Skip to main content

Mathematical Models as Research Data via Flexiformal Theory Graphs

  • Conference paper
  • First Online:
Book cover Intelligent Computer Mathematics (CICM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10383))

Included in the following conference series:

Abstract

Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines. It is common to categorize the involved numerical data and to some extent the corresponding scientific software as research data. But both have their origin in mathematical models, therefore any holistic approach to research data in MMS should cover all three aspects: data, software, and models. While the problems of classifying, archiving and making accessible are largely solved for data and first frameworks and systems are emerging for software, the question of how to deal with mathematical models is completely open.

In this paper we propose a solution – to cover all aspects of mathematical models: the underlying mathematical knowledge, the equations, boundary conditions, numeric approximations, and documents in a flexiformal framework, which has enough structure to support the various uses of models in scientific and technology workflows.

Concretely we propose to use the OMDoc/MMT framework to formalize mathematical models and show the adequacy of this approach by modeling a simple, but non-trivial model: van Roosbroeck’s drift-diffusion model for one-dimensional devices. This formalization – and future extensions – allows us to support the modeler by e.g., flexibly composing models, visualizing Model Pathway Diagrams, and annotating model equations in documents as induced from the formalized documents by flattening. This directly solves some of the problems in treating mathematical models as “research data” and opens the way towards more MKM services for models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandelow, U., Gajewski, H., Hünlich, R.: Fabry-perot lasers: thermodynamics-based modeling. In: Piprek, J. (ed.) Optoelectronic Devices. Springer, New York (2005)

    Google Scholar 

  2. Brase, J.: DataCite - A global registration agency for research data. In: Fourth International Conference on Cooperation and Promotion of Information Resources in Science and Technology, COINFO 2009, pp. 257–261. IEEE (2009)

    Google Scholar 

  3. Farrell, P., et al.: Numerical methods for drift-diffusion models. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modulators, Photodetectors, Solar Cells, and Numerical Models, vol. 2. Taylor & Francis, Berlin (2016). (WIAS Preprint No. 2263. To appear, 2017)

    Google Scholar 

  4. Feynman, R.P.: Space-time approach to quantum electrodynamics. Phys. Rev. 76(6), 769–789 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fischer, A., et al.: Self-heating effects in organic semiconductor crossbar structures with small active area. Org. Electron. 13(11), 2461–2468 (2012)

    Article  Google Scholar 

  6. Deutsche Forschungsgemeinschaft. DFG Guidelines on the Handling of Research Data. Adopted by the Senate of the DFG at September 30 (2015)

    Google Scholar 

  7. Greuel, G.-M., Sperber, W.: swMATH – an information service for mathematical software. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 691–701. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44199-2_103

    Google Scholar 

  8. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11(10), 455–465 (1964)

    Article  Google Scholar 

  9. Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM formats at the statement leveld. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 65–80. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31374-5_5

    Chapter  Google Scholar 

  10. Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524 (2003)

    Article  Google Scholar 

  11. Iancu, M.: Towards flexiformal mathematics. Ph.D. thesis. Jacobs University, Bremen (2017)

    Google Scholar 

  12. Kaschura, F., et al.: Operation mechanism of high performance organic permeable base transistors with an insulated and perforated base electrode. J. Appl. Phys. 120(9), 094501 (2016)

    Article  Google Scholar 

  13. Kohlhase, M., Iancu, M.: Searching the Space of Mathematical Knowledge. In: Sojka, P., Kohlhase, M. (eds.) DML and MIR 2012. Masaryk University, Brno (2012). http://kwarc.info/kohlhase/papers/mir12.pdf

  14. Kohlhase, M., et al.: A Case study for active documents and formalization in math models: the van Roosbroeck Model. https://mathhub.info/MitM/models. Accessed 5 Feb 2017

  15. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). http://omdoc.org/pubs/omdoc1.2.pdf

    Book  Google Scholar 

  16. Kohlhase, M.: The flexiformalist manifesto. In: Voxronkov, A., et al. (eds.) 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pp. 30–36. IEEE Press, Timisoara (2013). http://kwarc.info/kohlhase/papers/synasc13.pdf

  17. Kraft, A.: RADAR-A repository for long tail data. In: Proceedings of the IATUL Conferences. Paper 1 (2015)

    Google Scholar 

  18. Koprucki, T., Tabelow, K.: Mathematical models: a research data category? In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 423–428. Springer, Cham (2016). doi:10.1007/978-3-319-42432-3_53

    Chapter  Google Scholar 

  19. Mielke, A.: A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24(4), 1329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. MitM: The Math-in-the-Middle Ontology. https://mathhub.info/MitM. Accessed 5 Feb 2017

  21. Modelica Association. Modelica-A Unified Object-Oriented Language for Physical Systems Modeling-Language Specification Version 3.3 Revision 1, 2014 (2014). http://www.modelica.org

  22. MPDHub wiki. https://github.com/WIAS-BERLIN/MPDHub/wiki/. Accessed 22 Mar 2017

  23. Pfenning, F.: Logical Frameworks. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, Vol. I and II. Elsevier Science and MIT Press, North Holland (2001)

    Google Scholar 

  24. Rabe, F.: Generic Literals. http://kwarc.info/frabe/Research/rabe_literals_14.pdf

  25. Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput. (2014)

    Google Scholar 

  26. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdf

    Article  MathSciNet  MATH  Google Scholar 

  27. Razum, M., Neumann, J., Hahn, M.: RADAR-Ein Forschungsdaten- repositorium als Dienstleistung für die Wissenschaft. Z. Bibl. Bibliographie 61(1), 18–27 (2014)

    Article  Google Scholar 

  28. The Systems Biology Markup Language. http://sbml.org. Accessed 17 Mar 2017

  29. Schröter, J.: Zur Meta-Theorie der Physik. Walter de Gruyter GmbH & Co KG, Berlin (1996)

    Book  Google Scholar 

  30. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien, New York (1984)

    Book  Google Scholar 

  31. Unified Modeling Language. http://www.uml.org/. Accessed 13 Sep 2016

  32. Van Roosbroeck, W.: Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29(4), 560–607 (1950)

    Article  Google Scholar 

  33. Wikipedia: List of physical quantities – Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=List_of_physical_quantities. Accessed 22 Mar 2017

Download references

Acknowledgements

We gratefully acknowledge EU funding for the OpenDreamKit project in the Horizon 2020 framework under grant 676541. Our discussions have particularly profited from contributions by Florian Rabe (Mmt advice) and Wolfram Sperber (general math background). Finally, Marcel Rupprecht has developed the MPD viewer mentioned in Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Kohlhase , Thomas Koprucki , Dennis Müller or Karsten Tabelow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kohlhase, M., Koprucki, T., Müller, D., Tabelow, K. (2017). Mathematical Models as Research Data via Flexiformal Theory Graphs. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds) Intelligent Computer Mathematics. CICM 2017. Lecture Notes in Computer Science(), vol 10383. Springer, Cham. https://doi.org/10.1007/978-3-319-62075-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62075-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62074-9

  • Online ISBN: 978-3-319-62075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics