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Abstract. Datacenters provide an IT backbone for today’s business
and economy, and are the principal electricity consumers for Cloud com-
puting. Various studies suggest that approximately 30% of the running
servers in US datacenters are idle and the others are under-utilized, mak-
ing it possible to save energy and money by using Virtual Machine (VM)
consolidation to reduce the number of hosts in use. However, consol-
idation involves migrations that can be expensive in terms of energy
consumption, and sometimes it will be more energy efficient not to con-
solidate. This paper investigates how migration decisions can be made
such that the energy costs involved with the migration are recovered, as
only when costs of migration have been recovered will energy start to
be saved. We demonstrate through a number of experiments, using the
Google workload traces for 12,583 hosts and 1,083,309 tasks, how dif-
ferent VM allocation heuristics, combined with different approaches to
migration, will impact on energy efficiency. We suggest, using reasonable
assumptions for datacenter setup, that a combination of energy-aware
fill-up VM allocation and energy-aware migration, and migration only
for relatively long running VMs, provides for optimal energy efficiency.
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1 Introduction

Cloud service providers are looking for opportunities to make cost-effective use
of energy [1]. Costs of operating large datacenters are substantial, largely due to
energy costs, and are suggested to be in the billions of dollars per year for all
datacenters in the United States [2]. There are also environmental reasons for
decreasing the amount of energy used by datacenters, with predictions that the
ICT industry will be accountable for an estimated 2-3% of the global CO2 emis-
sions by 2020 [3]. Both environmental and economic reasons motivate scholars
and industrialists to explore effective methods for saving energy in datacenters.
This is more profound for Cloud service providers who have large numbers of
such datacenters. In Infrastructure Clouds, datacenters comprise large numbers
of hosts that cloud customers can use in the amounts they require for as long
as they are willing to pay. When a cloud customer makes a request for (part
of) a host, a VM is launched on a host selected by the Cloud service provider.
The user decides how long to run the VM for. The unpredictability of users in
such on-demand environments can lead to a number of hosts either being idle
or running a minimal VM loading – in principle, wasting energy as an idle host



2 An energy aware cost recovery approach for virtual machine migration

may still consume 60% of its peak power usage [4]. When hosts are not needed
because demand is low, it may be possible to switch hosts off or enable lower
energy states. However, hosts would need to be powered back on, or up, quickly
when demand spikes. Switching hosts off has the potential to offer operational
cost savings with some resource management efforts, but a researcher from one
Cloud provider [5] suggests it is unreasonable to switch hosts off due to demand
variation. Power cycling a host also carries costs in energy and may cause per-
formance degradation if the boot time is quite long. Similarly, if the workload
demand for resources (CPU) is low, then runing a host in a lower energy state,
for example using Dynamic Voltage and Frequency Scaling (DVFS), can reduce
energy consumption but with non-trivial performance loss [6]. Those paying for
Cloud services are unlikely to be keen on resources of diminished performance,
unless costs are correlated with performance.
Virtualization allows several VMs to be run on a single host, making server
consolidation possible [7], and virtualization is a key component of most Infras-
tructure Clouds . Taken over a number of hosts, server consolidation attempts
to find a minimum number of hosts that would still be able to run all of the
VMs in the datacenter, offering further potential to make energy savings. In [8]
the authors show that in Google’s cluster [9], hosts are not highly utilized and
some significant power can be saved through consolidation techniques. Similarly,
task runtime distributions show that the majority of tasks run only for a short
duration − which could lead to unnecessary migrations that should be avoided.
Server consolidation is similarly achieved through server (here, VM) migration.
However, server migration also has a cost and may impact on Service Level
Agreements (SLAs). Further, with unpredictable VM runtimes in an on-demand
environment it is possible that the cost is never recovered through increased
efficiency if the VM is terminated during, or even just after, migration.
In this paper, we investigate how migration decisions can be made such that the
energy costs involved with the migration are recoverable, after which energy is
saved. We explore the impact on energy efficiency of VM allocation heuristics
such as Round Robin (RR), Random (R), Best Resource Selection (BRS) [10],
Minimum Power Difference (MPD) [11], First Fit (FF) and Fill Up (FU) when
combined with different approaches to migration. Key to this exploration is the
recovery of costs incurred by a migration. This exploration is conducted through
simulations that use the Google workload traces for 12,583 hosts and 1,083,309
tasks [9] in combination with CloudSim [12].
The rest of the paper is organized as follows. In section 2 we explain VM migra-
tion, its energy overhead, and how to measure (virtualized) host efficiency. In
section 3, we discuss server consolidation as a binpacking problem, and propose
as Consolidation with Migration Cost Recovery (CMCR) technique that avoids
migrating VMs which would not recover the energy used in migration. We vali-
date CMCR using real workload traces from Google cluster in section 4 and show
that CMCR can reduce the migration energy overhead with reduced numbers of
migrations, and that the majority of migrated VMs now recover their migration
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cost and continue to save energy and therefore cost. We offer an overview of
related work in section 5, and section 6 concludes the paper.

2 Background

The migration of a VM may happen for a number of reasons within a datacen-
ter, including host maintenance or load balancing. During VM migration, the
running VM is moved from one host to another. This means migrating memory
pages and, depending on the underlying approach to storage, data on disk. This
leads to two kinds of migration: (i) live/on-disk migration, where a VM image is
run from shared storage, for example in Amazon’s Elastic Block Storage (EBS),
and only memory is copied; (ii) block live/over-Ethernet migrations, where a
VM image is run from a local disk, for example Amazon’s Instance Store, and
both memory and disk are copied. Since the VM image may itself be large, this
latter form of migration may take rather longer.
If we perform migrations for reasons of energy efficiency, there will be an energy
cost in the additional VM running on the source host for the duration of migra-
tion. The cost will relate to the source host’s power profile P . We assume P of
each host is a linear function of its utilization level – the more the host is utilized,
the more energy it will consume, according to the power model proposed in [13].
The relationship of CPU utilization to power consumption can be expressed as
shown in equation (1).

P (u) = Pidle + (Pmax − Pidle).u (1)

where P (u) is the estimated power consumption, Pidle is static power consumed
when host is idle, Pmax is the power consumed when the host is fully utilized,
and u is the current CPU utilization. The portion (Pmax − Pidle).u is called
dynamic power consumption, and is treated as a linear function of utilization.
This simplified model predicts non-virtualized host power consumption with less
than 5% error, but requires modification to account for virtualization. In the first
part of this section, we extend this power model to address virtualized hosts; in
the second part we discuss measuring the migration energy cost.

2.1 Comparing Hosts Efficiencies

Our work explores migration cost recovery, which is only possible if two con-
ditions are both met: (i) a VM is migrated to a more efficient target host; (ii)
the migrated VM then runs for a sufficient length of time on the target host.
In this section we discuss measuring the efficiency of hosts in order to address
these conditions.
In non-virtualised platforms, if one host consumes less power than another to
execute a specific workload, it is more efficient. However, efficiency should be
addressed across a range of workloads as there may be other workloads that
run less efficiently. In virtualised environments, multiple VMs can be running
different workloads on a single host, and so several factors must be considered
in order to compare power efficiency; we consider, first, division of the host to



4 An energy aware cost recovery approach for virtual machine migration

VMs and so the total power consumption of a virtualized host is characterised
by:

Phost = Pidle +

n∑
i=1

P vm
i (2)

Where P is the total power consumed by the host, n is the number of active VMs
on host, Pidle is the host static power consumption and P vm

i is the dynamic power
consumption of VM i which is calculated by the linear power model discussed
in section 2:

Pvm = Wvm.Pdynamic (3)

Where Wvm is the fraction of host total CPU allocated to the VM. This allows us
to simplify concerns by considering each VM equivalent with respect to a host;
in an Infrastructure Cloud, VM size may be equally divided by the number of
allocated (hyperthreaded) cores out of m cores on the host, or by allocation of
an amount of memory. For simplicity, we use the number of (hyperthreaded)
cores.

Wvm =
coresvm

m
(4)

Including static power, the total power consumed by a single VM will be given
by:

Pvm =
Pidle

n
+Wvm.(Pmax − Pidle).u (5)

Where n is the total number of VMs running on host, u is the utilization level
of vm. Hence, efficiency of a host can be related to the number of VMs that are
allocated to it and, if need be, to their individual efficiencies.
In this model, due to Pidle, the energy used in order to run a single VM is
going to be at its highest, and the more VMs that are run on the host, the
more power efficient each VM is. We also make use of the notion of VM density,
used elsewhere both to address the number of VMs running on a host, and
the maximum number that can be run whilst avoiding resource starvation; we
combine these to understand VM density as the present fraction of the maximum
for a host.
Suppose there are n VMs allocated to host H1 and m VMs allocated to host
H2. Each VM is utilizing 100% of its proportional resources allocated. The per
VM power consumption of each VM on H1 and H2 are PH1

vmi=1:n
and PH2

vmj=1:m

respectively according to above equation. The total power consumption of each
host H1 and H2 is given by PH1

=
∑n

i=1 P
vm
i and PH2

=
∑m

j=1 P
vm
j respectively.

For a VM vmk selected for migration from H1, with sufficient space to allocate
on H2, and provided that PH1

vmk
> PH2

vmk
, then H2 is more power efficient than

to H1 with a factor of Ef given by:

Ef =
PH1

PH2

(6)

2.2 The Migration Model

During a live VM migration [14], an extra VM is created on the target host and is
progressively synchronized. Once synchronized, the VM is started on target host
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and its copy is terminated on the source host. This means that a migration costs
roughly double the resources for the duration of migration. If the VM terminates
during the migration process, or before this resource cost is recovered, this effort
is wasted. A number of studies [11] [7] [15] discuss consolidation but appear
to ignore the cost that is due to the migration energy overhead, and with the
notable exception of [16] this is rarely addressed. The migration cost is dictated
by the cost of the most expensive VM (at source host) running for the duration
of migration, plus any associated network cost during migration. The overhead
also includes some marginal extra costs of migration Cm if this requires changes
in power state of either or both hosts [17].
For homogeneous hosts, the time required for a migration can be given by:

tmig =
Vmem + Vdisk

B
(7)

Where tmig is dependent on VM memory size Vmem, VM ephemeral disk image
Vdisk (in case of block live migration) and the available network bandwidth B for
data transfer. For live migration, Vdisk is zero and Vmem is calculated using the
VM memory size and the dirty pages that are continuously copied in multiple
rounds n, during the migration process. If the VM is idle then the dirty pages
are zero and hence the network traffic is only equal to Vmem measured in MB,
otherwise:

Vmem =

n∑
i=0

Vi (8)

Vi = D.Ti−1 (9)

Where i denotes the round, D is the rate at which the memory pages are being
dirtied in MB/s, T is round duration in seconds and V represents the size of
dirty pages in MB. The migration energy overhead Costmig is given by:

Costmig = tmig.(Psource + Pnet) + Cm (10)

Where Cm denotes the marginal cost needed to switch on/off hosts, Pnet is the
network power consumption and Psource is the cost of the most expensive VM
running at source host. For the present paper, we simplify concerns by Cm = 0;
subsequently we would need address this as part of the overall energy use. The
amount of data transferred datat = Vmem +Vdisk has a significant effect on tmig.
In [16], the authors have validated a model for measuring the energy consumption
of a live migration with 0.993 R2 value, which is proportional to datat.

Costmig = 0.512 ∗ datat + 20.165 (11)

Based on experimental results, the authors claim that migration is I/O intensive
with energy mostly consumed in data transfer. Because of this simplicity and
accuracy, we use this directly to compute migration cost. Another approach is
proposed in [18], which offers a linear relationship between Vmem and B, hence
the energy consumed is equal to α.Vmem + β.B + C. This model does not take
load into account, so only suits scenarios when the migrating VM is idle.
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3 Problem Description

Server consolidation with migration can be considered as a multidimensional
bin-packing problem that tries to minimize the number of hosts needed to ac-
commodate a set of VMs [7]. Such NP-complete problems are typically solved
using Linear Programming (LP) or heuristics. Dynamic consolidation is typically
suggested to be an improvement on doing nothing, allowing: (a) to switch off the
underutilized host if the accommodated VMs can be relocated to other hosts; (b)
to withdraw hosts from an overloaded state if the sum of accommodated VMs
becomes larger than its capacity [14]. Besides the trade-off involved between
migrating VMs and decreasing the number of hosts to accommodate VMs, live
VM migration can be completed without needing downtime, and ideally without
impacting performance (and, specifically, SLAs).
If every VM can first recover the migration cost, and then continues to run on the
energy efficient host, then the migration is effective in energy saving and hence
in cost reduction. Dynamic consolidation can be considered as an optimization
problem in minimizing the amount of energy consumed by avoiding migrations.
We describe the problem as CMCR, further explained in section 3.1, and address
it by exploring the effect of VM runtimes. In an on-demand environment, VM
runtimes are unknown, so we can only consider the past runtime Rpast in order
to decide on migration.

3.1 CMCR

We consider migrations for the purpose of consolidating to fewer hosts to min-
imize the cost of energy consumption. The migration cost must be considered
as part of the migration decision. If the target host is similar or less energy ef-
ficient than the source host, based on the total number of accommodated VMs,
then the migration cost cannot be recovered. Otherwise the migration cost will
eventually be earned. Using the efficiency factor of the source and target hosts,
we can find a time point toff on the target host at which the VM has earned
back the cost of migration Costmig and will now be saving energy if it continues
to run.
Consider a VM vm1 that runs on source host H1. A migration decision is trig-
gered to target host H2 at time t. Assume that we know H2 is more energy
efficient than H1 with a factor of Ef . If there are no VMs running on both
hosts, then the host with less static power consumption is considered more en-
ergy efficient. If there are some VMs running on source and target hosts then
the efficiency of each host depends on the number of running VMs (n VMs on
source host and m VMs on target host). The Ef as explained in section 2.1, can
be computed as:

Ef =
PVMsource

PVMtarget

(12)

If Ef = 1, it means that the power profile is identical and we cannot recover the
migration cost. If Ef < 1, the target host is less efficient. The offset of migration
cost and further savings can only be made if Ef > 1. Costmig is measured
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Fig. 1: CMCR technique description

in Watts per hour and is computed as explained in section 2.2. The difference
between the power consumption values of both source and target hosts is:

4x = PVMsource −
PVMsource

Ef
= PVMsource − PVMtarget (13)

And so toff is given by:

toff =
tmig.Costmig

4x
(14)

For vm1 with past runtime Rpast on source host, and migration to target host
started at time t, migration completes in time tmig as shown in Fig. 1. vm1 total
runtime on the source host is r1 = Rpast + tmig, and the remaining runtime
on target host is r2 = Rtotal − (t − tmig) = Rtotal − r1. If r2 > toff , then it
means vm1 has recovered Costmig and subsequently runs more efficiently to
save energy. The remaining runtime of vm1 on the target host after the toff , is
given by:

ts = r2 − toff (15)

The savings Psavings with an energy efficient migration are then only:

Psavings = ts.4x (16)

Hence the minimum value for r1 +r2 (Fig 1) which is sufficient to offset Costmig

at time t is Roffset = tmig + toff . For any VM running for Rpast, the Roffset is
given by:

Roffset = Rpast + tmig + toff (17)

If Roffset ≥ toff , then the migration is energy efficient. If the vm1 is terminated
before toff , migration cost is not recovered. If Roffset is not sufficient to recover
Costmig then t can be estimated to make a migration efficient, using t = t− toff
and Rpast = Rpast − toff .
In the above formulation Rtotal denotes the time for which the VM will run,
which is unknown. To make the scenario realistic for on-demand systems, we
only consider the past runtime Rpast of VMs in order to determine if a VM is a
suitable candidate for migration.

4 Performance Evaluation

Bin-packing problems are solved using various heuristics which may not ensure
optimal results but are fast enough to deal with large problems [7]. It is possible
to consider an analogous VM packing problem as moving from a given datacenter
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state to an ideal state, which should be one using fewest hosts. We achieve a
datacenter state by implementing scheduling heuristics (RR, R, BRS, MPD, FF,
FU, as initially stated in section 1), with VM packing then needing to guarantee
energy efficiency is assured (as explained in section 2.1) and migration cost can
be recovered. To evaluate the effect of this, we consider (i) no migration; (ii)
dynamic consolidation (all possible migrations); and (iii) CMCR (runtime-based
migration).

4.1 Experimental Setting

We use real workload traces from Google to study the feasibility of our approach
within the event driven simulator CloudSim [12]. The Google dataset comprises
12,583 hosts in one datacenter and 1,083,309 tasks and as explained in [9] a task
runs in a Linux container (section 4.2), its CPU requirements are measured in
core seconds per second, and the values are normalized to the maximum cores
host available in the Google’s cluster.
To address a Cloud context, each task is assigned a single, notional, VM that
maps to Google instance types. We assume that hosts are comparable by a single
measure which allows for performance ranking, for which we adopt CloudSim’s
use of Million of Instructions Per Second (MIPS) as a proxy; we would not en-
dorse this as a good performance indicator for real systems for a number of CPU
architecture and workload comparability reasons. One approach is to assign a
VM as a single core for the maximum value 1, half a core (hyperthread) for
0.5, and assume that higher VM gearing leads to a quarter of a core for 0.25.
But to address allocation more flexibly, along lines of certain Cloud providers,
we map CPU frequency for the hosts given to Google Compute Engine Units
(GCEUs) as: 2 GHz CPU, 1.25GB RAM, giving types A1 (0.5 GCEU), B1 (0.25
GCEU) and C1 (1 GCEU). The GCEU then maps MIPS for consistency with
CloudSim, and we assume that every instance needs at most 1 GCEU. Memory
requirements then also map to these types, as shown in Table 1.

CLASS INSTANCE NAME GCEUs MEMORY (GB)

A1 a1.tiny 0.5 0.03
a1.xtiny 0.5 0.06
a1.micro 0.5 0.12
a1.small 0.5 0.25

a1.medium 0.5 0.5
a1.large 0.5 0.75
a1.xlarge 0.5 0.97

B1 b1.small 0.25 0.25
C1 c1.medium 1.0 0.5

c1.large 1.0 1.0

Table 1: Instance types

When a task is submitted, the task scheduler finds the most suitable instance
type and the allocation policy places it on a host: RR allocation policy places the
VM on the next available host; R allocation policy selects a suitable host ran-
domly; MPD [11] is a modified Best Fit Decreasing (BFD) off-line heuristic that
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(at 1 second interval – to mimic on-line behavior) sorts all VMs in decreasing
order of CPU utilization and allocates each VM to a host that increases energy
consumption the least – selecting the most energy efficient host first, based on
the linear power model (section 2 equation 1); BRS [10] places a VM on a host
with the least free capacity to maximize resource utilization; FF and FU are both
on-line heuristics and place the VM on the first available host, with FU selecting
the most efficient host based on the model proposed in section 2.1. The host
efficiency model and the on-line behavior of FU differentiate it from MPD. The
task scheduler implements a First In First Out (FIFO) mechanism to dispatch
submitted tasks for execution. A cluster of 12,583 heterogeneous hosts, which
consists of three different architectures and characteristics as shown in Table 2,
is available. The heterogeneous hosts available in datacenter are set up based on
assumptions that Google had certain kinds of commonly available machines in
their datacenters in May 2011, when the trace was captured [19].

HOST HOST SPEED NO OF NO OF MEMORY PIDLE PMAX AMOUNT
TYPE NAME (GHz) CORES GCEUs (GB) (Wh) (Wh)

A Intel Xeon E3110 3.0 2 3 4 75.2 117 4,195
B Intel Xeon X3470 2.9 4 5.75 8 41.6 113 4,194
C Intel Xeon E5540 2.5 8 10 8 67.0 218 4,194

Table 2: Host characteristics and number suggested to be in Google’s cluster in
May 2011 [19]

The power consumption values for these hosts are taken from SPEC power bench-
marks [20]. The tasks are submitted according to arrivals in the Google dataset.
When VMs terminate, slots are made available to the scheduler and are also
available for migrations. The migration policy regularly (every 5 minutes) checks
all host utilizations, and if a host utilization level goes below a predefined lower
threshold value e.g. 20%, VMs can be migrated to other hosts to consolidate the
current demand on fewer hosts to save energy. In principle, if host utilization ex-
ceeds a predefined upper threshold value i.e. 100%, some VMs are migrated from
the overloaded host to less utilized hosts to avoid SLA violations. We assume,
here, that sensible ways of addressing VM density will not lead to overloading.
A migration decision is based on only the lower utilization threshold value, cur-
rent state of the datacenter (consolidation opportunities) and other constraints
as explained in section 3.1. If several VMs are selected for migration, the list is
sorted in decreasing order of their past runtimes, and migrated in order until
all VMs in the list are migrated. For the sake of simulation, migration dura-
tion is computed by dividing the VM memory size by network bandwidth (set
at 1Gbps) as discussed in section 2.2. The migration energy overhead and host
efficiency factor is calculated as discussed in section 2 equation 7.

4.2 Experimental Results

The simulated infrastructure is composed of 12,583 hosts with configuration
shown in table 2. We first run the simulation with a single day of data from
the Google trace. We assume that the VM workload is homogeneous and so it
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does not change even when a VM is migrated from one host to another. The
selected trace (day 2) comprises 1,083,309 tasks with average arrival rate of
12.54 tasks per second and terminations at 12.24 tasks per second. After each 5
minute interval, CMCR checks for consolidation opportunities, and selects VMs
running for longer times from a list of migration possibilities. Each experiment
was performed with five different values for past VM runtime given in hours [0,
0.5, 1, 2, and 4], where 0 means migrate all – dynamic consolidation – and 0.5
means migrate only those VMs which are running for 30 minutes or longer, 1
means running for 1 hour, and so on.

Metrics The metrics are the number of migrations, average number of hosts
used to run the VMs and total datacenter energy consumed. An overall calcula-
tion of datacenter efficiency, D measures the efficiency of a scheduling approach
on datacenter level. This accounts for the load proportion (% slots filled i.e. VM
density – explained in section 2.1), the number of hosts switched on, the number
of idle hosts that still consumes significant energy (idle power consumption), and
factor of energy efficiency in respect to whether more or less efficient hosts were
in use.

VMdensity =
VMsonHost

Hostcapacity
(18)

D =

∑
hosts VMdensity ∗ Ef

Hostsused
+

∑
hostsHostsunUsed ∗ Ef

HostsunUsed
(19)

The host efficiency model presented in section 2.1, is used to calculate Ef for
each host. Lower values for D represent efficient datacenter resource management
with maximum VMs running on a minimum number of the most efficient hosts,
and hence also offers potential for hosts to be powered off in the second term.

Discussion Fig 2 presents the results obtained from running the Google clus-
ter’s tasks submitted on day 2 using different scheduling heuristics. The results
show that efficient scheduling techniques would be more economical than consol-
idation techniques. For example, without migration a 52.43% decrease in energy
consumption was achieved using FU instead of RR. But using FU, only 3.04%
decrease in energy consumption was achieved with dynamic consolidation. The
metric D shows an average decrease of 16.10% in energy consumption for FU
compared to R scheduler. Similarly for CMCR, FU is on average 0.49% more
cost efficient as compared to FF scheduler. We also note that no migration can
be more economical than the dynamic consolidation if an efficient scheduling
approach is used. CMCR beats both techniques as it allocate VMs to the most
efficient hosts first, minimizes the total number of migrations (runtime-based
migration) and increases the probability that a VM recovers its migration cost.
Table 3 shows the mean number of hosts in use, and datacenter utilization,
measured in 5 minute intervals. For each allocation policy, CMCR have reduced
the total number of migrations and migration energy. The D value (section 4.2)
shows that in terms of scheduling approach, FU is effective in using a minimum
number of most efficient hosts: FU did not allocate VMs to host type A which has
larger idle power consumption and is less energy efficient compared to types B &
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Fig. 2: Power consumption & no. migrations for Google trace day 2

C. As MPD is an off-line heuristic, higher D values confirm inability to address
online problems. For each scheduling approach, cost savings are compared to a
baseline no-migration policy. On average, CMCR reduces the number of hosts
in use, with a reduced number of migrations. The runtime of VMs migrated de-
pends on the scheduling heuristics. RR scheduler equally distributes VMs among
the available hosts, keeping all the hosts active and less-utilized most of the time
– making more consolidation opportunities. Similarly, R scheduler al-mostly se-
lects a different host for VM placement randomly, which results in more energy
consumption and increased number of migrations – as all hosts are switched on
but less utilized. The optimal value for these two algorithms is always achieved
with dynamic consolidation, i.e past runtime ≥ 0 minutes. BRS, MPD and FF
were able to give minimum power consumption results by migrating VMs with
past runtime ≥ 30 minutes. The most efficient heuristic, FU, produces optimal
results by migrating VMs with past runtime ≥ 60 minutes.

Scheduling Consolidation Total hosts used Avg used Datacenter D Cost
approach technique A B C hosts Util (%) (KWh) savings (%)

No migration 4,195 4,194 3,351 3,157 24.81 1464.00 0
RR Dynamic 4,195 4,194 2,750 2,228 47.40 1450.11 25.77

CMCR 4,195 4,194 2,750 2,228 47.40 1450.11 25.77

No migration 4,195 4,194 3,835 3,005 25.18 1474.19 0
RANDOM Dynamic 4,195 4,194 3,713 2,148 48.64 1471.70 23.75

CMCR 4,195 4,194 3,713 2,148 48.64 1471.70 23.75

No migration 2,664 2,662 2,667 1,157 50.31 1240.98 0
BRS Dynamic 2,504 2,888 2,658 1,095 69.61 1242.02 5.87

CMCR 2,612 2,899 2,683 1,089 62.95 1242.97 6.04

No migration 4,195 4,194 1,908 2,412 28.21 1427.92 0
MPD Dynamic 4,195 4,194 2,227 1,965 33.09 1436.74 9.96

CMCR 4,195 4,194 2,581 1,984 34.84 1445.93 10.66

No migration 2,665 2,664 2,666 1,212 51.61 1241.03 0
FF Dynamic 2,619 2,790 2,620 1,219 61.22 1243.03 1.69

CMCR 2,636 2,790 2,635 1,190 61.64 1242.91 2.85

No migration 0 4,194 2,700 1,241 48.61 1236.88 0
FU Dynamic 0 4,194 2,700 1,167 67.21 1236.88 2.96

CMCR 0 4,194 27,00 1,166 66.74 1236.88 3.04

Table 3: Experimental mean results for different approaches (5 min. interval)

The data and migration statistics produced in Table 4, show that combining
CMCR and FU means only 1.1% of VMs are migratable and 99.5% of these
were able to recover their migration cost. For FU with dynamic consolidation,
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1.71% VMs were migrated with 98.98% of recovering migration cost. The mi-
gration statistics given in Table 4, also include multiple entries for VMs that
were migrated multiple times during their lifetime. If we now assume a PUE [21]
of 1.2 and energy cost of $0.08kWh, dynamic consolidation would save $1519
per hour for this cluster (a little over $36k per day) in comparison to a no-
migration approach. Using above assumptions, CMCR would further save $42
per hour compared to dynamic consolidation. Hence, CMCR makes total savings
of $1,561 per hour (almost $37.5k) as compared to a no-migration approach.
For 5,48,584 tasks submitted on the first day of Google cluster trace [9], with the
same simulation, we see that no-migration technique would be more economical
than dynamic consolidation if efficient VM scheduling heuristics are used. Our
second finding is that migrating relatively long running VMs to more energy
efficient hosts to recover their migration cost, are more economical and energy
efficient.

Scheduling RR R BRS MPD FF FU
approach DC CMCR DC CMCR DC CMCR DC CMCR DC CMCR DC CMCR

Migratable 33.2 33.2 29.6 29.6 8.5 4.2 6.9 5.3 11.0 5.6 1.71 1.1
VMs (%)

VMs recovered 98.9 98.9 98.6 98.6 98.5 99.0 98.5 99.5 98.5 99.4 99.0 99.5
Costm (%)

Table 4: Cost recovery with Dynamic Consolidation (DC) & CMCR

5 Related Work

Researchers elsewhere have addressed various aspects of energy savings, mind-
ful in some cases that idle hosts consume up to 60% of the power of the fully
loaded host. Khanna et al. [14] perform migration to avoid overloading leading
to SLA violations, and also to switch of underloaded hosts. The specification of
a compute unit such as GCEU should help to avoid overcommitting resources
and avoid overloading, except where resource contention exists. Our datacentre
measure offers a means to measure the gain by switch off. Wood et al. offer Sand-
piper [22], a system to monitor and detect hotspots, also remap and reconfigure
VMs when required. The proposed system migrates VMs based on high mem-
ory, network and CPU loads; again, not overcommitting should help to avoid
migrations in the first place. Bobroff et al. [23] investigate estimating demand
based on historical data in order to address dynamic server consolidation. Revis-
iting this work with respect to the Google data could certainly offer interesting
insights for pre-empting demand, and help to reduce costs incurred due to un-
necessary power state changes, which is beyond the scope of the present paper.
Beloglazov [24] discusses adaptive thresholds for VM consolidation, but this does
not address the migration cost, and nor does Tiagos [7] work on minimizing the
number of VM migrations by not migrating VMs with steady usage, which might
be considered a counterpoint to our findings.
All of these techniques are focused on live migration, but power consumed in
migration and its recovery through runtime is not addressed. When a signifi-
cant proportion of tasks are relatively short-lived, as is the case in the Google
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data, the inability to recover such costs would appear quite detrimental. The
ReCon system [25] and pMapper [26] are notable exceptions in addressing mi-
gration costs, and this should motivate further appraisal of their techniques with
respect both to short-lived tasks and also to block/live migration.

6 Conclusion and Future Work

Consolidation with migration is often claimed to increase the energy efficiency in
datacenters. Analysis of Google workload data shows that most tasks run only
for a short time, and allowing all possible migrations could create additional costs
in energy. In this paper, we considered combinations of scheduling approaches
and consolidation methods with knowledge of the past runtime of VMs to in-
vestigate energy saving potential. Under certain circumstances, we found that
not migrating would be more energy-efficient than using dynamic consolidation,
and the best approach overall limits migrations to 1.1% of VMs, of which 99.5%
recover their migration cost.
The immediate priority is to investigate whether these findings would be con-
sistent over time by evaluating using the whole Google trace (29 further days).
We also need to be able to account for both heterogeneous hosts, which cause
variability in runtimes for a workload, and the impact of the marginal energy
costs involved due to power state changes in respect to unused hosts.
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