : r ∈WGT(Π)}.

Proof (Sketch). Let Π be the given program, T = (T, χ) a TD of the incidence graph I(Π), where
T = (N, ·, ·), and t ∈ N a node of the TD. Then, by definition of a decomposition of the primal graph for
each node t ∈ N , we have |χ(t)|− 1 ≤ k. In consequence, we can have at most 2k+1 many witnesses, and for

each witness a subset of the set of witnesses consisting of at most 22k+1

many counterwitnesses. Moreover,
we observe that Algorithm 3 can be easily modified such that a state σ : Πt → N0 ∪ {∞} for node t ∈ N
assigns each weight rule r ∈WGT(Π) a non-negative integer σ(r) ≤ bnd(r) + 1, each choice rule r ∈ CH(Π)
a non-negative integer σ(r) ≤ 2 and each disjunctive rule r ∈ DISJ(Π) a non-negative integer σ(r) ≤ 1.
This is the case since we need to model σ(r) = 0 and σ(r) =∞ for each disjunctive rule r. Moreover, for
choice rules r, it suffices to additionally model whether 1 ≤ σ(r) <∞, and for weight rules r, we require
to remember any weight 1 ≤ σ(r) ≤ bnd(r). In total, we need to distinguish `k+1 different rule-states for
each witness of a tuple in the table τt for node t. Since for each witness in the table τt for node t ∈ N we
remember rule-states for at most k + 1 rules, we store up to `k+1 many combinations per witness. In total

we end up with at most 22k+1·`k+1

many counterwitnesses for each witness and rule-state in the worst case.

Thus, there are at most 2k+1 · `k+1 · 22k+1·`k+1

tuples in table τt for node t. In consequence, we established
the proposition.

16

Proof of Theorem 4. Let Π be a program, I(Π) = (V, ·) its incidence graph, and k be the treewidth of

P (Π). Then, we can compute in time 2O(k3) · |V | a TD of width at most k [1]. We take such a TD and
compute in linear time a nice TD [7]. Let T = (T, χ) be such a nice TD with T = (N, ·, ·). Since the
number of nodes in N is linear in the graph size and since for every node t ∈ N the table τt is bounded

by 2k+1 · `k+1 · 22k+1·`k+1

according to Proposition 5, we obtain a running time of O(22k+2·`k+1‖I(Π)‖).
Consequently, the theorem sustains.

B.4 Correctness of the Algorithm DP#OINC

The following propositions states that we can use Algorithm DP#OINC to actually count optimal answer
sets.

Proposition 6. The algorithm DP#OINC is correct.

Proof (Sketch). We follow the proof of Theorem 3. First, we additionally need to take care of the
optimization rules obtained by extending Definitions 3–6, the lemmas and propositions accordingly. In
order to handle the counting, we have to extend Definitions 3–6 by counters. Further, we additionally
need to ensure and prove in the induction steps, which are established by Propositions 3 and 4, that any
fixed partial solution is obtained from child to parent via a corresponding local partial solution by the
algorithm.

17

C Experiments

C.1 Solvers

The solvers tested include our own prototypical implementation, which we refer to as DynASP, and the
existing solvers

• Cachet 1.21 [18], which is a SAT model counter,

• DepQBF05, which is the solver DepQBF [9] where we added a naive implementation using methods
described by Lonsing [8],

• Clasp 3.1.4 [9], which is an ASP solver, and

• SharpSAT 12.08 [20], which is a SAT model counter.

C.2 Environment

We ran the experiments on an Ubuntu 12.04 Linux cluster of 3 nodes with two AMD Opteron 6176 SE CPUs
of 12 physical cores each at 2.3Ghz clock speed and 128GB RAM. Input instances were given to the solvers
via shared memory. All solvers have been compiled with gcc version 4.9.3. Available memory was limited
to 4GB RAM, which was necessary to run SharpSAT on larger instances, and CPU time to 300 seconds.
We used default options for cachet and SharpSAT, “–qdc” for DepQBF0, “–stats=2 –opt-mode=optN -n 0
–opt-strategy=usc -q” and no solution printing/recording for clasp. We also benchmarked clasp with the
flag “bb”. However, “usc” outperformed “bb” on all our benchmarks. All solvers have been executed in
single core mode.

