Skip to main content

Analysis of Stereoscopic Visualization in a Consumer-Oriented Head Mounted Display

  • Conference paper
  • First Online:
Smart Objects and Technologies for Social Good (GOODTECHS 2016)

Abstract

The upcoming availability of advanced Head Mounted Displays (HMDs) dedicated to the consumer market has lead to a great interest in the design and development of dedicated media, like e.g. immersive video games and movies. As a consequence, Virtual Reality is becoming more accessible to a wider audience, with a large number of potential applications and integrations with already existing smart technologies and devices. HMDs use stereoscopic visualization to enhance the sense of realism and immersivity in a virtual scene. However, a correct stereoscopic visualization requires an accurate consideration of different parameters related to the production and display stage. In this paper, we analyze the stereoscopic setup of a HMD, in order to highlight its main visualization characteristics in relation with the known issues and requirements of a correct stereoscopic visualization, and to establish some preliminary guidelines for an optimal creation of stereoscopic contents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayala García, A., Galván Bobadilla, I., Arroyo Figueroa, G., Pérez Ramírez, M., Muñoz Román, J.: Virtual reality training system for maintenance and operation of high-voltage overhead power lines. Virtual Reality 20(1), 27–40 (2016). Springer

    Article  Google Scholar 

  2. Ruthenbeck, S.G., Reynolds, J.K.: Virtual reality for medical training: the state of the art. J. Simul. 9(1), 16–26 (2015)

    Article  Google Scholar 

  3. Wilson, C.J., Soranzo, A.: The use of virtual reality in psychology: a case study in visual perception. Comput. Math. Methods Med. (2015). Article ID 151702. https://www.hindawi.com/journals/cmmm/2015/151702/

  4. Sherman, W., Craig, A.: Understanding Virtual Reality: Interface, Application, and Design. The Morgan Kaufmann Series in Computer Graphics (2002)

    Google Scholar 

  5. Craig, A., Sherman, W., Will, J.: Developing Virtual Reality Applications: Foundations of Effective Design. The Morgan Kaufmann Series in Computer Graphics (2009)

    Google Scholar 

  6. Bowman, D., Kruijff, E., LaViola, J., Poupyrev, I.: 3D User Interfaces: Theory and Practice. Addison-Wesley/Pearson Education, Boston (2004)

    Google Scholar 

  7. Marini, D., Folgieri, R., Gadia, D., Rizzi, A.: Virtual reality as a communication process. Virtual Reality 16(3), 233–241 (2012). Springer

    Article  Google Scholar 

  8. Barricelli, B.R., Gadia, D., Rizzi, A., Marini, D.: Semiotics of virtual reality as a communication process. Behav. Inf. Technol. 35(11), 879–896 (2016). Taylor & Francis

    Article  Google Scholar 

  9. Wann, J.P., Rushton, S., Mon-Williams, M.: Natural problems for stereoscopic depth perception in virtual environments. Vis. Res. 35(19), 2731–2736 (1995)

    Article  Google Scholar 

  10. Loomis, J.M., Knapp, J.M.: Visual perception of egocentric distance in real and virtual environments. In: Virtual and Adaptive Environments, pp. 21–46. CRC Prees (2003)

    Google Scholar 

  11. Kline, P.B., Witmer, B.G.: Distance perception in virtual environments: effects of field of view and surface texture at near distances. Hum. Factors Ergon. Soc. Annu. Meet. Proc. 40, 1112–1116 (1996)

    Article  Google Scholar 

  12. Knapp, J.M., Loomis, J.M.: Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoper. Virtual Environ. 13(5), 572–577 (2004)

    Article  Google Scholar 

  13. Willemsen, P., Gooch, A.A., Thompson, W.B., Creem-Regehr, S.H.: Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoper. Virtual Environ. 17(1), 91–101 (2008)

    Article  Google Scholar 

  14. Mendiburu, B.: 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press, Waltham (2009)

    Google Scholar 

  15. Mendiburu, B., Pupulin, Y., Schklair, S.: 3D TV and 3D Cinema: Tools and Processes for Creative Stereoscopy. Taylor and Francis, Park Drive (2012)

    Google Scholar 

  16. Gadia, D., Garipoli, G., Bonanomi, C., Albani, L., Rizzi, A.: Assessing stereo blindness and stereo acuity on digital displays. Displays 35(4), 206–212 (2014). Elsevier

    Article  Google Scholar 

  17. Gardner, B.R.: Dynamic floating window: new creative tool for three-dimensional movies. J. Electron. Imaging 21(1), 011009 (2012)

    Article  Google Scholar 

  18. Schild, J.: Deep Gaming - The Creative and Technological Potential of Stereoscopic 3D Vision for Interactive Entertainment. CreateSpace Independent Publishing Platform (2014)

    Google Scholar 

  19. Bickerstaff, I.: Case study: the introduction of stereoscopic games on the Sony PlayStation 3. In: Stereoscopic Displays and Applications XXIII, Proceedings of SPIE, vol. 8288, p. 828815 (2012)

    Google Scholar 

  20. Weaver, J., Holliman, N.S.: Interlopers 3D: experiences designing a stereoscopic game. In: Stereoscopic Displays and Applications XXV, Proceedings of SPIE, vol. 9011, p. 90110F (2014)

    Google Scholar 

  21. Lipton, L.: Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  22. Poulakos, S., Monroy, R., Aydin, T., Wang, O., Smolic, A., Gross, M.: A computational model for perception of stereoscopic window violations. In: Seventh International Workshop on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2015)

    Google Scholar 

  23. Scalabrin, M., Ripamonti, L.A., Maggiorini, D., Gadia, D.: Stereoscopy-based procedural generation of virtual environments. In: Stereoscopic Displays and Applications XXVII, Proceedings of IS&T’s 28th Symposium on Electronic Imaging: Science and Technology (2016)

    Google Scholar 

  24. Stanfield, B., Zerebecki, C., Hogue, A., Kapralos, B., Collins, K.: Impact of floating windows on the accuracy of depth perception in games. In: Stereoscopic Displays and Applications XXIV, Proceedings of SPIE, vol. 8648, p. 864814 (2013)

    Google Scholar 

  25. Oculus Rift DK2 Screen. http://www.theverge.com/2014/7/31/5956589/new-oculus-dev-kit-uses-front-of-galaxy-note-3-for-display. Accessed Mar 2016

  26. Oculus Rift Developer Documentation. https://developer.oculus.com/documentation/intro-vr/latest/concepts/book-bp/. Accessed Mar 2016

  27. Pohl, D., Johnson, G.S., Bolkart, T.: Improved pre-warping for wide angle, head mounted displays. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 259–262 (2013)

    Google Scholar 

  28. Blender homepage: http://blender.org. Accessed Mar 2016

  29. Gerla, M., Maggiorini, D., Palazzi, C.E., Bujari, A.: A survey on interactive games over mobile networks. Wireless Commun. Mob. Comput. 13(3), 212–229 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Gadia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Vismara, C., Granato, M., Ripamonti, L.A., Maggiorini, D., Gadia, D. (2017). Analysis of Stereoscopic Visualization in a Consumer-Oriented Head Mounted Display. In: Gaggi, O., Manzoni, P., Palazzi, C., Bujari, A., Marquez-Barja, J. (eds) Smart Objects and Technologies for Social Good. GOODTECHS 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-61949-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61949-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61948-4

  • Online ISBN: 978-3-319-61949-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics