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Abstract. cttqe is a version of Church’s type theory with global quo-
tation and evaluation operators that is engineered to reason about the
interplay of syntax and semantics and to formalize syntax-based mathe-
matical algorithms. cttuqe is a variant of cttqe that admits undefined
expressions, partial functions, and multiple base types of individuals.
It is better suited than cttqe as a logic for building networks of the-
ories connected by theory morphisms. This paper presents the syntax
and semantics of cttuqe, defines a notion of a theory morphism from
one cttuqe theory to another, and gives two simple examples involving
monoids that illustrate the use of theory morphisms in cttuqe.

1 Introduction

A syntax-based mathematical algorithm (SBMA), such as a symbolic differen-
tiation algorithm, manipulates mathematical expressions in a mathematically
meaningful way. Reasoning about SBMAs requires reasoning about the relation-
ship between how the expressions are manipulated and what the manipulations
mean mathematically. We argue in [8] that a logic with quotation and evalua-
tion would provide a global infrastructure for formalizing SBMAs and reasoning
about the interplay of syntax and semantics that is embodied in them.

Quotation is a mechanism for referring to a syntactic value (e.g., a syntax
tree) that represents the syntactic structure of an expression, while evaluation
is a mechanism for referring to the value of the expression that a syntactic value
represents. Incorporating quotation and evaluation into a traditional logic like
first-order logic or simple type theory is tricky; there are several challenging
problems that the logic engineer must overcome [8,9]. cttqe [9,10] is a version
of Church’s type theory with global quotation and evaluation operators inspired
by the quote and eval operators in the Lisp programming language. We show
in [9] that formula schemas and meaning formulas for SBMAs can be expressed
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in cttqe using quotation and evaluation and that such schemas and meaning
formulas can be instantiated and proved within the proof system for cttqe.

The little theories method [11] is an approach for understanding and orga-
nizing mathematical knowledge as a theory graph [14] consisting of axiomatic
theories as nodes and theory morphisms1 as directed edges. A theory consists of
a language of expressions that denote mathematical values and a set of axioms
that express in the language assumptions about the values. A theory morphism
is a meaning-preserving mapping from the formulas of one theory to the formulas
of another theory. Theory morphisms serve as information conduits that enable
definitions and theorems to be passed from an abstract theory to many other
more concrete theories [2].

A biform theory [3,6] is a combination of an axiomatic theory and an algo-
rithmic theory (a collection of algorithms that perform symbolic computations).
It consists of a language L generated from a set of symbols, a set of transform-
ers, and a set of axioms. The expressions of L denote mathematical values that
include syntactic values representing the expressions of L. The transformers are
SBMAs and other algorithms that implement functions on the expressions of L
and are represented by symbols of L. The axioms are formulas of L that express
properties about the symbols and transformers of the biform theory. Unlike tra-
ditional logics, cttqe is well suited for formalizing biform theories. Can the little
theories method be applied to biform theories formalized in cttqe? This would
require a definition of a theory morphism for cttqe theories.

Defining a notion of a theory morphism in a logic with quotation is not as
straightforward as in a logic without quotation due to the following problem:

Constant Interpretation Problem. Let T1 and T2 be theories in a logic with a
quotation operator p·q. If a theory morphism Φ from T1 to T2 interprets two
distinct constants c and c′ in T1 by a single constant d in T2, then Φ would
map the true formula pcq 6= pc′q of T1 to the false formula pdq 6= pdq of T2,
and hence Φ would not be meaning preserving. Similarly, if Φ interprets c
as an expression e in T2 that is not a constant, then Φ would map a true
formula like is-constant(pcq) to the false formula is-constant(peq).

This paper defines a notion of a theory morphism that overcomes this problem in
cttuqe, a variant of cttqe that admits undefined expressions, partial functions,
and multiple base types of individuals. cttuqe merges the machinery for quo-
tation and evaluation found in cttqe [9] with the machinery for undefinedness
found in Qu

0 [7]. Like cttqe and Qu
0 , cttuqe is based on Q0 [1], Peter Andrews’

elegant version of Church’s type theory. See [9] for references related to cttuqe.
cttuqe is better suited than cttqe as a logic for the little theories method

for two reasons. First, it is often convenient for a theory morphism from T1 to
T2 to interpret different kinds of values by values of different types. Since cttqe

contains only one base type of individuals, ι, all individuals in a theory T1 must
be interpreted by values of the same type in T2. Allowing multiple base types

1 Theory morphisms are also known as immersions, realizations, theory interpretations,
translations, and views.
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of individuals in cttuqe eliminates this restriction. Second, it is often useful to
interpret a type α in T1 by a subset of the denotation of a type β in T2. As
shown in [4], this naturally leads to partial functions on the type β. cttuqe has
built-in support for partial functions and undefinedness based on the traditional
approach to undefinedness [5]; cttqe has no such built-in support.2

The rest of the paper is organized as follows. The syntax and semantics of
cttuqe are presented in sections 2 and 3. The notion of a theory morphism in
cttuqe is defined in section 4. Section 5 contains two simple examples of theory
morphisms in cttuqe involving monoids. The paper concludes in section 6 with
a summary of the paper’s results and some brief remarks about constructing
theory morphisms in an implementation of cttuqe and about future work.

The syntax and semantics of cttuqe are presented as briefly as possible. The
reader should consult [7] and [9] for a more in-depth discussion on the ideas
underlying the syntax and semantics in cttuqe. Due to limited space, a proof
system is not given in this paper for cttuqe. A proof system for cttuqe can be
straightforwardly derived by merging the proof systems for cttqe [9] and Qu

0 [7].

2 Syntax

The syntax of cttuqe is the same as the syntax of cttqe [9] except that (1) the
types include denumerably many base types of individuals instead of just the
single ι type, (2) the expressions include conditional expressions, and (3) the
logical constants include constants for definite description and exclude is-exprǫ→o

— which we will see is not needed since all constructions are “proper” in cttuqe.

2.1 Types

Let B be a denumerable set of symbols that contains o and ǫ . A type of cttuqe

is a string of symbols defined inductively by the following formation rules:

1. Base type: If α ∈ B, then α is a type.

2. Function type: If α and β are types, then (α → β) is a type.

Let T denote the set of types of cttuqe. o and ǫ are the logical base types of
cttuqe. α, β, γ, . . . are syntactic variables ranging over types. When there is no
loss of meaning, matching pairs of parentheses in types may be omitted. We
assume that function type formation associates to the right so that a type of the
form (α → (β → γ)) may be written as α → β → γ.

2 A logic without support for partial functions and undefinedness — such as cttqe

or the logic of HOL [12] — can interpret α by a type β′ that is isomorphic to a
subset of β. However, this approach is more complicated and farther from standard
mathematics practice than interpreting α directly by a subset of β.
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=α→α→o for all α ∈ T
ι(α→o)→α for all α ∈ T with α 6= o

is-varǫ→o

is-varαǫ→o for all α ∈ T
is-conǫ→o

is-conα
ǫ→o for all α ∈ T

appǫ→ǫ→ǫ

absǫ→ǫ→ǫ

condǫ→ǫ→ǫ→ǫ

quoǫ→ǫ

is-exprαǫ→o for all α ∈ T
⊏ǫ→ǫ→o

is-free-inǫ→ǫ→o

Table 1. Logical Constants

2.2 Expressions

A typed symbol is a symbol with a subscript from T . Let V be a set of typed sym-
bols such that V contains denumerably many typed symbols with subscript α for
each α ∈ T . A variable of type α of cttuqe is a member of V with subscript α.
fα,gα,hα,uα,vα,wα,xα,yα, zα, . . . are syntactic variables ranging over vari-
ables of type α. We will assume that fα, gα, hα, uα, vα, wα, xα, yα, zα, . . . are ac-
tual variables of type α of cttuqe.

Let C be a set of typed symbols disjoint from V that includes the typed
symbols in Table 1. A constant of type α of cttuqe is a member of C with
subscript α. The typed symbols in Table 1 are the logical constants of cttuqe.
cα,dα, . . . are syntactic variables ranging over constants of type α.

An expression of type α of cttuqe is a string of symbols defined inductively
by the formation rules below. Aα,Bα,Cα, . . . are syntactic variables ranging
over expressions of type α. An expression is eval-free if it is constructed using
just the first six formation rules.

1. Variable: xα is an expression of type α.
2. Constant : cα is an expression of type α.
3. Function application: (Fα→β Aα) is an expression of type β.
4. Function abstraction: (λxα . Bβ) is an expression of type α → β.
5. Conditional : (if Ao Bα Cα) is an expression of type α.
6. Quotation: pAαq is an expression of type ǫ if Aα is eval-free.
7. Evaluation: JAǫKBβ

is an expression of type β.

The purpose of the second argument Bβ in an evaluation JAǫKBβ
is to establish

the type of the evaluation.3 A formula is an expression of type o. A predicate is

3 It would be more natural for the second argument of an evaluation to be a type,
but that would lead to an infinite family of evaluation operators, one for every type,
since type variables are not available in cttuqe (as well as in cttqe and Q0).
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an expression of a type of the form α → o. When there is no loss of meaning,
matching pairs of parentheses in expressions may be omitted. We assume that
function application formation associates to the left so that an expression of the
form ((Gα→β→γ Aα)Bβ) may be written as Gα→β→γ Aα Bβ .

Remark 2.21 (Conditionals) We will see in the next section that
(if Ao Bα Cα) is a conditional expression that is not strict with respect to
undefinedness. For instance, if Ao is true, then (if Ao Bα Cα) denotes the value
of Bα even when Cα is undefined. We construct conditionals using an expres-
sion constructor instead of a constant since constants always denote functions
that are effectively strict with respect to undefinedness. We will use conditional
expressions to restrict the domain of a function.

An occurrence of a variable xα in an eval-free expression Bβ is bound [free]
if (1) it is not in a quotation and (2) it is [not] in a subexpression of Bβ of the
form λxα . Cγ . An eval-free expression is closed if no free variables occur in it.

2.3 Constructions

Let E be the function mapping eval-free expressions to expressions of type ǫ that
is defined inductively as follows:

1. E(xα) = pxαq.
2. E(cα) = pcαq.
3. E(Fα→β Aα) = appǫ→ǫ→ǫ E(Fα→β) E(Aα).
4. E(λxα . Bβ) = absǫ→ǫ→ǫ E(xα) E(Bβ).
5. E(if Ao Bα Cα) = condǫ→ǫ→ǫ→ǫ E(Ao) E(Bα) E(Cα).
6. E(pAαq) = quoǫ→ǫ E(Aα).

A construction of cttuqe is an expression in the range of E . E is clearly injective.
When Aα is eval-free, E(Aα) is a construction that represents the syntactic
structure of Aα. That is, E(Aα) is a syntactic value that represents how Aα is
constructed as an expression. In contrast to cttqe, the constructions of cttuqe

do not include “improper constructions” — such as appǫ→ǫ→ǫ pxαq pxαq — that
do not represent the syntactic structures of eval-free expressions.

The six kinds of eval-free expressions and the syntactic values that represent
their syntactic structures are given in Table 2.

2.4 Theories

Let B′ ⊆ B and C′ ⊆ C. A type α of cttuqe is a B′-type if each base type
occurring in α is a member of B′. An expression Aα of cttuqe is a (B′, C′)-
expression if each base type and constant occurring in Aα is a member of B′

and C′, respectively. A language of cttuqe is the set of all (B
′, C′)-expressions for

some B′ ⊆ B and C′ ⊆ C such that B′ contains the logical base types of cttuqe

(i.e., o and ι) and C′ contains the logical constants of cttuqe. A theory of cttuqe

is a pair T = (L, Γ ) where L is a language of cttuqe and Γ is a set of formulas
in L (called the axioms of T ). Aα is an expression of a theory T if Aα ∈ L.
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2.5 Definitions and Abbreviations

As in [9], we introduce in Table 3 several defined logical constants and abbre-
viations. (Aα ↓) says that Aα is defined, and similarly, (Aα ↑) says that Aα is
undefined. Aα ≃ Bα says that Aα and Bα are quasi-equal, i.e., that Aα and Bα

are either both defined and equal or both undefined. Ixα . Ao is a definite de-
scription. It denotes the unique xα that satisfies Ao. If there is no or more than
one such xα, it is undefined. The defined constant ⊥α is a canonical undefined
expression of type α.

3 Semantics

The semantics of cttuqe is the same as the semantics of cttqe except that the
former admits undefined expressions in accordance with the traditional approach
to undefinedness [5]. Two principal changes are made to the cttqe semantics:
(1) The notion of a general model is redefined to include partial functions as
well as total functions. (2) The valuation function for expressions is made into a
partial function that assigns a value to an expression iff the expression is defined
according to the traditional approach.

3.1 Frames

A frame of cttuqe is a collection {Dα | α ∈ T } of domains such that:

1. Do = {t, f}, the set of standard truth values.
2. Dǫ is the set of constructions of cttuqe.
3. For α ∈ B with α 6∈ {o, ǫ},Dα is a nonempty set of values (called individuals).
4. For α, β ∈ T , Dα→β is some set of total functions from Dα to Dβ if β = o

and some set of partial and total functions from Dα to Dβ if β 6= o.

3.2 Interpretations

An interpretation of cttuqe is a pair ({Dα | α ∈ T }, I) consisting of a frame
and an interpretation function I that maps each constant in C of type α to an
element of Dα such that:

1. For all α ∈ T , I(=α→α→o) is the total function f ∈ Dα→α→o such that, for
all d1, d2 ∈ Dα, f(d1)(d2) = t iff d1 = d2.

2. For all α ∈ T with α 6= o, I(ι(α→o)→α) is the partial function f ∈ D(α→o)→α

such that, for all d ∈ Dα→o, if the predicate d represents a singleton {d′} ⊆
Dα, then f(d) = d′, and otherwise f(d) is undefined.

3. I(is-varǫ→o) the total function f ∈ Dǫ→o such that, for all constructions
Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = pxαq for some variable xα ∈ V (where α can
be any type).

4. For all α ∈ T , I(is-varαǫ→o) is the total function f ∈ Dǫ→o such that, for all
constructions Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = pxαq for some variable xα ∈ V .



7

Kind Syntax Syntactic Value

Variable xα pxαq

Constant cα pcαq

Function application Fα→β Aα appǫ→ǫ→ǫ E(Fα→β) E(Aα)
Function abstraction λxα . Bβ absǫ→ǫ→ǫ E(xα) E(Bβ)
Conditional (if Ao Bα Cα) condǫ→ǫ→ǫ→ǫ E(Ao) E(Bα) E(Cα).
Quotation pAαq quoǫ→ǫ E(Aα)

Table 2. Six Kinds of Eval-Free Expressions

(Aα = Bα) stands for =α→α→o Aα Bα.
(Ao ≡ Bo) stands for =o→o→o Ao Bo.
To stands for =o→o→o = =o→o→o.
Fo stands for (λ xo . To) = (λxo . xo).
(∀xα . Ao) stands for (λxα . To) = (λxα . Ao).
∧o→o→o stands for λ xo . λ yo .

((λ go→o→o . go→o→o To To) =
(λ go→o→o . go→o→o xo yo)).

(Ao ∧Bo) stands for ∧o→o→o Ao Bo.
⊃o→o→o stands for λ xo . λ yo . (xo = (xo ∧ yo)).
(Ao ⊃ Bo) stands for ⊃o→o→oAo Bo.
¬o→o stands for =o→o→o Fo.
(¬Ao) stands for ¬o→o Ao.
∨o→o→o stands for λ xo . λ yo . ¬(¬xo ∧ ¬yo).
(Ao ∨Bo) stands for ∨o→o→o Ao Bo.
(∃xα . Ao) stands for ¬(∀xα . ¬Ao).
(Aα 6= Bα) stands for ¬(Aα = Bα).
Aǫ ⊏ǫ→ǫ→o Bǫ stands for ⊏ǫ→ǫ→o Aǫ Bǫ.
JAǫKβ stands for JAǫKBβ

.
(Aα ↓) stands for Aα = Aα.
(Aα ↑) stands for ¬(Aα ↓).
(Aα ≃ Bα) stands for (Aα ↓ ∨Bα ↓) ⊃ Aα = Bα.
(Ixα . Ao) stands for ι(α→o)→α (λxα . Ao) where α 6= o.
⊥o stands for Fo.
⊥α stands for I xα . xα 6= xα where α 6= o.

Table 3. Definitions and Abbreviations
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5. I(is-conǫ→o) is the total function f ∈ Dǫ→o such that, for all constructions
Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = pcαq for some constant cα ∈ C (where α can
be any type).

6. For all α ∈ T , I(is-conαǫ→o) is the total function f ∈ Dǫ→o such that, for all
constructions Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = pcαq for some constant cα ∈ C.

7. I(appǫ→ǫ→ǫ) is the partial function f ∈ Dǫ→ǫ→ǫ such that, for all construc-
tions Aǫ,Bǫ ∈ Dǫ, if appǫ→ǫ→ǫAǫ Bǫ is a construction, then f(Aǫ)(Bǫ) =
appǫ→ǫ→ǫAǫ Bǫ, and otherwise f(Aǫ)(Bǫ) is undefined.

8. I(absǫ→ǫ→ǫ) is the partial function f ∈ Dǫ→ǫ→ǫ such that, for all construc-
tions Aǫ,Bǫ ∈ Dǫ, if absǫ→ǫ→ǫAǫ Bǫ is a construction, then f(Aǫ)(Bǫ) =
absǫ→ǫ→ǫAǫ Bǫ, and otherwise f(Aǫ)(Bǫ) is undefined.

9. I(condǫ→ǫ→ǫ→ǫ) is the partial function f ∈ Dǫ→ǫ→ǫ→ǫ such that, for all con-
structions Aǫ,Bǫ,Cǫ ∈ Dǫ, if condǫ→ǫ→ǫ→ǫAǫBǫ Cǫ is a construction, then
f(Aǫ)(Bǫ)(Cǫ) = condǫ→ǫ→ǫ→ǫAǫ BǫCǫ, and otherwise f(Aǫ)(Bǫ)(Cǫ) is
undefined.

10. I(quoǫ→ǫ) is the total function f ∈ Dǫ→ǫ such that, for all constructions
Aǫ ∈ Dǫ, f(Aǫ) = quoǫ→ǫ Aǫ.

11. For all α ∈ T , I(is-exprαǫ→o) is the total function f ∈ Dǫ→o such that, for
all constructions Aǫ ∈ Dǫ, f(Aǫ) = t iff Aǫ = E(Bα) for some (eval-free)
expression Bα.

12. I(⊏ǫ→ǫ→o) is the total function f ∈ Dǫ→ǫ→ǫ such that, for all constructions
Aǫ,Bǫ ∈ Dǫ, f(Aǫ)(Bǫ) = t iff Aǫ is a proper subexpression of Bǫ.

13. I(is-free-inǫ→ǫ→o) is the total function f ∈ Dǫ→ǫ→ǫ such that, for all con-
structions Aǫ,Bǫ ∈ Dǫ, f(Aǫ)(Bǫ) = t iff Aǫ = pxαq for some xα ∈ V and
xα is free in the expression Cβ such that Bǫ = E(Cβ).

An assignment into a frame {Dα | α ∈ T } is a function ϕ whose domain is
V such that ϕ(xα) ∈ Dα for each xα ∈ V. Given an assignment ϕ, xα ∈ V ,
and d ∈ Dα, let ϕ[xα 7→ d] be the assignment ψ such that ψ(xα) = d and
ψ(yβ) = ϕ(yβ) for all variables yβ distinct from xα. For an interpretation M =
({Dα | α ∈ T }, I), assign(M) is the set of assignments into the frame of M.

3.3 General Models

An interpretation M = ({Dα | α ∈ T ), I} is a general model for cttuqe if there
is a partial binary valuation function VM such that, for all assignments ϕ ∈
assign(M) and expressions Dδ, either V

M
ϕ (Dδ) ∈ Dδ or VM

ϕ (Dδ) is undefined
4

and each of the following conditions is satisfied:

1. Let Dδ ∈ V . Then VM
ϕ (Dδ) = ϕ(Dδ).

2. Let Dδ ∈ C. Then VM
ϕ (Dδ) = I(Dδ).

3. Let Dδ be Fα→β Aα. If V
M
ϕ (Fα→β) is defined, V

M
ϕ (Aα) is defined, and the

function VM
ϕ (Fα→β) is defined at the argument VM

ϕ (Aα), then

VM

ϕ (Dδ) = VM

ϕ (Fα→β)(V
M

ϕ (Aα)).

4 We write V M
ϕ (Dδ) instead of V M(ϕ,Dδ).
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Otherwise, VM
ϕ (Dδ) = f if β = o and VM

ϕ (Dδ) is undefined if β 6= o.

4. Let Dδ be λxα . Bβ . Then VM
ϕ (Dδ) is the (partial or total) function f ∈

Dα→β such that, for each d ∈ Dα, f(d) = VM

ϕ[xα 7→d](Bβ) if V
M

ϕ[xα 7→d](Bβ) is

defined and f(d) is undefined if VM

ϕ[xα 7→d](Bβ) is undefined.

5. Let Dδ be (if Ao Bα Cα). If VM
ϕ (Ao) = t and VM

ϕ (Bα) is defined,

then VM
ϕ (Dδ) = VM

ϕ (Bα). If V
M
ϕ (Ao) = f and VM

ϕ (Cα) is defined, then

VM
ϕ (Dδ) = VM

ϕ (Cα). Otherwise, VM
ϕ (Dδ) is undefined.

6. Let Dδ be pAαq. Then V
M
ϕ (Dδ) = E(Aα).

7. Let Dδ be JAǫKβ . If V
M
ϕ (is-exprβǫ→o Aǫ) = t, then

VM
ϕ (Dδ) = VM

ϕ (E−1(VM
ϕ (Aǫ))).

Otherwise, VM
ϕ (Dδ) = f if β = o and VM

ϕ (Dδ) is undefined if β 6= o.

Proposition 3.31 General models for cttuqe exist.

Proof. The proof is similar to the proof of the analogous proposition in [9]. ✷

Other theorems about the semantics of cttuqe are the same or very similar
to the theorems about the semantics of cttqe given in [9].

Let M be a general model for cttuqe. Ao is valid in M, written M � Ao,
if VM

ϕ (Ao) = t for all ϕ ∈ assign(M). Ao is valid in cttuqe, written � Ao, if
Ao is valid in every general model for cttuqe. An expression Bβ is semantically
closed if no variable “is effective in” it, i.e,

� ∀yα . ((λxα . Bβ)yα = Bβ)

holds for all variables xα (where yα is any variable of type α that differs from xα).
It is easy to show that every closed eval-free expression is semantically closed.
If Bβ is semantically closed, then VM

ϕ (Bβ) does not depend on ϕ ∈ assign(M).
The notion of “xα is effective in Bβ” is discussed in detail in [9].

Let T = (L, Γ ) be a theory of cttuqe and Ao be a formula of T . A general
model for T is a general model M for cttuqe such that M � Ao for all Ao ∈ Γ .
Ao is valid in T , written T � Ao, if Ao is valid in every general model for T . T
is normal if each member of Γ is semantically closed.

4 Theory Morphisms

In this section we define a “semantic morphism” of cttuqe that maps the valid se-
mantically closed formulas of one normal theory to the valid semantically closed
formulas of another normal theory. Theory morphisms usually map base types
to types. By exploiting the support for partial functions in cttuqe, we introduce
a more general notion of theory morphism that maps base types to semantically
closed predicates that represent sets of values of the same type. This requires
mapping expressions denoting functions on the base type to expressions denoting
functions with domains restricted to the semantically closed predicate.
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For i = 1, 2, let Ti = (Li, Γi) be a normal theory of cttuqe where, for some
Bi ⊆ B and Ci ⊆ C, Li is the set of all (Bi, Ci)-expressions. Also for i = 1, 2, let
T i be the set of all Bi-types and Vi be the set of all variables in Li. Finally, let
P2 be the set of all semantically closed predicates in L2.

4.1 Translations

In this section, we will define a translation from T1 to T2 to be a pair (µ, ν) of
functions where µ interprets the base types of T1 and ν interprets the variables
and constants of T1. µ and ν will be canonical extensions of µ and ν to the types
and expressions of T1, respectively.

Define τ to be the function that maps a predicate of type α → o to the
type α. When pα→o and qβ→o are semantically closed predicates, let

pα→o ⇀ qβ→o

be an abbreviation for the following semantically closed predicate of type (α →
β) → o:

λ fα→β . ∀xα . (fα→β xα 6= ⊥β ⊃ (pα→o xα ∧ qβ→o (fα→β xα))).

If β = o [β 6= o], pα→o → qβ→o represents the set of total [partial and to-
tal] functions from the set of values represented by pα→o to the set of values
represented by qβ→o. Notice that

τ(pα→o ⇀ qβ→o) = α→ β = τ(pα→o) → τ(qβ→o).

Given a total function µ : B1 → P2, let µ : T 1 → P2 be the canonical
extension of µ that is defined inductively as follows:

1. If α ∈ B1, µ(α) = µ(α).
2. If α → β ∈ T 1, µ(α → β) = µ(α)⇀ µ(β).

It is easy to see that µ is well-defined and total.
A translation from T1 to T2 is a pair Φ = (µ, ν), where µ : B1 → P2 is total

and ν : V1 ∪ C1 → V2 ∪ C2 is total and injective, such that:

1. µ(o) = λxo . To.
2. µ(ǫ) = λxǫ . To.
3. For each xα ∈ V1, ν(xα) is a variable in V2 of type τ(µ(α)).
4. For each cα ∈ C1, ν(cα) is a constant in C2 of type τ(µ(α)).

Throughout the rest of this section, let Φ = (µ, ν) be a translation from T1
to T2. ν : L1 → L2 is the canonical extension of ν defined inductively as follows:

1. If xα ∈ V1, ν(xα) = ν(xα).
2. If cα ∈ C1, ν(cα) = ν(cα).
3. If Fα→β Aα ∈ L1, then ν(Fα→β Aα) = ν(Fα→β) ν(Aα).
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4. If λxα . Bβ ∈ L1, then ν(λxα . Bβ) =

λ ν(xα) . (if (µ(α) ν(xα)) ν(Bβ) ⊥τ(µ(β))).

5. If (if Ao Bα Cα) ∈ L1, ν(if Ao Bα Cα) = (if ν(Ao) ν(Bα) ν(Cα)).
6. If pAαq ∈ L1, then ν(pAαq) = pν(Aα)q.
7. If JAǫKBβ

∈ L1, then ν(JAǫKBβ
) = Jν(Aǫ)Kν(Bβ).

Lemma 4.11
1. ν is well-defined, total, and injective.
2. If Aα ∈ L1, then ν(Aα) is an expression of type τ(µ(α)).

Proof. The two parts of the proposition are easily proved simultaneously by
induction on the structure of expressions. ✷

Remark 4.12 We overcome the Constant Interpretation Problem mentioned
in section 1 by requiring ν to injectively map constants to constants which, by
Lemma 4.11, implies that ν injectively maps expressions to expressions. We will
see in the next section that this requirement comes with a cost.

A formula in L2 is an obligation of Φ if it is one of the following formulas:

1. ∃xτ(µ(α)) . µ(α)xτ(µ(α)) where α ∈ B1.
2. µ(α) ν(cα) where cα ∈ C1.
3. ν(=α→α→o) = λxα′ . λ yα′ . (if (µ(α)xα′ ∧µ(α) yα′) (xα′ =α′→α′→o yα′) ⊥o)

where α ∈ T 1 and α′ = τ(µ(α)).
4. ν(ι(α→o)→α) = λxα′→o . (if (µ(α → o)xα′→o) (ι(α′→o)→α′ xα′→o) ⊥α′)

where α ∈ T 1 with α 6= o and α′ = τ(µ(α)).
5. ν(cα) = cα where cα is is-varǫ→o, is-conǫ→o, appǫ→ǫ→ǫ, absǫ→ǫ→ǫ,

condǫ→ǫ→ǫ→ǫ quoǫ→ǫ, ⊏ǫ→ǫ→o, or is-free-inǫ→ǫ→o.

6. ν(cβα) = c
τ(µ(β))
α where cα is is-varβǫ→o, is-con

β
ǫ→o, or is-expr

β
ǫ→o and β ∈ T 1.

7. ν(Ao) where Ao ∈ Γ1.

Notice that each obligation of Φ is semantically closed.

4.2 Semantic Morphisms

A semantic morphism from T1 to T2 is a translation (µ, ν) from T1 to T2 such
that T1 � Ao implies T2 � ν(Ao) for all semantically closed formulas Ao of T1.
(A syntactic morphism from T1 to T2 would be a translation (µ, ν) from T1 to
T2 such that T1 ⊢P Ao implies T2 ⊢P ν(Ao) for all semantically closed formulas
Ao of T1 where P is some proof system for cttuqe.) We will prove a theorem
(called the Semantic Morphism Theorem) that gives a sufficient condition for a
translation to be a semantic morphism.

Assume M2 = ({D2
α | α ∈ T }, I2) is a general model for T2. Under the as-

sumption that the obligations of Φ are valid in T2, we will extract a general
model for T1 from M2.

For each α ∈ T 1, define D
2
τ(µ(α)) ⊆ D2

τ(µ(α)) as follows:
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1. D2
τ(µ(o)) = D2

o = D2
o = {t, f}.

2. D2
τ(µ(ǫ)) = D2

ǫ =

{d ∈ D2
ǫ | d = VM2

ϕ (ν(Aǫ)) for some construction Aǫ ∈ L1}

where ϕ is any member of assign(M2).
3. If α ∈ T 1 \ {o, ǫ}, D

2
τ(µ(α)) =

{d ∈ D2
τ(µ(α)) | V

M2

ϕ (µ(α))(d) = t}

where ϕ is any member of assign(M2).

For each α ∈ T 1, define D
1

α inductively as follows:

1. D
1

o = {t, f}.

2. D
1

ǫ is the set of constructions of cttuqe.

3. If α ∈ B1 \ {o, ǫ}, D
1

α = D2
τ(µ(α)).

4. If α → β ∈ T 1, then D
1

α→β is the set of all total functions from D
1

α to D
1

β if

β = o and the set of all partial and total functions from D
1

α to D
1

β if β 6= o.

For each α ∈ T 1, define ρα : D2
τ(µ(α)) → D

1

α inductively as follows:

1. If d ∈ D2
ǫ , ρǫ(d) is the unique construction Aǫ such that ν(Aǫ) = d.

2. If α ∈ B1 \ {ǫ} and d ∈ D2
τ(µ(α)), ρα(d) = d.

3. If α → β ∈ T 1 and f ∈ D2
τ(µ(α→β)), ρα→β(f) is the unique function g ∈

D
1

α→β such that, for all d ∈ D2
τ(µ(α)), either f(d) and g(ρα(d)) are both

defined and ρβ(f(d)) = g(ρα(d)) or they are both undefined.

Lemma 4.21 If α ∈ T 1, ρα : D2
τ(µ(α)) → D

1

α is well defined, total, and injec-
tive.

Proof. This lemma is proved by induction on α ∈ T 1. ρǫ is well defined since
VM2

ϕ is identity function on constructions and ν is injective by Lemma 4.11. ✷

For each α ∈ T 1, define D
1
α ⊆ D

1

α as follows:

1. If α ∈ B1, D
1
α = D

1

α.
2. If α → β ∈ T 1, D

1
α→β is the range of ρα→β .

3. If α ∈ B \ B1, D
1
α is any nonempty set.

4. If α → β ∈ T \ T 1, D
1
α is the set of all total functions from D1

α to D1
β if

β = o and the set of all partial and total functions from D1
α to D1

β if β 6= o.

For cα ∈ C1, define I1(cα) = ρα(V
M2

ϕ (ν(cα))) where ϕ is any member of

assign(M2). Finally, define M1 = ({D1
α | α ∈ T }, I1).
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Lemma 4.22 Suppose each obligation of Φ is valid in M2. Then M1 is a gen-
eral model for T2.

Proof. By the first group of obligations of Φ, D1
α is nonempty for all α ∈ B1, and

so {D1
α | α ∈ T } is a frame of cttuqe. By the second to sixth groups of obligations

of Φ, M1 is an interpretation of cttuqe. For all Aα ∈ L1 and ϕ ∈ assign(M1),
define VM1

ϕ (Aα) as follows:

(⋆) VM1

ϕ (Aα) = ρα(V
M2

ν(ϕ)(ν(Aα))) if V
M2

ν(ϕ)(ν(Aα)) is defined and VM1

ϕ (Aα)

is undefined otherwise,

where ν(ϕ) is any ψ ∈ assign(M2) such that, for all xβ ∈ V1, ρβ(ψ(ν(xβ))) =
ϕ(xβ). This definition of VM1

ϕ can be easily extended to a valuation function on
all expressions that can be shown, by induction on the structure of expressions,
to satisfy the seven clauses of the definition of a general model. Therefore, M1

is a general model for cttuqe. Then (⋆) implies

(⋆⋆) M1 � Ao iff M2 � ν(Ao)

for all semantically closed formulas Ao ∈ L1. By the seventh group of obligations
of Φ, M2 � ν(Ao) for allAo ∈ Γ1, and thus M1 is a general model for T1 by (⋆⋆).

✷

Theorem 4.23 (Semantic Morphism Theorem) Let T1 and T2 be normal
theories and Φ be a translation from T1 to T2. Suppose each obligation of Φ is
valid in T2. Then Φ is a semantic morphism from T1 to T2.

Proof. Let Φ = (µ, ν) be a translation from T1 to T2 and suppose each obligation
of Φ is valid in T2. Let Ao ∈ L1 be semantically closed and valid in T1. We must
show that ν(Ao) is valid in every general model for T2. Let M2 be a general
model for T1. (We are done if there are no general models for T2.) Let M1 be
extracted from M2 as above. Obviously, each obligation of Φ is valid in M2, and
so M1 is a general model for T1 by Lemma 4.22. Therefore, M1 � Ao , and so
M2 � ν(Ao) by (⋆⋆) in the proof of Lemma 4.22. ✷

Theorem 4.24 (Relative Satisfiability) Let T1 and T2 be normal theories
and suppose Φ is a semantic morphism of from T1 to T2. Then there is a general
model for T1 if there is a general model for T2.

Proof. Let Φ = (µ, ν) be a semantic morphism from T1 to T2, M2 be a general
model for T1, and M1 be extracted from M2 as above. Since Φ is a semantic
morphism, each of its obligations is valid in T2. Hence, M1 is a general model
for T1 by Lemma 4.22. ✷

5 Examples

We will illustrate the theory morphism machinery of cttuqe with two simple
examples involving monoids, the first in which two concepts are interpreted as
the same concept and second in which a type is interpreted as a subset of its
denotation. Let Clog ⊆ C be the set of logical constants of cttuqe.
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5.1 Example 1: Monoid with Left and Right Identity Elements

Define M = (LM , ΓM ) to be the usual theory of an abstract monoid where:

1. BM = {o, ǫ, ι}.

2. CM = Clog ∪ {eι, ∗ι→ι→ι}. (∗ι→ι→ι is written as an infix operator.)

3. LM is the set of (BM , CM ) expressions.

4. VM is the set of variables in LM .

5. ΓM contains the following axioms:

a. ∀xι . ∀ yι . ∀ zι . xι ∗ι→ι→ι (yι ∗ι→ι→ι zι) = (xι ∗ι→ι→ι yι) ∗ι→ι→ι zι.

b. ∀xι . eι ∗ι→ι→ι xι = xι.

c. ∀xι . xι ∗ι→ι→ι eι = xι.

Define M ′ = (LM ′ , ΓM ′) to be the alternate theory of an abstract monoid with
left and right identity elements where:

1. BM ′ = BM .

2. CM ′ = Clog ∪{eleftι , erightι , ∗ι→ι→ι}. (∗ι→ι→ι is written as an infix operator.)

3. LM ′ is the set of (BM ′ , CM ′) expressions.

4. VM ′ = VM .

5. ΓM ′ contains the following axioms:

a. ∀xι . ∀ yι . ∀ zι . xι ∗ι→ι→ι (yι ∗ι→ι→ι zι) = (xι ∗ι→ι→ι yι) ∗ι→ι→ι zι.

b. ∀xι . e
left
ι ∗ι→ι→ι xι = xι.

c. ∀xι . xι ∗ι→ι→ι e
right
ι = xι.

We would like to construct a semantic morphism fromM ′ toM that maps the
left and right identity elements of M ′ to the single identity element of M . This
is not possible since the mapping ν must be injective to overcome the Constant
Interpretation Problem. We need to add a dummy constant to M to facilitate
the definition of the semantic morphism. Let M be the definitional extension of
M that contains the new constant e′ι and the new axiom e′ι = eι.

5

Let Φ = (µ, ν) to be the translation from M ′ to M such that:

1. µ(ι) = λxι . To.

2. ν is the identity function on VM ′ ∪ Clog ∪ {∗ι→ι→ι}.

3. ν(eleftι ) = eι.

4. ν(erightι ) = e′ι.

It is easy to see that Φ is a semantic morphism by Theorem 4.23 .

5 Technically, e′ι is a constant chosen from C \ CM . There is no harm is assuming that
such a constant already exists in C.
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5.2 Example 2: Monoid interpreted as the Trivial Monoid

The identity element of a monoid forms a submonoid of the monoid that is
isomorphic with the trivial monoid consisting of a single element. There is a
natural morphism from a theory of a monoid to itself in which the type of monoid
elements is interpreted by the singleton set containing the identity element. This
kind of morphism cannot be directly expressed using a definition of a theory
morphism that maps base types to types. However, it can be directly expressed
using the notion of a semantic morphism we have defined.

The desired translation interprets the type ι as the set {eι} and the constants
denoting functions involving ι as functions in which the domain of ι is replaced by
{eι}. This is not possible since the mapping ν must map constants to constants to
overcome the Constant Interpretation Problem. We need to add a set of dummy
constants to M to facilitate the definition of the semantic morphism.

Define µ as follows:

1. For α ∈ {o, ǫ}, µ(α) = λxα . To.

2. µ(ι) = λxι . xι = eι.

Let M be the definitional extension of M that contains the following the new
defined constants:

1. =′
α→α→o = λxα . λ yα . (if (µ(α)xα ∧ µ(α) yα) (xα =α→α→o yα) ⊥o)

where α ∈ T contains ι.

2. ι′(α→o)→α = λxα→o . (if (µ(α → o)xα→o) (ι(α→o)→α xα→o) ⊥α)
where α ∈ T contains ι.

3. ∗′ι→ι→ι = λxι . λ yι . (if (µ(ι)xι ∧ µ(ι) yι) (xι ∗ι→ι→ι yι) ⊥ι).
6

Let Ψ = (µ, ν) to be the translation from M to M such that:

1. µ is defined as above.

2. ν is the identity function on VM ′ .

3. ν is the identity function on the members of Clog except for the constants
=α→α→o and ι(α→o)→α where α ∈ T contains ι.

4. ν(=α→α→o) = =′
α→α→o for all α ∈ T containing ι.

5. ν(ι(α→o)→α) = ι′(α→o)→α for all α ∈ T containing ι.

6. ν(eι) = eι.

7. ν(∗ι→ι→ι) = ∗′ι→ι→ι.

It is easy to see that Φ is a semantic morphism by Theorem 4.23 .

6 The definition of ∗′ι→ι→ι can be simplified by using the definition of µ and noting
that eι ∗ι→ι→ι eι equals eι.
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6 Conclusion

cttqe is a version of Church’s type theory with quotation and evaluation de-
scribed in great detail in [9]. In this paper we have (1) presented cttuqe, a variant
of cttqe that admits undefined expressions, partial functions, and multiple base
types of individuals, (2) defined a notion of a theory morphism in cttuqe, and
(3) given two simple examples that illustrate the use of theory morphisms in
cttuqe. The theory morphisms of cttuqe overcome the Constant Interpretation
Problem discussed in section 1 by requiring constants to be injectively mapped to
constants. Since cttuqe admits partial functions, cttuqe theory morphisms are
able to map base types to sets of values of the same type — which enables many
additional natural meaning-preserving mappings between theories to be directly
defined as cttuqe theory morphisms. Thus the paper demonstrates how theory
morphisms can be defined in a traditional logic with quotation and evaluation
and how support for partial functions in a traditional logic can be leveraged to
obtain a wider class of theory morphisms.

The two examples presented in section 5 show that constructing a translation
in cttuqe from a theory T1 to a theory T2 will often require defining new dummy
constants in T2. This is certainly a significant inconvenience. However, it is an
inconvenience that can be greatly ameliorated in an implementation of cttuqe

by allowing a user to define a “pre-translation” that is automatically transformed
into a bona fide translation. A pre-translation from T1 and T2 would be a pair
(µ, ν) where µ maps base types to either types or semantically closed predicates,
ν maps constants to expressions that need not be constants, and ν is not required
to be injective. From the pre-translation, the system would automatically extend
T2 to a theory T ′

2 and then construct a translation from T1 to T ′
2.

Our long-range goal is to implement a system for developing biform theory
graphs utilizing logics equipped with quotation and evaluation. The next step
in this direction is to implement cttqe by extending HOL Light [13], a simple
implementation of HOL [12].
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