
Splitting B2-VPG graphs into outer-string and
co-comparability graphs

Therese Biedl? and Martin Derka??

David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, N2L 3G1, Canada

{biedl,mderka}@uwaterloo.ca

Abstract. In this paper, we show that any B2-VPG graph (i.e., an
intersection graph of orthogonal curves with at most 2 bends) can be
decomposed into O(logn) outerstring graphs or O(log3 n) permutation
graphs. This leads to better approximation algorithms for hereditary
graph problems, such as independent set, clique and clique cover, on
B2-VPG graphs.

1 Preliminaries

An intersection representation of a graph is a way of portraying a graph using
geometric objects. In such a representation, every object corresponds to a vertex
in the graph, and there is an edge between vertices u and v if and only if their
two objects u and v intersect.

One of the well-studied classes of such intersection graphs are the string
graph, where the objects are (open) curves in the plane. An outer-string rep-
resentation is one where all the curves are in inside a polygon P and touch
the boundary of P at least once. A string representation is called a 1-string
representation if any two strings intersect at most once. It is called a Bk-VPG-
representation (for some k ≥ 0) if every curve is an orthogonal curve with at
most k bends. We naturally use the term outer-string graph for graphs that
have an outer-string representation, and similarly for other types of intersecting
objects.

Our contribution: This paper is concerned with partitioning string graphs (and
other classes of intersection graphs) into subgraphs that have nice properties,
such as being outerstring graphs or permutation graphs (defined formally be-
low). We can then use such a partition to obtain approximation algorithms for
some graph problems, such as weighted independent set, clique, clique cover and
colouring. More specifically, “partitioning” in this paper usually means a vertex
partition, i.e., we split the vertices of the graph as V = V1 ∪ · · · ∪ Vk such that
the subgraph induced by each Vi has nice properties. In one case we also do

? The author was supported by NSERC.
?? The author was supported by Vanier CGS.

ar
X

iv
:1

61
2.

07
27

6v
1 

 [
cs

.C
G

] 
 2

1 
D

ec
 2

01
6



an edge-partition where we partition E = E1 ∪ E2 and then work on the two
subgraphs Gi = (V,Ei).

Our paper was inspired by a paper by Lahiri et al. [11] in 2014, which gave
an algorithm to approximate the maximum (unweighted) independent set in a
B1-VPG graph within a factor of 4 log2 n. We greatly expand on their approach
as follows. First, rather than solving maximum independent set directly, we
instead split such a graph into subgraphs. This allows us to approximate not
just independent set, but more generally any hereditary graph problem that is
solvable in such graphs.

Secondly, rather than using co-comparability graphs for splitting as Lahiri
et al. did, we use outerstring graphs. This allows us to stop the splitting ear-
lier, reducing the approximation factor from 4 log2 n to 2 log n, and to give an
algorithm for weighted independent set (wIS).

Finally, we allow much more general shapes. For splitting into outerstring
graphs, we can allow any shape that can be described as the union of one vertical
and any number of horizontal segments (we call such intersection graphs single-
vertical). Our results imply a 2 log n-approximation algorithm for wIS in such
graphs, which include B1-VPG graphs, and a 4 log n-approximation for wIS in
B2-VPG graphs.

In the second part of the paper, we consider splitting the graph such that the
resulting subgraphs are co-comparability graphs. This type of problem was first
considered by Keil and Stewart [10], who showed that so-called subtree filament
graphs can be vertex-partitioned into O(log n) co-comparability graphs. The
work of Lahiri et al. [11] can be seen as proving that every B1-VPG graph can
be vertex-partitioned into O(log2 n) co-comparability graphs. We focus here on
the super-class of B2-VPG-graphs, and show that they can be vertex-partitioned
into O(log3 n) co-comparability graphs. Moreover, these co-comparability graphs
have poset dimension 3, and if the B2-VPG representation was 1-string, then
they are permutation graphs. This leads to better approximation algorithms for
clique, colouring and clique cover for B2-VPG graphs.

2 Decomposing into outerstring graphs

We argue in this section how to split a graph into outerstring graphs if it has
an intersection representation of a special form. A single-vertical object is a
connected set S ⊂ R2 of the form S = s0 ∪ s1 ∪ · · · ∪ sk, where s0 is a vertical
segment and s1, . . . , sk are horizontal segments, for some finite k. Given a number
of single-vertical objects S1, . . . , Sn, we define the intersection graph of it in
the usual way, by defining one vertex per object and adding an edge whenever
objects have at least one point in common (contacts are considered intersections).
We call such a representation a single-vertical representation and the graph a
single-vertical intersection graph. The x-coordinate of one single-vertical object
is defined to be the x-coordinate of the (unique) vertical segment. We consider
a horizontal segment to be a single-vertical object as well, by attaching a zero-
length vertical segment at one of its endpoints.



Theorem 1. Let G be a single-vertical intersection graph. Then the vertices of
G can be partitioned into at most max{1, 2 log n}1 sets such that the subgraph
induced by each is an outer-string graph.

Our proof of Theorem 1 uses a splitting technique implicit in the the re-
cursive approximation algorithm of Lahiri et al. [11]. Let R be a single-vertical
representation on G and S be an ordered list of the x-coordinates of all the
objects in R. We define the median m of R as the smallest number such that at

most |S|2 x-coordinates in S are smaller than m and at most |S|2 x-coordinates
in S are bigger than m. (If |S| is odd then m is hence the x-coordinate of at
least one object.) Now split R into three sets: The middle set M of objects that
intersect the vertical line m with x-coordinate m; the left set L of objects whose
x-coordinates are smaller than m and that do not belong to M , and the right
set R of objects whose x-coordinates are bigger than m and that do not belong
to M . Split M further into ML = { c | the x-coordinate of c is less than m} and
MR = M \ML.

L RML MR

Fig. 1: The split of a representation into L, M = ML ∪MR and R.

Lemma 2. The subgraph induced by the objects in ML is outer-string.

Proof. All the objects in ML intersect curve m. Since all the x-coordinates of
those objects are smaller than m, all the intersections of the objects occur left
of m. If an object is not a curve, one can replace it by a closed curve that traces
the shape of the object left of m. Breaking the closed trace-curve at one of the
attachments to m produces an open curve. Doing so for every object that is not
a curve, one obtains an outer-string representation where all curves attach to m
from one side and that induces the same graph as ML. ut
1 This bound is not tight; a more careful analysis shows that we get at most

max{1, 2dlogne − 2} graphs.



A similar proof shows that the graph induced by objects in MR is an outer-
string graph. Now we can prove our main result:

Proof (of Theorem 1). Let G be a graph with a single-vertical representation.
We proceed by induction on the number of vertices n in G. If n ≤ 2, then the
graph is outer-string and we are done, so assume n ≥ 3, which implies that
log n ≥ 3

2 . By Lemma 2, both ML and MR individually induce an outer-string
graph.Applying induction, we get at most

max{1, 2 log |L|} ≤ max{1, 2 log(n/2)} = max{1, 2 log n− 2} = 2 log n− 2

outer-string subgraphs for L, and similarly at most 2 log n − 2 outerstring sub-
graphs for R. Since the objects in L and R are separated by the vertical line
m, there are no edges between the corresponding vertices. Thus any outerstring
subgraph defined by L can be combined with any outerstring subgraph defined
by R to give one outerstring graph. We hence obtain 2 log n − 2 outerstring
graphs from recursing into L and R. Adding to this the two outer-string graphs
defined by ML and MR gives the result. ut

Our proof is constructive, and finds the partition within O(log n) recursions.
In each recursion we must find the median m and then determine which objects
intersect the line m. If we pre-sort three lists of the objects (once by x-coordinate
of the vertical segment, once by leftmost x-coordinate, and once by rightmost
x-coordinate), and pass these lists along as parameters, then each recursion
can be done in O(n) time, without linear-time median-finding. The pre-sorting
takes O(N + n log n) time, where N is the total number of segments in the
representation. Hence the run-time to find the partition is O(N + n log n).

The above results were for single-vertical graphs. However, the main focus
of this paper is Bk-VPG-graphs, for k ≤ 2. Clearly B1-VPG graphs are single-
vertical by definition. But B2-VPG-graphs are not obviously single-vertical, since
they might use curves in form of a U , with two vertical segments. However, we
can still handle them by doubling the number of graphs into which we split.

Lemma 3. Let G be a B2-VPG graph. Then the vertices of G can be partitioned
into 2 sets such that the subgraph induced by each is a single-vertical B2-VPG
graph.

Proof. Fix a B2-VPG-representation of G. Let Vv be the vertices that have at
most one vertical segment in their curve, and Vh be the remaining vertices. Since
every curve has at most three segments, and all curves in Vh have at least two
vertical segments, each of them has at most one horizontal segment. Clearly Vv
induces a single-vertical graph. Vh also induces a single-vertical graph, because
we can rotate all curves by 90◦ and then have at most one vertical segment per
curve. ut

Combining this with Theorem 1, we immediately obtain:

Corollary 4. Let G be a B2-VPG graph. Then the vertices of G can be parti-
tioned into at most max{1, 4 log n}sets such that the subgraph induced by each is
an outerstring graph.



3 Decomposing into co-comparability graphs

We now show that by doing further splits, we can actually decompose B2-VPG
graphs into so-called co-comparability graphs of poset dimension 3 (defined for-
mally below). While we require more subgraphs for such a split, the advantage is
that numerous problems are polynomial for such co-comparability graphs, while
for outerstring we know of no problem other than weighted independent set that
is poly-time solvable.

We first give an outline of the approach. Given a B2-VPG-graph, we first
use Lemma 3 to split it into two single-vertical B2-VPG-graphs. Given a single-
vertical B2-VPG-graph, we next use a technique much like the one of Theorem 1
to split it into log n single-vertical B2-VPG-graphs that are “centered” in some
sense. Any such graph can easily be edge-partitioned into two B1-VPG-graphs
that are “grounded” in some sense. We then apply the technique of Theorem 1
again (but in the other direction) to split a grounded B1-VPG-graph into log n
B1-VPG-graphs that are “cornered” in some sense. The latter graphs can be
shown to be permutation graphs. This gives the result after arguing that the
edge-partition can be un-done at the cost of combining permutation graphs into
co-comparability graphs.

3.1 Co-comparability graphs

We start by defining the graph classes that we use in this section only. A graph G
with vertices {1, . . . , n} is called a permutation graph if there exists two permu-
tations π1, π2 of {1, . . . , n} such that (i, j) is an edge of G if and only if π1 lists
i, j in the opposite order as π2 does. Put differently, if we place π1(1), . . . , π1(n)
at points along a horizontal line, and π2(1), . . . , π2(n) at points along a parallel
horizontal line, and use the line segment (π1(i), π2(i)) to represent vertex i, then
the graph is the intersection graph of these segments.

A co-comparability graph G is a graph whose complement can be directed
in an acyclic transitive fashion. Rather than defining these terms, we describe
here only the restricted type of co-comparability graphs that we are interested
in. A graph G with vertices {1, . . . , n} is called a co-comparability graph of poset
dimension k if there exist k permutations π1, . . . , πk such that (i, j) is an edge if
and only if there are two permutations that list i and j in opposite order. (See
Golumbic et al. [8] for more on these characterizations.) Note that a permutation
graph is a co-comparability graph of poset dimension 2.

3.2 Cornered B1-VPG graphs

A B1-VPG-representation is called cornered if there exists a horizontal and a
vertical ray emanating from the same point such that any curve of the represen-
tation intersects both rays. See Fig. 2(d) for an example.

Lemma 5. If G has a cornered B1-VPG-representation, say with respect to rays
r1 and r2, then G is a permutation graph. Further, the two permutations defining
G are exactly the two orders in which vertex-curves intersect r1 and r2.



dimension 1

dimension 2

(a) (b) (c) (d)

Fig. 2: A graph that is simultaneously (a) a co-comparability graph; (b) a per-
mutation graph; (c) a co-comparability graph of poset dimension 2; and (d) a
cornered B1-VPG graph.

Proof. Since the curves have only one bend, the intersections with r1 and r2
determine the curve of each vertex. In particular, two curves intersect if and
only if the two orders along r1 and r2 is not the same, which is to say, if their
orders are different in the two permutations of the vertices defined by the orders
along the rays. Hence using these orders show that G is a permutation graph. ut

3.3 From grounded to cornered

We call a B1-VPG representation grounded if there exists a horizontal line seg-
ment `H that intersects the all curves, and has all horizontal segments of all
curves above it. See also Fig. 3 and [2] for more properties of graphs that have
a grounded representation. We now show how to split a grounded B1-VPG-
representation into cornered ones. It will be important later that not only can
we do such a split, but we know how the curves intersect `H afterwards. More
precisely, the curves in the resulting representations may not be identical to
the ones we started with, but they are modified only in such a way that the
intersections points of curves along `H is unchanged.

Lemma 6. Let R be a B1-VPG-representation that is grounded with respect
to segment `H . Then R can be partitioned into at most max{1, 2 log n} sets
R1, . . . , RK such that each set Ri is cornered after upward translation and segment-
extension of some of its curves.

Proof. A single curve with one bend is always cornered, so the claim is easily
shown for n ≤ 4 where max{1, 2 log n} ≥ n. For n ≥ 5, it will be helpful to
split R first into two sets, those curves of the form |h and those that form h| (no
other shapes can exist in a grounded B1-VPG-representation). The result follows
if we show that each of them can be split into log n many cornered B1-VPG-
representations.

So assume that R consists of only |h’s. We apply essentially the same idea as
in Theorem 1. Let again m be the vertical line along the median of x-coordinates



of vertical segments of curves. Let M be all those curves that intersect m. Since
curves are |h’s, any curve in M intersects `H to the left of m, and intersects
m above `H . Hence taking the two rays along `H and m emanating from their
common point shows that M is cornered.

lh

m

GL GR lh

m

Fig. 3: An illustration for the proof of Lemma 6. (left) Splitting a cornered B1-
VPG graph. (right) Combining a graph GL with a graphs GR so that the result
is a cornered B1-VPG graph.

We then recurse both in the subgraph L of vertices entirely left of m and the
subgraph R of vertices entirely right of m. Each of them is split recursively into
at most max{1, log(n/2)} = log n−1 subgraphs that are cornered. We must now
argue how to combine two such subgraphs GL and GR (of vertices from L and
R) such that they are cornered while modifying curves only in the permitted
way.

Translate curves of GL upward such that the lowest horizontal segment of
GL is above the highest horizontal segment of GR. Extend the vertical segments
of GL so that they again intersect `H . Extend horizontal segments of both GL

and GR rightward until they all intersect one vertical line segment. The resulting
representation satisfies all conditions.

Since we obtain at most log n − 1 such cornered representations from the
curves in R ∪ L, we can add M to it and the result follows. ut

Corollary 7. Let G be a graph with a grounded B1-VPG representation. Then
the vertices of G can be partitioned into at most max{1, 2 log n} sets such that
the subgraph induced by each is a permutation graph.

3.4 From centered to grounded

We now switch to VPG-representations with 2 bends, but currently only allow
those with a single vertical segment per curve. So let R be a single-vertical B2-
VPG-representation. We call R centered if there exists a horizontal line segment
`H that intersects the vertical segment of all curves. Given such a representation,
we can cut each curve apart at the intersection point with `H . Then the parts
above `H form a grounded B1-VPG-representation, and the parts below form
(after a 180◦ rotation) also a grounded B1-VPG-representation. Note that this



split corresponds to splitting the edges into E = E1∪E2, depending on whether
the intersection for each edge occurs above or below `H . Note that if curves may
intersect repeatedly, then an edge may be in both sets. See Fig. 4 for an example.
With this, we can now split into co-comparability graphs.

lh

Fig. 4: Splitting singlevertical B2-VPG-representation into two grounded B1-
VPG-representations.

Lemma 8. Let G be a graph with a single-vertical centered B2-VPG represen-
tation. Then the vertices of G can be partitioned into at most max{1, 4 log2 n}
sets such that the subgraph induced by each is a co-comparability graph of poset
dimension 3.

Proof. The claim clearly holds for n ≤ 4, so assume n ≥ 5. Let `H be the
horizontal segment along which the representation is centered. Split the edges
into E1 and E2 as above, and let R1 and R2 be the resulting grounded B1-
VPG-representations, which have the same order of vertical intersections along
`H . Split R1 into K ≤ 2 log n sets of curves R1

1, . . . , R
K
1 , each of which forms a

cornered B1-VPG-representation that uses the same order of intersections along
`H . Similarly split R2 into K ′ ≤ 2 log n sets R1

2, . . . , R
K′

2 of cornered B1-VPG-
representations.

Now define Ri,j to consist of all those curves r where the part of r above `H
belongs to Ri

1 and the part below belongs to Rj
2. This gives K · K ′ ≤ 4 log2 n

sets of curves. Consider one such set Ri,j . The parts of curves in Ri,j that
were above `H are cornered at `H and some vertical upward ray, hence define
a permutation π1 along the vertical ray and π2 along `H . Similarly the parts
of curves below `H define two permutations, say π′2 along `H and π3 along
some vertical downward ray. But the split into cornered B1-VPG-representation
ensured that the intersections along `H was not changed, so π2 = π′2. The three
permutations π1, π2, π3 together hence define a co-comparability graph of poset
dimension 3 as desired. ut



We can do slightly better if the representation is additionally 1-string.

Corollary 9. Let G be a graph with a single-vertical centered 1-string B2-VPG
representation. Then the vertices of G can be partitioned into at most max{1, 4 log2 n}
sets such that the subgraph induced by each is a permutation graph.

Proof. The split is exactly the same as in Lemma 8. Consider one of the sub-
graphs Gi and the permutations π1, π2, π3 that came with it, where π2 is the
permutation of curves along the centering line `H . We claim that Gi is a per-
mutation graph, using π1, π3 as the two permutations. Clearly if (u, v) is not an
edge of Gi, then all of π1, π2, π3 list u and v in the same order. If (u, v) is an
edge of Gi, then two of π1, π2, π3 list u, v in opposite order. We claim that π1
and π3 list u, v in opposite order. For if not, say u comes before v in both π1 and
π3, then (to represent edge (u, v)) we must have u after v in π2. But then the
curves of u and v intersect both above and below `H , contradicting that we have
a 1-string representation. So the two permutations π1, π3 define graph Gi. ut

3.5 Making single-vertical B2-VPG-representations centered

Lemma 10. Let G be a graph with a single-vertical B2-VPG representation.
Then the vertices of G can be partitioned into at most max{1, log n} sets such that
the subgraph induced by each has a single-vertical centered B2-VPG-representation.

Proof. The approach is quite similar to the one in Theorem 1, but uses a hor-
izontal split and a different median. The claim is easy to show for n = 3, so
assume n ≥ 4. Recall that there are are n vertical segments, hence 2n endpoints
of such segments. Let m be the value such that at most n of these endpoints
each are below and above m, and let m be the horizontal line with y-coordinate
m.

Let M be the curves that are intersected by m; clearly they form a single-
vertical centered B2-VPG-representation. Let B be all those curves whose ver-
tical segment (and hence the entire curve) is completely below m. Each such
curve contributes two endpoints of vertical segments, hence |B| ≤ n/2 by choice
of m. Recursively split B into at most max{1, log(n/2)} = log n − 1 sets, and
likewise split the curves U above m into at most log n− 1 sets.

Each chosen subset GB of B is centered, as is each chosen subset GU of
U . Since GB uses curves below m while GU uses curves above, there are no
crossings between these curves. We can hence translate the curves of GB such
they are centered with the same horizontal line as GU . Therefore GB ∪GU has a
centered single-vertical B2-VPG-representation. Repeating this for all of R ∪ U
gives log n− 1 centered single-vertical B2-VPG-graphs, to which we can add the
one defined by M . ut

3.6 Putting it all together

We summarize all these results in our main result about splits into co-comparability
graphs:



Theorem 11. Let G be a B2-VPG-graph. Then the vertices of G can be parti-
tioned into at most max{1, 8 log3 n} sets such that the subgraph induced by each
is co-comparability graph of poset dimension 3. If G is a 1-string B2-VPG graph,
then the subgraphs are permutation graphs.

Proof. The claim is trivial for small n since then n ≤ 8 log3 n, so assume n ≥ 4.
Fix a B2-VPG-representation R. First split R into two single-vertical B2-VPG-
representations as in Lemma 3. Split each of them into log n single-vertical cen-
tered B2-VPG-representations using Lemma 10, for a total of at most 2 log n sets
of curves. Split each of them into 4 log2 n co-comparability graphs (or permuta-
tion graphs if the representation was 1-string) using Lemma 8 or Corollary 9.
The result follows. ut

We can do better for B1-VPG-graphs. The subgraphs obtained in the result
below are the same ones that were used implicitly in the 4 log2 n-approximation
algorithm given by Lahiri et al.[11].

Theorem 12. Let G be a B1-VPG-graph. Then the vertices of G can be parti-
tioned into at most max{1, 4 log2 n} sets such that the subgraph induced by each
is a permutation graph.

Proof. The claim is trivial if n = 1, so assume n > 1. Fix aB1-VPG-representation
R, and split it into log n single-vertical centered B1-VPG-representations using
Lemma 10. Split each of them into two centered B1-VPG-representations, one
of those curves with the horizontal segment above the centering line, and one
with the rest. Each of the resulting 2 log n centered B1-VPG-representations is
now grounded (possibly after a 180◦ rotation). We can split each of them into
2 log n permutation graphs using Corollary 7, for a total of 4 log2 n permutation
graphs.

4 Applications

We now show how Theorem 1 and 14 can be used for improved approximation
algorithms for B2-VPG-graphs. The techniques used here are virtually the same
as the one by Keil and Stewart [10] and require two things. First, the problem
considered needs to be solvable on the special graphs class (such as outerstring
graph or co-comparability graph or permutation graph) that we use. Second,
the problem must be hereditary the sense that a solution in a graph implies a
solution in an induced subgraphs, and solutions in induced subgraphs can be
used to obtain a decent solution in the original graph.

We demonstrate this in detail using weighted independent set, which Keil
et al. showed to be polynomial-time solvable in outer-string graphs [9]. Recall
that this is the problem, given a graph with vertex-weights, of finding a subset
I of vertices that has no vertices between them such that w(I) :=

∑
v∈I w(v) is

maximized, where w(v) denotes the weight of vertex v. The run-time to solve
weighted independent set in outerstring graphs is O(N3), where N is the number
of segments in the given outer-string representation.



Theorem 13. There exists a (2 log n)-approximation algorithm for weighted in-
dependent set on single-vertical graphs with run-time O(N3), where N is the total
number of segments used among all single-vertical objects.

Proof. If n = 1, then the unique vertex is the maximum weight independent
set. Else, use Theorem 1 to partition the vertices of the given graph G into at
most 2 log n sets, each of which induces an outer-string graph. This takes O(N+
n log n) time, where N is the total number of segments of the representation of
G.

Now solve the weighted independent set problem in each subgraph Gi by
applying the algorithm of Keil et al. If Gi had an outer-string representation
with Ni segments in total, then this takes time O(

∑
N3

i ) time. Note that if a
single-vertical object consisted of one vertical and ` horizontal segments, then we
can trace around it with a curve with O(`) segments. Hence all curves together
have O(N) segments and the total run-time is O(N3).

Let I∗i be the maximum-weight independent set in Gi, and return as set I
the set in I∗1 , . . . , I

∗
k that has the maximum weight. To argue the approximation-

factor, let I∗ be the maximum-weight independent set of G, and define Ii to
be all those elements of I∗ that belong to Ri, for i = 1, . . . , k. Clearly Ii is an
independent set of Gi, and so w(Ii) ≤ w(I∗i ). But on the other hand maxi w(Ii) ≥
w(I∗)/k since we split I∗ into k sets. Therefore w(I) = maxi w(I∗i ) ≥ w(I∗)/k,
and so the returned independent set is within a factor of k ≤ 2 log n of the
optimum. ut

We note here that the best algorithm for independent set in general string
graphs achieves an approximation factor of O(nε), under the assumption that
any two strings cross each other at most a constant number of times [6]. This
algorithm only works for unweighted independent set; we are not aware of any
approximation results for weighted independent set in arbitrary string graphs.

The reader may wonder what types of graphs are single-vertical graphs. It
is not hard to show that all planar graphs are single-vertical graphs (use a
representation with touching T ’s [5]), and so are all graphs of boxicity 2 (i.e.,
intersection graphs of axis-aligned boxes) and intersection graphs of disks in the
plane. Unfortunately, for these special graph classes, the above theorem is no
improvement over existing algorithms for weighted independent set [1,4,3].

Because B2-VPG-graphs can be vertex-split into two single-vertical B2-VPG-
representations, and the total number of segments used is O(n), we also get:

Corollary 14. There exists a (4 log n)-approximation algorithm for weighted in-
dependent set on B2-VPG-graphs with run-time O(n3).

Another hereditary problem is colouring: Find the minimum number k such
that we can assign numbers in {1, . . . , k} to vertices such that no two adjacent
vertices receive the same number. Fox and Pach [6] pointed out that if we have
a c-approximation algorithm for Independent Set, then we can use it to ob-
tain an O(c log n)-approximation algorithm for colouring. Therefore our result



also immediately implies an O(log2 n)-approximation algorithm for colouring in
single-vertical graphs and B2-VPG-graphs.

Another hereditary problem is weighted clique: Find the maximum-weight
subset of vertices such that any two of them are adjacent. (This is independent set
in the complement graph.) We are not aware of any algorithms to solve weighted
clique in outerstring graphs (but it is also not known to be NP-hard). For this
reason, we use the split into co-comparability graphs instead; weighted clique
can be solved in quadratic time in co-comparability graphs (because weighted
independent set is linear-time solvable in comparability graphs [7]). Weighted
clique is also linear-time solvable on permutation graphs [7]. We therefore have:

Theorem 15. There exists an (8 log3 n)-approximation algorithm for weighted
clique on B2-VPG-graphs with run-time O(n2). The run-time becomes O(n) if
the graph is a 1-string B2-VPG graph, and the approximation factor becomes
4 log2 n if the graph is a B1-VPG-graph.

In a similar manner, we can get poly-time (8 log3 n)-approximation algo-
rithms for clique cover, maximum k-colourable subgraph, and maximum h-
coverable subgraph. See [10] for the definition of these problems, and the ar-
gument that they are hereditary.

5 Conclusions

We presented a technique for decomposing single-vertical graphs into outer-string
subgraphs, B2-VPG-graphs into co-comparability graphs, and 1-string B2-VPG-
graphs into permutation graphs. We then used these results to obtain approxi-
mation algorithms for hereditary problems, such as weighted independent set.

We close with some open problems:

– Can we use a different method of splitting the representations to devise better
approximation algorithms for B2-VPG-graphs? In particular, can we find an
O(1)-approximation algorithm, or maybe even a PTAS, for independent set?
Or is this problem APX-hard in B2-VPG graphs?

– Can we use a different method of combining the subgraphs to use such splits
for problems that are not hereditary, but that are local in some sense? For
example, can we find a polylog-approximation algorithm for vertex cover or
dominating set?

– We can argue that a similar splitting technique can be used to split graphs
with a Bk-VPG-representation for which all curves are monotone in both
x-direction and y-direction. But this is rather restrictive, and the number
of subgraphs is rather large (O(f(k) logk n) for some function f(k)). Are
there poly-log approximation algorithms for, say, independent set in Bk-
VPG-graphs for k ≥ 3?

Last but not least, orthogonality was crucial for all our splits. If curves are
allowed to have up to k bends, but are not restricted to use horizontal or verti-
cal lines, are there any approximation algorithms better than the O(nε)-factor



proved by Fox and Pach [6]? Even for k = 0 (i.e., intersection graphs of segments)
this problem appears wide open.

References

1. B. Baker. Approximation algorithms for NP-complete problems on planar graphs.
J. ACM, 41(1):153–180, 1994.

2. Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit
Vogtenhuber. Intersection graphs of rays and grounded segments. Technical Report
1612.03638 [cs.DM], ArXiV, 2016.

3. Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles.
In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6,
2009, pages 892–901. SIAM, 2009.

4. Timothy M. Chan. Polynomial-time approximation schemes for packing and pierc-
ing fat objects. J. Algorithms, 46(2):178–189, 2003.

5. H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. On triangle contact
graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.

6. Jacob Fox and János Pach. Computing the independence number of intersection
graphs. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, pages 1161–1165. SIAM, 2011.

7. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1st edition, 1980.

8. Martin Charles Golumbic, Doron Rotem, and Jorge Urrutia. Comparability graphs
and intersection graphs. Discrete Mathematics, 43(1):37–46, 1983.

9. J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle.
An algorithm for the maximum weight independent set problem on outerstring
graphs. Comput. Geom., 60:19–25, 2017.

10. J. Mark Keil and Lorna Stewart. Approximating the minimum clique cover and
other hard problems in subtree filament graphs. Discrete Applied Mathematics,
154(14):1983–1995, 2006.

11. Abhiruk Lahiri, Joydeep Mukherjee, and C. R. Subramanian. Maximum indepen-
dent set on B1-VPG graphs. In Zaixin Lu, Donghyun Kim, Weili Wu, Wei Li, and
Ding-Zhu Du, editors, Combinatorial Optimization and Applications - 9th Inter-
national Conference, COCOA 2015, Houston, TX, USA, December 18-20, 2015,
Proceedings, volume 9486 of Lecture Notes in Computer Science, pages 633–646.
Springer, 2015.


	Splitting B2-VPG graphs into outer-string and co-comparability graphs

