Skip to main content

Flock Diameter Control in a Collision-Avoiding Cucker-Smale Flocking Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10385))

Abstract

Both the original Cucker-Smale flocking model and a more recent version with collision avoidance do not have any control over how tightly the system of agents flock, which is measured by the flock diameter. In this paper, a cohesive force is introduced to potentially reduce the flock diameter. This cohesive force is similar to the repelling force used for collision avoidance. Simulation results show that this cohesive force can reduce or control the flock diameter. Furthermore, we show that for any set of model parameters, the cohesive force coefficient is the single determining factor of this diameter. The ability of this modified collision-avoiding Cucker-Smale model to provide control of the flock diameter could have significance when applied to robotic flocks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cucker, F., Dong, J.G.: Avoiding collisions in flocks. IEEE Trans. Autom. Control 55(5), 1238–1243 (2010)

    Article  MathSciNet  Google Scholar 

  2. Cucker, F., Dong, J.G.: A general collision-avoiding flocking framework. IEEE Trans. Autom. Control 56(5), 1124–1129 (2011)

    Article  MathSciNet  Google Scholar 

  3. Cucker, F., Smale, S.: Emergent behaviour in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  Google Scholar 

  4. Elkawkagy, M.: Improving the performance of hybrid planning. Int. J. Artif. Intell. 14(2), 98–116 (2016)

    Google Scholar 

  5. Ha, S.Y., Liu, J.G., et al.: A simple proof of the cucker-smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22, 1–94 (1986)

    Article  Google Scholar 

  8. Park, J., Kim, H.J., Ha, S.Y.: Cucker-Smale flocking with inter-particle bonding forces. IEEE Trans. Autom. Control 55(11), 2617–2623 (2010)

    Article  MathSciNet  Google Scholar 

  9. Precup, R.E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 74, 75–94 (2015)

    Article  Google Scholar 

  10. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Biomimicry of parasitic behavior in a coevolutionary particle swarm optimization algorithm for global optimization. Appl. Soft Comput. 32, 224–240 (2015)

    Article  Google Scholar 

  11. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  12. Tan, Y., Dai, H.H., Huang, D., Xu, J.X.: Unified iterative learning control schemes for nonlinear dynamic systems with nonlinear input uncertainties. Automatica 48(12), 3173–3182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ton, T.V., Linh, N.T.H., Yagi, A.: Flocking and non-flocking behavior in a stochastic Cucker-Smale system. Anal. Appl. 12(01), 63–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  15. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3), 71–140 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ma, J., Lai, E.MK. (2017). Flock Diameter Control in a Collision-Avoiding Cucker-Smale Flocking Model. In: Tan, Y., Takagi, H., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2017. Lecture Notes in Computer Science(), vol 10385. Springer, Cham. https://doi.org/10.1007/978-3-319-61824-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61824-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61823-4

  • Online ISBN: 978-3-319-61824-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics