Data Mining in Databases: Languages
and Indices
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Abstract Database systems methodologies and technology can provide a
significant support to data mining processes. In this chapter we explore approaches
which address the integration between data mining activities and DBMSs from dif-
ferent perspectives. More specifically, we focus on (i) specialized query languages
which allow to define complex data mining tasks through the submission of query
requests, and (ii) indices, i.e., physical data structures designed to improve the per-
formance of mining algorithms.
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1 Introduction

The topic of data mining is becoming every day more important since most any
company and data center nowadays has accumulated in its history large volumes
of data and is willing to analyse them and acquire knowledge in order to increase
the competitive advantage over competitors or improve its business processes. The
knowledge might be a model applicable to predict a target variable or descriptive,
such that the user can use it in order to summarise the details of the data that cannot be
analysed by a human given the large volumes of stored data. Of particular importance
is the fact that very often the majority of these data, especially if it regards the past
history of the business, such as clients information and past interaction, is stored in a
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persistent way ina DBMS which is almost always arelational database. Animmediate
conclusion arises: more technology and specialised systems should be developed by
the database and data mining community in order to enhance and distribute facilities
for the analysis of large volumes of data stored in relational databases.

Data mining is an interdisciplinary subfield of computer science aimed at discov-
ering unexpected and potentially useful knowledge from large data collections. It
includes a plethora of methods at the intersection of artificial intelligence, machine
learning, statistics, and database systems, that can be profitably used to mine inter-
esting patterns such as groups of similar data objects (cluster analysis), dependencies
among data objects (association rule analysis), or a model describing data classes
(classification). Traditionally data mining algorithms analyse large data collections
stored into flat-files, even if possibly extracted from a DBMS. However this data
extraction is not much practical, especially if a large volume of data is interested in
the extraction. More effectively some research activity has addressed the application
of data mining methods directly on relational data. Coupling data mining methods
with the usual querying techniques can have a great potential in finally providing the
end-user a richer, more diversified and interesting knowledge.

In this chapter we focus mainly on the knowledge that can be extracted from
relational databases under the form of frequent patterns. In particular we focus on
frequent itemsets and association rules that have been used with success in the past
to solve predictive tasks such as classification [22] and to form a descriptive model
of the dataset as well by the collection of frequent patterns extracted [3, 4].

Association rule mining, aiming at discovering correlations among data items, is
the collection of data mining methods that can be more easily exploited for DBMS
mining. Association rules are extracted from a transactional database D. D is a col-
lection of transactions, where each transaction is a set of data items. Association
rules are usually represented in the form A — B, where A and B are itemsets, i.e.,
sets of data items. Itemsets are characterized by their frequency of occurrence in D,
which is called support. Different constraints may be enforced to reduce the compu-
tational cost of itemset extraction, among which the most simple are support and item
constraints [21, 37]. The support constraint enforces a threshold on the minimum
support of the extracted itemsets. The item constraint enforces the extraction of the
complete set of itemsets which include the required items.

Various efficient algorithms has been proposed for itemset extraction, which rep-
resents the most computationally intensive knowledge extraction task in association
rule mining [2]. Ad-hoc main memory data structures are exploited to efficiently
extract itemsets from data collections usually stored into binary files [2, 5, 17, 24,
28, 32, 34] Recently, disk-based extraction algorithms have been proposed to support
the extraction from these large datasets [12, 15, 31].

In this chapter, we provide the following contributions: (i) an overview of the
query languages and query optimisation techniques that can be used to interact
with the database system and specify the type of patterns in which the analyst is
interested in and (ii) a DBMS-based approach to support itemset mining queries.
Relational DBMSs exploit indices, which are ad hoc data structures, to support the
execution of complex queries. Following this approach, we describe the IMine index
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(Itemset-Mine index), proposed in [6, 7], a compact data structure that provides a
complete representation of transactional data supporting efficient itemset extraction
from a relational DBMS.

2 An Overview of Specialised Query Languages
for Data Mining

Inductive databases have been proposed to afford the problem of knowledge dis-
covery from huge databases in [18]. This kind of databases integrates raw data with
knowledge extracted from raw data, materialized under the form of patterns. With
an inductive database the user/analyst performs a set of operations on data and on
patterns using a specialized query language, powerful enough to perform all the
required manipulations to support the KDD process, such as data preprocessing,
pattern discovery and pattern post-processing.

e Selection of data to be mined.

e Specification of the type of patterns to be mined (descriptive or predictive).

e Specification of the background knowledge, for instance under the form of a con-
cept hierarchy or ontology.

e Definition of constraints that the extracted patterns must satisfy in order to allow
the user to specify the interesting patterns. This occurs usually by using measures
like frequency, generality, coverage, similarity, novelty, etc.

e Satisfaction of the closure property (by storing the results in the database).

e Post-processing of results in order to allow the user to interact with the extracted
patterns by browsing, apply selection templates, cross over patterns and data by
selection of the data in which some patterns hold, or aggregating results.

A few query languages can be considered as candidates for inductive databases.
We present a brief comparison between query languages that have been proposed
for association rules extraction: MSQL, DMQL and MINE RULE. This allows us to
compare the language design guidelines, with particular attention to the features of
inductive databases for which they are designed.

2.1 MSOL

MSQL has been described in [19]. It comprises the following statements:

GetRules: it generates rules into a rule base;

SelectRules: it queries the rule base;

Create Encoding: it efficiently encodes discrete values into continuous valued
attributes;
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Satisfies and violates: they allow to cross-over data and rules, and that can be
used in a data selection statement.

The main features of this language are the following. It has the ability to nest SQL
expressions such as sorting and grouping in a unique MSQL statement. It satisfies the
closure property and provides operators to manipulate results of previous queries. It
can perform a cross-over between data and rules with operations allowing to identify
subsets of data satisfying or violating a given set of rules. It distinguishes between
rule generation and rule querying. Indeed, as the volume of generated rules might
explode, rules might be extensively generated only at querying time, and not at
generation time.

2.2 DMOL

DMQL has been presented in [16]. It consists of the specification of four major
primitives for the management of:

1. the set of relevant data w.r.t. a data mining process; this is specified by means of
conventional query.

2. the kind of knowledge to be discovered; it includes association rules, classification
rules, characteristic descriptions that are a summarization of the common proper-
ties of the data, comparisons descriptions that discriminate the tuples belonging
to a class with different classes, generalized relations obtained by generalizing
a set of data according to the conceptual level described in a specified concept
hierarchy.

3. the background knowledge by providing a set of primitives for the management
of a set of concept hierarchies or generalization operators that assist the general-
ization processes.

4. the justification of the interestingness of the knowledge (i.e., by evaluation mea-
sure thresholds such as association rules measures like the classical support and
confidence thresholds, the allowed noise and rule novelty).

2.3 MINE RULE

MINE RULE has been originally presented in [26]. This operator extracts a set of
association rules from the database and stores them back in the database in a separate
relation. This language is an extension of SQL. Its main features are the following.

1. Selection of the relevant set of data for a data mining process; this selection is
applied at different granularity levels, that is at the row level (selection of a subset
of the rows of a relation) or at the group level (group condition).
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2. Definition of the structure of the rules to be mined and of constraints applied at
different granularity levels; it might define either unidimensional association rule
(i.e., rules elements are values of the same dimension or attribute), or multidi-
mensional. Furthermore, rules constraints can be applied at the rule level (mining
conditions) in order to filter single rules, or can be applied as cluster conditions,
in order to build separately the two parts of the rules (body or head).

3. Definition of the grouping condition that determines which data of the relation
can take part to an association rule;

4. Definition of rule evaluation measures (i.e., support and confidence thresholds).

2.4 Optimization of Mining Queries

In [25] we highlighted the relationships between two mining queries: equivalence,
inclusion and dependence.

Equivalence: Two queries are equivalent if for all instances of the source data
each rule r in the result set of the first query is also in the result set of the second
query and vice versa with the same value of rules evaluation measures (support
and confidence).

Inclusion: A first query is included in the second one if for all instances of the
source data each rule r in the result set of the first query is also in the result set of
the second query with the same value of the rules evaluation measures.

Dominance: A first query is dominated by a second one if for all instances of the
source data each rule r in the result set of the first query is also in the result set of
the second query. Furthermore, in the result of the second query the values of the
rules evaluation measures are an upper bound of the values of the corresponding
rules from the second query.

We showed the practical implications of the discussed principles with a set of
algorithms designed for MINE RULE. These algorithms use also a new designed
mining index called mining that allows to reduce the portion of database to be read
in response to some classes of queries. In these cases the workload of the mining
engine is greatly reduced or completely saved.

In [27] we proposed to optimize constraint-based queries on itemsets with the
aim to reduce the overall computation time of a mining query. We introduced a very
generic constraint-based language for the extraction of frequent itemsets and pre-
sented an optimization scheme that exploits the available materialization of previous
queries. The optimization scheme proposed is based on query rewriting. We studied
the conditions under which query rewriting is possible and suggested a way to find
such a rewriting. For efficiency, we proposed a composition scheme of the mate-
rializations that makes usage of common and efficient operations in DBMSs, i.e.,
intersection and union of relations.
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3 Using Indices to Mine Frequent Patterns

A cornerstone of efficient query processing in relational DBMSs is the exploitation
of indices. An index is a specialized data structure that supports selective access
to the subset of physical pages needed to process a query. A variety of different
data structures have been proposed to support data access both for the relational and
non-relational data representations.

While several disk-based data structures have been proposed to support itemset
mining (e.g., [9, 12, 15, 34] which are further discussed in Sect. 3.3), the definition
of index structures to support frequent pattern mining in relational DBMSs has been
addressed only in [6, 7]. The IMine index (Itemset-Mine index) [6, 7] has been fully
integrated into the PostgreSQL DBMS kernel [30]. It is a persistent data structure
that provides efficient and effective data access to itemset mining algorithms. More
specifically, the IMine index provides a compact and complete representation of
transactional data and is characterized by several important properties.

Complete representation. The IMine index is created without enforcing any
constraint (e.g., support or item constraint). Hence, it is a covering index, i.e., itemset
mining can be performed by means of the index alone, without accessing the original
database. The IMine index provides a complete representation of the transactional
data, thus supporting itemset extraction with arbitrary support thresholds.

General structure. The structure of the IMine index is designed to support a vari-
ety of itemset extraction algorithms. These algorithms are typically characterized by
different in-memory data representations (e.g., array list, prefix-tree) and techniques
to explore the search space. The IMine index features efficient data access meth-
ods to load in memory the data needed by the considered extraction algorithm. The
enforcement of item constraints is also supported by the IMine index access meth-
ods. Finally, the generality of the index structure allows it to gracefully adapt to both
sparse and dense data distributions.

Efficient data access. The physical organization of the IMine index is designed to
provide efficient access to physical data blocks during the mining process. Correlated
data are stored in the same physical block, thus allowing a significant reduction of
the number of block reads.

The IMine index exploits PostgreSQL open source DBMS [30] physical level
access methods. The performance of the approach has been compared with state-of-
the-art algorithms (i.e., Prefix-Tree [14] and LCM v.2 [35]) accessing binary data on
a flat file. The IMine index always provides a better performance, which also scales
linearly for large datasets.

3.1 IMine Index Structure

The IMine index is characterized by two levels of indexing. The first level stores
the transactional data in a compact prefix-tree structure which provides a lossless



Data Mining in Databases: Languages and Indices 347

representation of the data, the Itemset-Tree (I-Tree). The second level allows reading
selected I-Tree portions during itemset mining. It is a B+Tree structure, the Item-
Btree (I-Btree), that stores the physical location of all item occurrences in the I-Tree.
Hence, it provides efficient access to the I-Tree data blocks to load in memory the
transactions including a selected item.

IMine data access methods. Different itemset mining algorithms may exploit the
IMine index structure to load data in memory. Three different data access methods
are available, each one providing an in-memory representation appropriate for the
selected mining algorithm (e.g., FP-tree for FP-growth [17], array-based structure
for LCM [35]). These methods access different parts of the IMine index, depending
on the adopted itemset mining algorithm and on the enforced support and/or item
constraints. More specifically, the following data access methods have been designed.
The Frequent-item based projection, method supports projection-based algorithms
(e.g., FP-growth [17]), while the Support-based projection, supports level-based
(e.g., APRIORI [2]), and array-based (e.g., LCM v.2 [35]) algorithms. Finally, the
Item-based projection, loads in memory all transactions including a given item and
is exploited for item constrained mining.

IMine is a covering index. Hence, the original transactional database is not
accessed. During the mining process, only a small portion of the entire dataset is
actually loaded in memory for the local search performed by the extraction algo-
rithm. By accessing the IMine index, only the relevant index blocks are loaded in
memory, thus significantly reducing the number of disk reads. Read disk blocks are
stored in the buffer cache memory of PostgreSQL. Furthermore, a very limited data
portion is actually loaded in memory at each step of the algorithm. Hence, more
memory space becomes available for the mining process.

IMine physical organization. The design of the physical organization of the IMine
index aims at minimizing the cost of reading the data needed by the current step of
the mining algorithm. The selection of the blocks including the paths of interest is
performed by means of the [-Btree. Thus, the number of disk blocks read to load the
required I-Tree paths is the most important factor contributing to the I/O cost. The
correlation between index parts, i.e., data paths accessed together during the current
mining step, is exploited to reduce the I/O cost. More specifically, correlated index
parts are stored together in the same disk block.

Furthermore, the I-Tree is partitioned in three distinct layers. The intuition driving
the partitioning process is that items with very low support do not satisfy most
support constraints. Hence, they are accessed only rarely during the mining process.
The nodes corresponding to low-support items belong to the lower levels of the I-
Tree. More specifically, the frequency of the node accesses performed by the mining
process is considered to perform the partitioning. The interaction of the following
three factors affects node access frequency: (a) the node support, which shows the
number of paths including the node, (b) the global support of the item associated to
the node, and (c) the distance of the considered node from the root, described by the
node level in the tree.
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3.2 Itemset Mining

The IMine index can support a variety of different itemset mining algorithms. The
main difference among different approaches is in (a) the main memory data structure
exploited to store the required data, and (b) the strategy adopted by the algorithm to
visit the search space. IMine data access methods load in memory the data needed by
the current step of the itemset mining algorithm. In each step of the mining process,
data is read from the I-Tree and loaded in memory, in the appropriate structure for
the selected mining algorithm. Next, mining takes place on the loaded data.

Enforcing constraints. The specification of constraints on the extraction process
yields a subset of (more) interesting itemsets and may help the human analyst in
focusing on relevant knowledge. Pushing constraint enforcement into the mining
process would allow early pruning the search space, thus improving the efficiency
of the mining process. Hence, a significant research activity has been focused on
the definition of strategies for constrained itemset extraction [10, 11, 21, 29, 33].
A classification of constraints into anti-monotonic, monotonic, succinct, and con-
vertible has been proposed in [29], which also addresses constraint enforcement into
the FP-growth algorithm. The IMine index can directly support the access strategies
described in [29]. More specifically, the items of interest can be straightforwardly
selected by accessing the I-Btree.

3.3 Disk-Based Strategies to Support Frequent Pattern
Mining

Several approaches have been proposed to support itemset extraction from flat file
by means of disk-based data structures. These approaches do not support the tight
integration of itemset extraction in a relational DBMS. However, they exploit some
form of file indexing structure to support the mining process.

An interesting hybrid in-core/out-of-core approach has been presented by
Lucchese et al. [23]. Even though the disk is exploited as an auxiliary means to
extend scalability, the mining process is still mainly memory-based [23]. An index
structure based on signature files is proposed in [20]. It supports the candidate fre-
quent itemsets generation process, but the actual candidate frequency check requires
further dataset access.

Fully disk-based mining algorithms have been proposed to support the extrac-
tion of knowledge from large datasets (e.g., B+tree-based indices [34], Inverted
Matrix [12], Diskmine [15] I/O conscious optimizations [9], DRFP-tree [1], VLDB-
Mine [8]). The Inverted Matrix is a disk-based data structure proposed by El-Hajj
and Zaiane [12] to store the transactional dataset in an inverted matrix layout. The
proposed data structure deals well with very sparse datasets, in which a large number
of items are characterized by unitary support. B+tree-based indices to access data
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have been proposed by Ramesh et al. [34]. The adopted data representation is either
vertical (e.g., ECLAT-Based [36]) or horizontal (e.g., APRIORI-Based [2]).

In [15] large databases are materialized on disk by storing different (recursively
generated) projected databases whose size fits main memory. Each projection, rep-
resented as an FP-tree, is first materialized on disk, and then separately loaded in
main memory for itemset extraction. Diskmine allows efficient memory saving and
maximizes memory exploitation. However, storing all projections may require sig-
nificant disk space, and subsequently cause a non-negligible I/O cost during the
mining process.

The path tiling approach, proposed by Buehrer et al. [9, 13], is an efficient itemset
mining techniques exploiting I/O conscious optimizations. More specifically, several
data locality strategies are proposed to reduce the number of reads during the mining
process. However, different data structures and mining algorithms may have differ-
ent data locality requirements. Hence, different I/O conscious techniques should be
defined for different mining approaches.

In [8] a persistent and hybrid structure, named VLDBMine, is proposed to com-
pactly store huge transactional datasets characterized by a variable data distribution.
VLDBMine has been designed to support existing in-core algorithms by enhancing
memory usage, thus achieving scalability through different selective data retrieval
methods.

4 Conclusions

The full integration of data mining techniques as DBMS services is a challenging
goal yet to be achieved. In this chapter, we presented different integration attempts,
which address both the query/mining specification language and the definition of
physical data structures to improve the performance of mining algorithms. From one
side, different SQL-like mining languages have been proposed to ease the continuous
and exploratory interaction between the user and the DBMS. From the other side,
the IMine index, discussed in this chapter, supports efficient itemset mining into a
relational DBMS. It has been implemented into the PostgreSQL open source DBMS
and it profitably exploits its services, among which physical level access methods
and DBMS buffer management.

In the future we hope that new specialised query languages and index structures
will be proposed in the same vein to facilitate the interaction of the user and the data
analysis on the very big data stored in the so-called No-SQL databases.
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