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Abstract. Document preparation systems like LATEX offer the ability to
render mathematical expressions as one would write these on paper. Using
LATEX, LATExml, and tools generated for use in the National Institute of
Standards (NIST) Digital Library of Mathematical Functions, semantically
enhanced mathematical LATEX markup (semantic LATEX) is achieved by using
a semantic macro set. Computer algebra systems (CAS) such as Maple and
Mathematica use alternative markup to represent mathematical expressions.
By taking advantage of Youssef’s Part-of-Math tagger and CAS internal
representations, we develop algorithms to translate mathematical expressions
represented in semantic LATEX to corresponding CAS representations and
vice versa. We have also developed tools for translating the entire Wolfram
Encoding Continued Fraction Knowledge and University of Antwerp Con-
tinued Fractions for Special Functions datasets, for use in the NIST Digital
Repository of Mathematical Formulae. The overall goal of these efforts is to
provide semantically enriched standard conforming MathML representations
to the public for formulae in digital mathematics libraries. These represen-
tations include presentation MathML, content MathML, generic LATEX,
semantic LATEX, and now CAS representations as well.

1 Problem and Current State

Scientists often use document preparation systems (DPS) to write scientific papers.
The well-known DPS LATEX has become a de-facto standard for writing mathematics
papers. On the other hand, scientists working with formulae which occur in their
research often need to evaluate special or numerical values, create figures, diagrams
and tables. One often uses computer algebra systems (CAS), programs which provide
tools for symbolic and numerical computation of mathematical expressions. DPS
such as LATEX, try to render mathematical expressions as accurately as possible and
give the opportunity for customization of the layout of mathematical expressions.
Alternatively, CAS represent expressions for use in symbolic computation with sec-
ondary focus on the layout of the expressions. This difference in format is a common
obstacle for scientific workflows.
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For example, consider the Euler-Mascheroni (Euler) constant represented by
γ. Since generic LATEX [1] does not provide any semantic information, the LATEX
representation of this mathematical constant is just the command for the Greek letter
\gamma. Maple and Mathematica, well-known CAS, represent the Euler constant γ
with gamma and EulerGamma respectively. Scientists writing scientific papers, who
use CAS often need to be aware of representations in both DPS and CAS. Often
different CAS have different capabilities, which implies that scientists might need to
know several CAS representations for mathematical symbols, functions, operators,
etc. One also needs to be aware when CAS do not support direct translation. We
refer to CAS translation as either the forward or backward translation respectively as
DPS source to CAS source or vise-versa. For instance, the CAS representation of the
number e≈2.71828 (the base of the natural logarithm) in Mathematica is E, whereas
in Maple there is no directly translated symbol. In Maple, one needs to evaluate the
exponential function at one via exp(1) to reproduce its value.

For a scientist, γ and e might represent something altogether different from these
constants, such as a variable, function, distribution, vector, etc. In these cases, it
would need to be translated in a different way. In order to avoid these kinds of
semantic ambiguities (as well as for other reasons), Bruce Miller at NIST, developing
for the Digital Library of Mathematical Functions (DLMF) (special functions and
orthogonal polynomials of classical analysis) project, has created a set of semantic
LATEX macros [11, 9]. Extensions and ‘simplifications’ have been provided by the
Digital Repository of Mathematical Formulae (DRMF) project. We refer to this
extended set of semantic LATEX macros as the DLMF/DRMF macro set, and the
mathematical LATEX which uses this semantic macro set as semantic LATEX.

Existing tools which attempt to achieve CAS translations include import/export
for LATEX expressions (such as [8, 13]), as well as for MathML. CAS functions such
as these, mostly provide only presentation translation in LATEX and do not provide
semantic solutions or workarounds to hidden problems such as subtle differences in
CAS function definitions. These differences may also include differences in domains
or complex branch cuts of multivalued functions. To fill this lack of knowledge in
the CAS translation process, one needs to provide additional information in the
DPS source itself and to create interactive documents with references to definitions,
theorems and other representations of mathematical expressions. Our approach in
this paper, is to develop independent tools for translation between different CAS and
semantic LATEX representations for mathematical expressions. We provide detailed
information about CAS translation and warn about the existence of known differences
in definitions, domains and branch cuts. For the DRMF, we have decided to focus
on CAS translation between the semantic LATEX representations of classical analysis
and internal CAS representations for Maple and Mathematica.

1.1 A CAS, generic and semantic LATEX representation example

An example of a mathematical expression is P
(α,β)
n (cos(aΘ)) where P

(α,β)
n is the Ja-

cobi polynomial [3, (18.5.7)]. Table 1 illustrates several DPS and CAS representations
for this mathematical expression. Translating the generic LATEX representation is
difficult (see [1]) since the semantic context of the P is obscured. If it represents a
special function, one needs to ascertain which function it represents, because there



Table 1. DPS and CAS representations for Jacobi polynomial expression

Different Systems Different Representations

Generic LATEX P_n^{(\alpha,\beta)}(\cos(a\Theta))

semantic LATEX \JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

Maple JacobiP(n,alpha,beta,cos(a*Theta))

Mathematica JacobiP[n,\[Alpha],\[Beta],Cos[a \[CapitalTheta]]]

are many examples of standard functions in classical analysis which are given by a
P . The semantic LATEX representation of this mathematical expression encapsulates
the mostly-unambiguous semantic meaning of the mathematical expression. This
facilitates translation between it and CAS representations. We use the first scan of
the Part-of-Math (POM) tagger [16] to facilitate translation between semantic LATEX
and CAS representations.

2 The Part-of-Math tagger

There are different approaches for interpreting LATEX. There exist several parsers for
LATEX, for instance texvcjs, which is a part of Mathoid [14]. There is also LATExml [10,
11] which processes LATEX. There is also an alternative grammar developed by Ginev
[5]. A new approach has been developed [16] which is not a fully fledged grammar
but only extracts POM from math LATEX. The purpose of the POM is to extract
semantic information from mathematics in LATEX. The tagger works in several stages
(termed scans) and interacts with several machine learning (ML) based algorithms.

Given an input LATEX math document, the first scan of the tagger examines terms
and groups them into sub-expressions when indicated. For instance \frac{1}{2} is a
sub-expression of numerator and denominator. A term is, in the sense of Backus-Naur
form, a pre-defined non-terminal expression and can represent LATEX macros, environ-
ments, reserved symbols (such as the LATEX line break command \\) or numerical or
alphanumerical expressions. Sub-expressions and terms get tagged due the first scan
of the tagger, with two separate tag categories: (1) definite tags (such as operation,
function, exponent, etc.) that the tagger is certain of; and tags which consist of
alternative and tentative features which include alternative roles and meanings. These
second category of tags are drawn from a specific knowledge base which has been
collected for the tagger. Tagged terms are called math terms. Math terms are rarely
distinct at this stage and often have multiple features.

Scans 2 and 3 are expected to be completed in the next 2 years. These involve some
natural language processing (NLP) algorithms as well as ML-based algorithms [15,
12]. Those scans will: (1) select the right features from among the alternative features
identified in the first scan; (2) disambiguate the terms; and (3) group subsequences of
terms into unambiguous sub-expressions and tag them, thus deriving definite mostly-
unambiguous semantics of math terms and expressions. The NLP/ML algorithms
include math topic modeling, math context modeling, math document classification
(into various standard areas of math), and definition-harvesting algorithms.

Specifically, to narrow down the role/meaning of a math term, it helps to know
which area of mathematics the input document is in. This calls for a math-document



classifier. Furthermore, knowing the topic, which is more specific than the area of
the document, will shed even more light on the math terms. Even more targeted is
the notion of context which, if properly formulated, will take the POM tagger a long
way in narrowing down the tag choices.

In [16], Youssef defines a new notion of a math-term’s context, which involves
several components, such as (1) the area and topic of the term’s document; (2) the
document-provided definitions; (3) the topic model and theme class of the term’s
neighborhood in the document; (4) the actual mathematical expression containing
the term; as well as (5) a small number of natural language sentences surrounding
the mathematical expression. Parts of this context are the textual definitions and
explanations of terms and notations which can be present or absent from the input
document. These can also be near the target terms or far and distributed from them.
The NLP/ML-based algorithms for the 2nd and 3rd scans of the tagger will model
and track the term’s contexts, and will harvest definitions and explanations and
associate them with the target terms.

3 Semantic LATEX to CAS translation

We have used a mathematical language parser (MLP) as an interface for the above-
described first scan of the POM tagger to build syntax trees of mathematical
expressions in LATEX and provide CAS translations from semantic LATEX to CAS
representations. The MLP provides all functionality to interact with the results of
the POM tagger. We extended the general information of each term to its CAS
representation, links to definitions on the DLMF/DRMF websites, as well as the
corresponding CAS websites. We also add information about domains, position of
branch cuts and further explanations if necessary. Since the multiple scans of the
POM tagger are still a work in progress, our CAS translation is based on the first
scan (see §2). Fig. 1 shows the syntax tree corresponding to the LATEX expression
\sqrt[3]{x^3} + \frac{y}{2}; note that ‘x’ and ‘3’ in ‘x^3’ are not treated (in
Fig. 1) as siblings (i.e., children of ‘^’) because the first scan of the tagger does not
recognize this hierarchy (but it will be rectified in POM Scans 2 and 3). The general
CAS translation process translates each node without changing the hierarchy of the
tree recursively. With this approach, we are able to translate nested function calls.

The syntax tree obtained by the first POM scan depends on the known terms
of the tagger. Although the tagger’s first scan tags macros if those macros’ definition
are provided to it, it is currently agnostic of the DLMF/DRMF macros. Therefore,
as it currently stands, the first scan of the tagger extracts, but does not recognize/tag
DLMF/DRMF macros as hierarchical structures, but rather treats those macros as
sequences of terms. The syntax tree in Fig. 2 was created by the tagger for our Jacobi
polynomial example in §1.1. The tagger extracts expressions enclosed between open
and closed curly braces {...} which we refer to as delimited balanced expressions. The
given argument is a sub-expression and produces another hierarchical tree structure.

3.1 Implementation

CAS translations for DLMF/DRMF macros are stored in CSV files, to make them easy
to edit. Besides that, CAS translations for Greek letters and mathematical constants
are stored separately in JSON files. In addition to the DLMF/DRMF macro set,



\sqrt[3]{x^3} + \frac{y}{2}

Sequence

Term: x

Alphabet: Latin
Meanings: unknown 
variable, most often real

Term: x

Alphabet: Latin
Meanings: unknown 
variable, most often real

Sequence / Radicand

Term: ^

Caret 
superscript_operation

Term: ^

Caret 
superscript_operation

Term: 3

Digit / Superscript

Term: 3

Digit / Superscript

Term: 3

Digit / Index of radical

Term: 3

Digit / Index of radical

Radical with 
specified index

Term: +

Plus
Unicode: u+0002b

Term: +

Plus
Unicode: u+0002b

Fraction

Term: 2

Digit / Denominator

Term: 2

Digit / Denominator

Term: y

Numerator
Alphabet: Latin
Meanings: second 
unknown variable || 
Bessel polynomials || ...

Term: y

Numerator
Alphabet: Latin
Meanings: second 
unknown variable || 
Bessel polynomials || ...

Fig. 1. Syntax tree of
3
√
x3+ y

2
produced by the first scan of the POM tagger.

\JacobiP{\alpha}{\beta}{n}@{\cos@{a \Theta}}

Sequence

\JacobiP
DLMF-Macro
Maple: Jacobi($2, $0, $1, $3)
Meaning: Jacobi polynomial
DLMF-Link: dlmf.nist.gov/
18.3#T1.t1.r2
...

\JacobiP
DLMF-Macro
Maple: Jacobi($2, $0, $1, $3)
Meaning: Jacobi polynomial
DLMF-Link: dlmf.nist.gov/
18.3#T1.t1.r2
...

\alpha
LaTeX-Command
Alphabet: Greek
Meanings: Second 
Feigenbaum 
constant OR  

\alpha
LaTeX-Command
Alphabet: Greek
Meanings: Second 
Feigenbaum 
constant OR  

\beta
LaTeX-Command
Alphabet: Greek
Meanings: ...

\beta
LaTeX-Command
Alphabet: Greek
Meanings: ...

n
Letter
Alphabet: Latin
...

n
Letter
Alphabet: Latin
...

@
At
Tex-equivalent:
\mathatsign

@
At
Tex-equivalent:
\mathatsign

Sequence

\cos
DLMF-Macro
Maple: cos($0)
Meaning: Cosine 
function
...

\cos
DLMF-Macro
Maple: cos($0)
Meaning: Cosine 
function
...

@
At
Tex-equivalent:
\mathatsign

@
At
Tex-equivalent:
\mathatsign

Sequence

a
Letter
Alphabet: Latin
...

a
Letter
Alphabet: Latin
...

\Theta
LaTeX-Command
Alphabet: Greek
...

\Theta
LaTeX-Command
Alphabet: Greek
...

Fig. 2. Syntax tree for Jacobi polynomial expression generated by the first POM scan.

generic LATEX also provides built-in commands for mathematical functions, such as
\frac or \sqrt. CAS translations for these macros are defined in another JSON file.

Since the POM tagger assumes the existence of special formatted lexicon files to
extract information for unknown commands, the CSV files containing CAS translation
information has to be converted into lexicon files. Table 2 shows a part of the lexicon
entry for the DLMF/DRMF macro \sin@@{z}7. Translations to CAS are realized by

7 The usage of multiple @ symbols in Miller’s LATEX macro set provides capability for
alternative presentations, such as sin(z) and sinz for one and two @ symbols respectively.



patterns with placeholders. The symbol $i indicates the i-th variable or parameter
of the macro.

Table 2. A lexicon entry.

DLMF \sin@@{z}

DLMF-Link dlmf.nist.gov/4.14#E1

Maple sin($0)

Mathematica Sin[$0]

Our CAS translation process is struc-
tured recursively. A CAS translation of a
node will be delegated to a specialized class
for certain kinds of nodes. Even though our
CAS translation process assumes semantic
LATEX with DLMF/DRMF macros, we some-
times allow for extra information obtained
from generic LATEX expressions. For instance,
we distinguish between the following cases: (1) a Latin letter is used for an elementary
constant; (2) a generic LATEX command (such as the LATEX command for a Greek
letter) is used for an elementary constant. In both cases, the program checks if there
are known DLMF/DRMF macros to represent the constant in semantic LATEX. If so,
we inform the user of the DLMF/DRMF macro for the constant, but the Latin letter
or LATEX command is not translated.

There are currently only three known Latin letters where this occurs, the imaginary
unit i, Euler’s number e, and Catalan’s constant C. If one wants to translate the Latin
letter to the constant, then one needs to use the designated macro. In these three cases
they are \iunit, \expe and \CatalansConstant. Examples of LATEX commands
which may represent elementary constants are π and α which are often used to
represent the ratio of a circle’s circumference to its diameter, and the fine-structure
constant respectively which are \cpi and \finestructure. Hence, Latin and Greek
letters will be always translated as Latin and Greek letters respectively.

The program consists of two executable JAR files. One organizes the transforma-
tion from CSV files to lexicon files, while the other translates the generated syntax
tree to a CAS representation. Fig. 3 describes the CAS translation process. The
program currently supports forward CAS translations for Maple and Mathematica.

4 Maple to semantic LATEX translation

Maple has its own syntax and programming language, and users interact with Maple by
entering commands and expressions in Maple syntax. For example, the mathematical

expression

∫ ∞

0

(π+sin(2x))/x2dx, would be entered in Maple as

int((Pi+sin(2*x))/x^2, x=0..infinity). (1)

In the sequel, we will refer to Maple syntax such as the syntactically correct format
(1) as (i) the 1D Maple representation. Maple also provides a (ii) 2D representation
(whose internal format is similar to MathML), and its display is similar to the
LATEX rendering of the mathematical expression. In addition, Maple uses two internal
representations (iii) Maple_DAG, and (iv) Inert_Form representation. Note that, even
though DAG commonly refers to the general graph theoretic/generic data structure,
directed acyclic graph, in Maple it has become synonymous with “Maple internal data
structure,” whether it actually represents a DAG or not.

http://dlmf.nist.gov/4.14#E1


MLPMLP

global-lexicon.txt

• special-numbers-lexicon.txt
• special-functions-lexicon.txt
• ...

global-lexicon.txt

• special-numbers-lexicon.txt
• special-functions-lexicon.txt
• ...

global-lexicon.txt

• special-numbers-lexicon.txt
• special-functions-lexicon.txt
• ...

lexicon-
creator.jar
lexicon-

creator.jar

DLMF-macros-lexicon.txt

DLMF / DRMF  TABLEDLMF / DRMF  TABLEDLMF / DRMF  TABLEDLMF / DRMF  TABLE

MLP Syntax TreeMLP Syntax TreeMLP Syntax TreeMLP Syntax Tree

latex-
converter.jar

latex-
converter.jar

\JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

Semantic LaTeX

MathematicaMathematica

MapleMaple
Function Name

DRMF 

Macro

Maple 

Function

Mathematica 

Function
Sine \sin@@{$0} sin($0) Sin[$0]

Cosine \cos@@{$0} cos($0) Cos[$0]

Tangent \tan@@{$0} tan($0) Tan[$0]

Secant \sec@@{$0} sec($0) Sec[$0]

Cosecant \csc@@{$0} csc($0) Csc[$0]

Cotangent \cot@@{$0} cot($0) Cot[$0]

Hyperbolic sine \sinh@@{$0} sinh($0) Sin[$0]

Hyperbolic cosine \cosh@@{$0} cosh($0) Cos[$0]

Hyperbolic tangent \tanh@@{$0} tanh($0) Tan[$0]

JacobiP(n, alpha, beta, cos(a˽Theta))

JacobiP[n, \[Alpha], \[Beta], Cos[a˽\[CapitalTheta]]]

Fig. 3. Flow diagram for translation between semantic LATEX and a CAS representations. The
MLP is the only interface to the POM tagger and provides all functionality for interaction
with the results of the POM tagger (such as analyzing the syntax tree and extracting
information from the lexicon.)

Fig. 4. Example Maple DAG for (1).

In our translation from Maple to se-
mantic LATEX, only the Maple 1D and
Inert_Fo-
rm representations are used. Program-
matic access to the Maple kernel (its in-
ternal data structures/commands) from
other programming languages such as
Java or C is possible through a published
application programming interface (API)
called OpenMaple [6, §14.3]. The Open-
Maple Java API is used in this project.
Some of the functionality used includes
(1) parsing a string in 1D representation
and converting it to its Maple_DAG and
Inert_Form representations (see below);
(2) accessing elements of Maple’s internal
data structures; (3) performing manipu-
lations on Maple data structures in the
Maple kernel.

Mathematical expressions in Maple are internally represented as Maple_DAG repre-
sentations. Fig. 4 illustrates the Maple_DAG representation of the 1D Maple expression
(1). The variable x is stored only once in memory, and all three occurrences of it refer



to the same Maple object. This type of common subexpression reuse is the reason
why Maple data structures are organized as DAGs and not as trees. In addition to
mathematical expressions, Maple also has a variety of other data structures (e.g.,
sets, lists, arrays, vectors, matrices, tables, procedures, modules). The structure of

a Maple_DAG is in the form Header Data1 ··· Datan . Header encodes both the
type and the length n of the Maple_DAG and Data1, ...,Datan are Maple_DAGs (see
[6, Appendix A.3]).

For this project, another tree-like representation that closely mirrors the internal
Maple_DAG representation (and can be accessed more easily through the OpenMaple
Java API) was chosen, the Inert_Form. The Inert_Form is given by nested function
calls of the form _Inert_XXX(Data1, ..., Datan), where XXX is a type tag (see [6,
Appendix A.3]), and Data1, ..., Datan can themselves be Inert_Forms. In Maple, the
Inert_Form representation can be obtained via the command ToInert. For example,
the Inert_Form representation of the Maple expression (1) is

Inert FUNCTION( Inert NAME("Int"), Inert EXPSEQ( Inert PROD( Inert SUM( Inert NAME("Pi"),

Inert FUNCTION( Inert NAME("sin"), Inert EXPSEQ( Inert PROD( Inert NAME("x"),

Inert INTPOS(2))))), Inert POWER( Inert NAME("x"), Inert INTNEG(2)))

Inert EQUATION( Inert NAME("x"), Inert RANGE( Inert INTPOS(0), Inert NAME("infinity"))))).
In order to facilitate access to the Inert_Form from the OpenMaple Java API,
the Inert_Form is converted to a nested list representation, where the first el-
ement of each (sub)-list is an Inert XXX tag. For example, the Maple equation
x=0..infinity which contains the integration bounds (which is a sub-Maple_DAG
of Maple expression (1)), is as follows in the nested list representation of the
Inert_Form:
[ Inert EQUATION, [ Inert NAME, "x"], [ Inert RANGE, [ Inert INTPOS, 0], [ Inert NAME, "infinity"]]].

4.1 Implementation

Our CAS translation engine enters the 1D Maple representation via the OpenMaple
API for Java [7] and converts the previously described Inert_Form to a nested

list representation. For Maple expressions, the nested list has a tree structure.
We have organized the backward translation in a similar fashion to the forward
translation (see §3).

Since Maple automatically tries to simplify input expressions, we implemented
some additional changes to prevent such simplifications and changes to the input
expression. We would prefer that the representation of a translated expression remain
as similar as possible to the input expression. This facilitates user comprehension, as
well as the debugging process, of the CAS translation. Maple’s internal representation
presents obstacles when trying to keep an internal expression in the syntactical form
of the input expression. For instance, Maple performs automatic (1) simplification of
input expressions; (2) representation of radicals as powers with fractional exponents
(e.g., \sqrt[5]{x^3} represented as x^{3/5}); (3) representation of negative terms
as positive terms multiplied by -1 (since Maple’s internal structure has no primitives
for negation or subtraction); and (4) representation of division by a term as a
multiplication of that term raised to a negative power (since Maple’s internal structure
has no primitives for division).



To prevent automatic simplifications in Maple, one can enclose input expressions
between single quotes '...', also known as unevaluation quotes. This does not
prevent arithmetic simplifications but does prevent all other simplifications to the
input expression. For instance, if we have input sin(Pi)+2-1, then the output is
1; and if we have input 'sin(Pi)+2-1', then the output is sin(Pi)+1. By using
unevaluation quotes, Maple does not convert a radical to a power with fractional
exponents, and the internal representation remains an unevaluated sqrt (for square
roots) or root (for higher order radicals). Maple automatically represents a negative
term such as -a by a product a*(-1). To resolve this we first switch the order of
the terms so that constants are in front, e.g., (-1)*a, and then check if the leading
constant is positive or negative. If it is negative, we remove the multiplication and
insert a negative sign in front of the term.

Maple’s rendering engine only changes negative powers to fractions if the power is
a ratio of integers, otherwise it keeps the exponent representation. We only trans-
late terms with negative integer exponents to fractions, and otherwise retain the
internal exponent representation. For this purpose, we perform a preprocessing
step (in Maple) that introduces a new DIVIDE element in the tree representation.
For instance, without the DIVIDE element the input (1/(x+3))^(-I) produces
\left((3+x)^{-1}\right)^{-\iunit}, and with the DIVIDE element it produces
\left(\frac{1}{3+x}\right)^{-\iunit}.

Using the above described manipulations, a typical translated expression is very
similar to the input expression. As an example, without any of the techniques
above, the input expression cos(Pi*2)/sqrt((3*beta)/4-3*I) would be automat-
ically simplified and changed internally, and the resulting semantic LATEX would

Translation ProcessTranslation Process

MAPLEMAPLE

O
p

e
n

M
ap

le A
P

I

Maple expression as string

JacobiP(n, alpha, beta, cos(a*Theta))

Maple expression as string

JacobiP(n, alpha, beta, cos(a*Theta))

\betan \alpha

 JacobiP n alpha beta [cos, [product, [a, Theta]]] JacobiP n alpha beta [cos, [product, [a, Theta]]]

cos [product, [a, Theta]]cos [product, [a, Theta]]

product [a, Theta]product [a, Theta]

 \cos@{                    }a\Theta \cos@{                    }a\Theta

 \JacobiP{              }{            }{      }@{                               }\alpha \beta n \cos@{a\Theta} \JacobiP{              }{            }{      }@{                               }\alpha \beta n \cos@{a\Theta}

a\Theta

N
ested

 List

M
yIn

ertFo
rm

Maple Object
InertForm

Maple Object
InertForm

 [JacobiP, n, alpha, beta, [cos, [product, [a, Theta]]]] [JacobiP, n, alpha, beta, [cos, [product, [a, Theta]]]]

\JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}\JacobiP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

Fig. 5. The program flow diagram explains the translation from Maple to semantic LATEX.
The input string is parsed into a Maple object and Maple procedures create a new internal
form of the object and builds a nested list from this new form. The CAS translation
process assembles the semantic LATEX expression by translating each element recursively.



be 2\idt(3\idt\beta+12\idt\iunit\idt(-1))^{-\frac{1}{2}}.1 With unevalu-
ation quotes, the CAS translation produces

\cos@{\cpi\idt2}\idt\left(\sqrt{\beta\idt\frac34+\iunit\idt(-3)}\right)^{-1}.
Furthermore, with our improvements for subtractions, we translate the radicand to
\frac{3}{4}\idt\beta-3\idt\iunit, and with the DIVIDE element, we translate
the base with exponent -1 as a fraction, and our translated expression is
\frac{\cos@{2\idt\cpi}}{\sqrt{\frac{3}{4}\idt\beta-3\idt\iunit}},

which is very similar to the input expression.

5 Evaluation

Here, we describe our approach for validating the correctness of our mappings, as
well as discuss the performance of our system obtained on a hand crafted test set.

One validation approach is to take advantage of numerical evaluation using
software tools such as the DLMF Standard Reference Tables (DLMF Tables) [4],
CAS, and software libraries2. These tools provide numerical evaluation for special
functions with their own unique features. One can validate forward CAS translations
by comparing numerical values in CAS to ground truth values.

Another validation approach is to use mathematical relations between different
functions. For instance, if we forward translate two functions separately, one could
determine if the relation between the two translated functions remains valid. One
example relation is for the Jacobi elliptic functions sn, cn, dn, and the complete
elliptic integral K [3, Table 22.4.3], namely sn(z+K(k),k)=cn(z,k)/dn(z,k), where
z ∈ C, and k ∈ (0,1). In the limit as k → 0, this relation produces sin@z+ π

2 =
cos(z), where z∈C. The DLMF provides relations such as these for many special
functions. An alternative relation is particularly helpful to validate CAS translations
with different positions of branch cuts, namely the relation between the parabolic
cylinder function U and the modified Bessel function of the second kind [3, (12.7.10)]
U(0,z)=

√
z/(2π)K1/4(

1
4z

2), where z∈C. Note that z2 is no longer on the principal
branch of the modified Bessel function of the second kind when ph(z)∈(π2 ,π), but a
CAS would still compute values on the principal branch. Therefore, a CAS translation
from \BesselK{\frac{1}{4}}@{\frac{1}{4}z^2} to BesselK(1/4,(1/4)*z^2) is
incorrect if ph(z)∈(π2 ,π), even though the equation is true in that domain. In order
for the CAS to verify the formula in that domain, it must use [3, (10.34.4)] for the
function on the right-hand side. Other validation tests may not be able to identify a
problem with this CAS translation.

One obstacle for such relations are the limitations of ever-improving CAS sim-
plification functions. Define the formula difference, as the difference between the
left- and right-hand sides of a mathematical formula. CAS simplify for the Jacobi
elliptic/trigonometric relation should produce 0, but might have more difficulties
with the parabolic cylinder function relation. However, CAS simplify functions work
more effectively on round trip tests.

1 \idt is our semantic LATEX macro which represents multiplication without any corre-
sponding presentation appearance.

2 See for instance: http://dlmf.nist.gov/software.

http://dlmf.nist.gov/software/


5.1 Round trip tests

One of the main techniques we use to validate CAS translations are round trip tests
which take advantage of CAS simplification functions. Since we have developed CAS
translations between semantic LATEX↔Maple, round trip tests are evaluated in Maple.
Maple’s simplification function is called simplify. Two expressions are symbolically
equivalent, if simplify returns zero for the formula difference. On the other hand,
it is not possible to disprove the equivalence of the expressions when the function
returns something different to zero.

Our round trip tests start either from a valid semantic LATEX expression or
from a valid Maple expression. A CAS translation from the start representation to
the other representation and back again is called one cycle. A round trip reaches
a fixed point, when the string representation is identical to its previous string
representation. The round trip test concludes when it reaches a fixed point in both
representations. Additionally, we test if the fixed point representation in Maple is
symbolically equivalent to the input representation by simplifying the differences
between both of these with the Maple simplify function. Since there is no mathematical
equivalence tester for LATEX expressions (neither generic nor semantic LATEX), we
manually verify LATEX representations for our test cases by rendering the LATEX.

Table 3. A round trip test reach a fixed point.
step semantic LATEX/Maple representations

0 \frac{\cos@{a\Theta}}{2}

1 (cos(a*Theta))/(2)

2 \frac{1}{2}\idt\cos@{a\idt\Theta}

3 (1)/(2)*cos(a*Theta)

As shown in §4.1, prior to back-
ward translation, in round trip
testing, there will be differences
between input and output Maple
representations. After adapting
these changes, and assuming the
functions exist in both semantic
LATEX and CAS, the round trip

test should reach a fixed point. In fact, we reached a fixed point in semantic LATEX
after one cycle and in Maple after 11

2 cycles (see Table 3 for an example) for most
of the cases we tried. If the input representation is already identical to Maple’s
representation, then the fixed point will be reached after at most a half cycle.

One example exception is for CAS translations which introduce additional
function compositions on arguments. For instance, Legendre’s incomplete elliptic
integrals [3, (19.2.4-7)] are defined with the amplitude φ in the first argument,
while Maple’s implementation takes the trigonometric sine of the amplitude as the
first argument. For instance, one has the CAS translations \EllIntF@{\phi}{k}

7→ EllipticF(sin(phi),k), and \EllIntF@{\asin@{z}}{k} ←[ EllipticF(z,k).
These CAS translations produce an infinite chain of sine and inverse sine function calls.
Because round trip tests prevent simplification during the translation process (see
§4.1), Maple is not used to simplify the chain until the round trip test is concluded.

5.2 Summary of evaluation techniques

Equivalence tests for special function relations are able to verify relations in CAS
as well as identify hidden problems such as differences in branch cuts and CAS
limitations. We use the simplify method to test equivalences. For the relations in



§5, CAS simplify for the Jacobi elliptic function example yields 0. Furthermore,
a spectrum of real, complex, and complex conjugate numerical values for z and
k ∈ (0,1) the formula difference converges to zero for an increasing precision. If
simplification returns something other than zero, we can test the equivalence for
specific values. For the Bessel function relation, the formula difference for z=1+i
converges to zero for increasing precision, but does not converge to zero if z=−1+i.
However, using analytic continuation [3, (10.34.4)], it does converges to zero. Clearly,
the numerical evaluation test is also able to locate branch cut issues in the CAS
translation. Furthermore, this provides a very powerful debugging method for our
translation as well as for CAS functionality. This was demonstrated by discovering
an overall sign error in DLMF equation [3, (14.5.14)].

Round trip tests are also useful for identifying syntax errors in the semantic LATEX
since the CAS translation then fails. The simplification procedure is improved for
round trip tests, because it only needs to simplify similar expressions with identical
function calls. However, this approach is not able to identify hidden problems that a
CAS translation might need to resolve in order to be correct, if the round trip test
has not reached a fixed point. Other than with the round trip test approach, we
have not discovered any automated tests for backward CAS translations. We have
evaluated 37 round trip test cases which produce a fixed point, similar to that given
in Table 3. These use formulae from the DLMF/DRMF and produce a difference of
the left- and right-hand sides equaling 0.

We have created a test dataset3 of 4,165 semantic LATEX formulae, extracted
from the DLMF. We translated each test case to a representation in Maple and used
Maple’s simplify function on the formula difference to verify that the translated
formulae remain valid. Our forward translation tool (§3) was able to translate 2,232
(approx. 53.59%) test cases and verify 477 of these. Pre-conversion improved the
effectiveness of simplify and were used to convert the translated expression to a
different form before simplification of the formula difference. We used conversions
to exponential and hypergeometric form and expanded the translated expression.
Pre-conversion increased the number of formulae verified to 662 and 1,570 test cases
were translated but not verified. The remaining 1,933 test cases were not translated,
because they contain DLMF/DRMF macros without a known translation to Maple
(987 cases), such as the q-hypergeometric function [3, (17.4.1)] (in 58 cases), or an
error appeared during the translation or verification process (639 cases). Furthermore,
316 cases were ignored, because they did not contain enough semantic information to
provide a translation or the test case was not a relation. It is interesting to note that
we were able to enhance the semantics of 74 Wronskian relations by rewriting the
macro so that it included the variable that derivatives are taken with respect to as
a parameter. A similar semantic enhancement is possible for another 186 formulae
where the potentially ambiguous prime notation ‘'’ is used for derivatives.

Acknowledgements4 We are indebted to Wikimedia Labs, the XSEDE project,

3 We are planning to make the dataset available from http://drmf.wmflabs.org.
4 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards and
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