C.3 Instances

We used both random and structured instances for benchmark sets, which we briefly describe below. The
benchmark sets, including instances and encodings, as well as results are available online on github6.

The random instances (Sat-TGrid, 2QBF-TGrid, ASP-TGrid, 2ASP-TGrid) were designed to
have a high number of variables and solutions and treewidth at most three. The instances are constructed
as follows: Let k and ` be some positive integers and p a rational number such that 0 < p ≤ 1. An
instance F of Sat-TGrid(k, l, p) consists of the set V = {(1, 1), . . . , (1, `), (2, `), . . . , (k, `)} of variables and
with probability p for each variable (i, j) such that 1 < i ≤ k and 1 < j ≤ ` a clause s1(i, j), s2(i− 1, j),
s3(i, j − 1), a clause s4(i, j), s5(i− 1, j), s6(i− 1, j − 1), and a clause s7(i, j), s8(i− 1, j − 1), s9(i, j − 1)
where si ∈ {−,+} is selected with probability one half. In that way, such an instance has an underlying
dependency graph that consists of various triangles forming for probability p = 1 a graph that has a grid as
subgraph. Let q be a rational number such that 0 < q ≤ 1. An instance of the set 2Qbf-TGrid(k, l, p, q) is
of the form ∃V1.∀V2.F where a variable belongs to V1 with probability q and to V2 otherwise. Instances of
the sets ASP-TGrid or 2ASP-TGrid have been constructed in a similar way, however, as an Asp program
instead of a formula. Note that the number of answer sets and the number of satisfiable assignments
correspond. We fixed the parameters to p = 0.85, k = 3, and l ∈ {40, 80, . . . , 400} to obtain instances that
have with high probability a small fixed width, a high number of variables and solutions. Further, we took
fixed random seeds and generated 10 instances to ensure a certain randomness.

The structured instances model various graph problems (2Col, 3Col, Ds, St cVc, sVc) on real world
mass transit graphs of 82 cities, metropolitan areas, or countries. The graphs were extracted from publicly
available mass transit data feeds [2] using gtfs2graphs [5] and split by transportation type, e.g., train, metro,

5See https://github.com/hmarkus/depqbf/tree/depqbf0
6See https://github.com/daajoe/lpnmr17 experiments.

18

https://github.com/hmarkus/depqbf/tree/depqbf0
https://github.com/daajoe/lpnmr17_experiments

tram. We excluded bus networks as size and treewidth were too large. For an input graph, the 2Col
encoding counts all minimal sets S of vertices s.t. there are two sets F and S where no two neighboring
vertices v and w belong to F ; 3Col counts all 3-colorings; Ds counts all minimal dominating sets; St
counts all Steiner trees; cVc counts all minimal vertex covers; and sVc counts all subset-minimal vertex
covers. Since we cannot expect to solve instances of high treewidth efficiently, we restricted the instances
to those where we were able to find decompositions of width below 20 within 60 seconds.

C.4 Extended Discussion on the Results

In order to draw conclusions about the efficiency of our approach, we mainly inspected the total cpu
running time and number of timeouts on the random and structured benchmark sets. Note that we did not
record I/O times. The runtime for DynASP2(·) includes decomposition times using heuristics from [3, 4].
We randomly generated three fixed seeds for the decomposition computation to allow a certain variance [1].
When evaluating the results, we took the average over the three runs per instance. Figure 4 illustrates
solver runtime on the various random instance sets and a selected structured instance set as a cactus plot.
Table 1 reports on the average running times, number of solved instances, and number of timeouts of the
solvers on the structured instance sets.

C.4.1 Results.

SAT-TGrid and Asp-TGrid: Cachet solved 125 instances. Clasp always timed out. A reason could
be the high number of solutions as Clasp counts the models by enumerating them (without printing
them). DynASP2(·) solved each instance within at most 270 seconds (on average 67 seconds). The best
configuration with respect to runtime was PRIM. However, the running times of the different configurations
were close. We observed as expected a sub-polynomial growth in the runtime with an increasing number of
solutions. SharpSAT timed out on 3 instances and ran into a memory out on 7 instances, but solved most
of the instances quite fast. Half of the instances were solved within 1 second and more than 80% of the
instances within 10 seconds, and about 9% of the instances took more than 100 seconds. The number of
solutions does not have an impact on the runtime of SharpSAT. SharpSAT was the fastest solver in total.
However, DynASP2(·) solved all instances. The results are illustrated in the two left graphs of Figure 4.

2QBF-TGrid and 2ASP-TGrid: Clasp solved more than half of the instances in less than 1 second,
however, timed out on 59 instances. DepQBF0 shows a similar behavior as Clasp, which is not surprising
as both solvers count the number of solutions by enumerating them and hence the number of solutions
has a significant impact on the runtime of the solver. However, Clasp is faster throughout than DepQBF0.
DynASP2(INC) solved half of the instances within less than 1 second, about 92% of the instances within
less than 10 seconds, and provided solutions also if the instance had a large number of answer sets.
DynASP2(PRIM) quickly produced timeouts due to large rules in program that produced a significantly
larger width of the computed decompositions.

Structured instances: Clasp solved most of the structured instances reasonably fast. However, the
number of solutions has again, similar to the random setting, a significant impact on its performance. If the
number of solutions was very high, then Clasp timed out. If the instance has a small number of solutions,
then Clasp yields the number almost instantly. However, DynASP2(·) also provided a solution within a
second. DynASP2(·) solved for each set but the set St more than 80% of the instances in less than 1
second and the remaining instances in less than 100 seconds. For St the situation was different. Half of
the instances were solved in less than 10 seconds and a little less than the other half timed out. Similar to
the random setting, DynASP2(·) ran still fast on instances with a large number of solutions.

19

Appendix References

[1] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput., 25(6):1305–1317, 1996.

[2] J. et al. Czebotar. GTFS data exchange. www.gtfs-data-exchange.com, 2016.

[3] Holger Dell and Frances Rosamond. The 1st parameterized algorithms and computational experiments
challenge – Track A: Treewidth. Technical report, 2016.

[4] Artan Dermaku, Tobias Ganzow, Georg Gottlob, Ben McMahan, Nysret Musliu, and Marko Samer.
Heuristic methods for hypertree decomposition. In MICAI’08, pages 1–11. Springer, 2008.

[5] J. K. Fichte. daajoe/gtfs2graphs – a GTFS transit feed to graph format converter. https://github.
com/daajoe/gtfs2graphs, 2016.

[6] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From theory to practice.
AIJ, 187–188, 2012.

[7] Ton Kloks. Treewidth. Computations and Approximations, volume 842 of LNCS. Springer, 1994.

[8] F. Lonsing. Personal communication, 2016.

[9] F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver system description. J. Sat., Bool.
Model. and Comp., 7, 2010.

20

www.gtfs-data-exchange.com
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs

	1 Introduction
	2 Formal Background
	2.1 Answer Set programming (ASP)
	2.2 Tree Decompositions
	2.3 Graph Representations of Programs
	2.4 Sub-Programs

	3 ASP via Dynamic Programming on TDs
	3.1 Using Decompositions of Primal Graphs
	3.2 Using Decompositions of Incidence Graphs
	3.3 Extensions for Optimization and Counting

	4 Experimental Evaluation
	5 Conclusion
	A Additional Examples
	B Omitted Proofs
	B.1 Proof of Theorem ?? (Correctness result of PRIM)
	B.2 Proof of Theorem ?? (Correctness result of INC)
	B.3 Proof of Theorem ?? (Worst-case Runtime Bounds of INC)
	B.4 Correctness of the Algorithm DP#OINC

	C Experiments
	C.1 Solvers
	C.2 Environment
	C.3 Instances
	C.4 Extended Discussion on the Results
	C.4.1 Results.

