
ar
X

iv
:1

70
4.

07
49

7v
1

 [
cs

.C
G

]
 2

4
A

pr
 2

01
7

Covering Uncertain Points in a Tree⋆

Haitao Wang and Jingru Zhang

Department of Computer Science
Utah State University, Logan, UT 84322, USA

haitao.wang@usu.edu,jingruzhang@aggiemail.usu.edu

Abstract. In this paper, we consider a coverage problem for uncertain points in a tree. Let T be a
tree containing a set P of n (weighted) demand points, and the location of each demand point Pi ∈ P
is uncertain but is known to appear in one of mi points on T each associated with a probability.
Given a covering range λ, the problem is to find a minimum number of points (called centers) on T

to build facilities for serving (or covering) these demand points in the sense that for each uncertain
point Pi ∈ P , the expected distance from Pi to at least one center is no more than λ. The problem
has not been studied before. We present an O(|T |+M log2 M) time algorithm for the problem, where
|T | is the number of vertices of T and M is the total number of locations of all uncertain points of P ,
i.e., M =

∑
Pi∈P

mi. In addition, by using this algorithm, we solve a k-center problem on T for the
uncertain points of P .

1 Introduction

Data uncertainty is very common in many applications, such as sensor databases, image resolution,
facility location services, and it is mainly due to measurement inaccuracy, sampling discrepancy,
outdated data sources, resource limitation, etc. Problems on uncertain data have attracted consid-
erable attention, e.g., [1,2,3,13,14,17,25,26,35,36,37]. In this paper, we study a problem of covering
uncertain points on a tree. The problem is formally defined as follows.

Let T be a tree. We consider each edge e of T as a line segment of a positive length so that we
can talk about “points” on e. Formally, we specify a point x of T by an edge e of T that contains
x and the distance between x and an incident vertex of e. The distance of any two points p and q
on T , denoted by d(p, q), is defined as the sum of the lengths of all edges on the simple path from
p to q in T . Let P = {P1, . . . , Pn} be a set of n uncertain (demand) points on T . Each Pi ∈ P has
mi possible locations on T , denoted by {pi1, pi2, · · · , pimi

}, and each location pij of Pi is associated
with a probability fij ≥ 0 for Pi appearing at pij (which is independent of other locations), with∑mi

j=1 fij = 1; e.g., see Fig. 1. In addition, each Pi ∈ P has a weight wi ≥ 0. For any point x on T ,
the (weighted) expected distance from x to Pi, denoted by Ed(x, Pi), is defined as

Ed(x, Pi) = wi ·
mi∑

j=1

fij · d(x, pij).

Given a value λ ≥ 0, called the covering range, we say that a point x on T covers an uncertain
point Pi if Ed(x, Pi) ≤ λ. The center-coverage problem is to compute a minimum number of points
on T , called centers, such that every uncertain point of P is covered by at least one center (hence
we can build facilities on these centers to “serve” all demand points).

⋆ A preliminary version of this paper will appear in the Proceedings of the 15th Algorithms and Data Structures
Symposium (WADS 2017). This research was supported in part by NSF under Grant CCF-1317143.

http://arxiv.org/abs/1704.07497v1

p1,2

p2,2

p2,1

p1,1

p1,3

p2,3

p1,4

0.3

0.2

0.1

0.4

0.5

0.3
0.2

Fig. 1. Illustrating two uncertain points P1 and P2, where P1 has four possible locations and P2 has three possible
locations. The numbers are the probabilities.

To the best of our knowledge, the problem has not been studied before. Let M denote the total
number of locations all uncertain points, i.e., M =

∑n
i=1mi. Let |T | be the number of vertices of T .

In this paper, we present an algorithm that solves the problem in O(|T |+M log2 M) time, which
is nearly linear as the input size of the problem is Θ(|T |+M).

As an application of our algorithm, we also solve a dual problem, called the k-center problem,
which is to compute a number of k centers on T such that the covering range is minimized. Our
algorithm solves the k-center problem in O(|T |+ n2 log n logM +M log2M log n) time.

1.1 Related Work

Twomodels on uncertain data have been commonly considered: the existential model [3,25,26,35,36,41]
and the locational model [1,2,14,37]. In the existential model an uncertain point has a specific lo-
cation but its existence is uncertain while in the locational model an uncertain point always exists
but its location is uncertain and follows a probability distribution function. Our problems belong
to the locational model. In fact, the same problems under existential model are essentially the
weighted case for “deterministic” points (i.e., each Pi ∈ P has a single “certain” location), and
the center-coverage problem is solvable in linear time [28] and the k-center problem is solvable in
O(n log2 n) time [15,32].

If T is a path, both the center-coverage problem and the k-center problem on uncertain points
have been studied [39], but under a somewhat special problem setting where mi is the same for all
1 ≤ i ≤ n. The two problems were solved in O(M + n log k) and O(M logM + n log k log n) time,
respectively. If T is tree, an O(|T |+M) time algorithm was given in [40] for the one-center problem
under the above special problem setting.

As mentioned above, the “deterministic” version of the center-coverage problem is solvable in
linear time [28], where all demand points are on the vertices. For the k-center problem, Megiddo
and Tamir [32] presented an O(n log2 n log log n) time algorithm (n is the size of the tree), which
was improved to O(n log2 n) time by Cole [15]. The unweighted case was solved in linear time by
Frederickson [18].

Very recently, Li and Huang [23] considered the same k-center problem under the same uncertain
model as ours but in the Euclidean space, and they gave an approximation algorithm. Facility
location problems in other uncertain models have also been considered. For example, Löffler and
van Kreveld [30] gave algorithms for computing the smallest enclosing circle for imprecise points
each of which is contained in a planar region (e.g., a circle or a square). Jørgenson et al. [24] studied
the problem of computing the distribution of the radius of the smallest enclosing circle for uncertain
points each of which has multiple locations in the plane. de Berg et al. [16] proposed algorithms for
dynamically maintaining Euclidean 2-centers for a set of moving points in the plane (the moving

2

points are considered uncertain). See also the problems for minimizing the maximum regret, e.g.,
[5,6,38].

Some coverage problems in various geometric settings have also been studied. For example, the
unit disk coverage problem is to compute a minimum number of unit disks to cover a given set
of points in the plane. The problem is NP-hard and a polynomial-time approximation scheme was
known [22]. The discrete case where the disks must be selected from a given set was also studied [34].
See [9,11,20,29] and the references therein for various problems of covering points using squares.
Refer to a survey [4] for more geometric coverage problems.

1.2 Our Techniques

We first discuss our techniques for solving the center-coverage problem.
For each uncertain point Pi ∈ P, we find a point p∗i on T that minimizes the expected distance

Ed(pi, Pi), and p∗i is actually the weighted median of all locations of Pi. We observe that if we
move a point x on T away from p∗i , the expected distance Ed(x, Pi) is monotonically increasing.
We compute the medians p∗i for all uncertain points in O(M logM) time. Then we show that there
exists an optimal solution in which all centers are in Tm, where Tm is the minimum subtree of T
that connects all medians p∗i (so every leaf of Tm is a median p∗i). Next we find centers on Tm. To
this end, we propose a simple greedy algorithm, but the challenge is on developing efficient data
structures to perform certain operations. We briefly discuss it below.

We pick an arbitrary vertex r of Tm as the root. Starting from the leaves, we consider the
vertices of Tm in a bottom-up manner and place centers whenever we “have to”. For example,
consider a leaf v holding a median p∗i and let u be the parent of v. If Ed(u, Pi) > λ, then we have
to place a center c on the edge e(u, v) in order to cover Pi. The location of c is chosen to be at a
point of e(u, v) with Ed(c, Pi) = λ (i.e., on the one hand, c covers Pi, and on the other hand, c is as
close to u as possible in the hope of covering other uncertain points as many as possible). After c
is placed, we find and remove all uncertain points that are covered by c. Performing this operation
efficiently is a key difficulty for our approach. We solve the problem in an output-sensitive manner
by proposing a dynamic data structure that also supports the remove operations.

We also develop data structures for other operations needed in the algorithm. For example, we
build a data structure in O(M logM) time that can compute the expected distance Ed(x, Pi) in
O(logM) time for any point x on T and any Pi ∈ P. These data structures may be of independent
interest.

We should point out that our algorithm is essentially different from the one in our previous
work [40]. Indeed, our algorithm here is a greedy algorithm while the one in [40] uses the prune-
and-search technique. Also our algorithm relies heavily on some data structures as mentioned above
while the algorithm in [40] does not need any of these data structures.

For solving the k-center problem, by observations, we first identify a set of O(n2) “candidate”
values such that the covering range in the optimal solution must be in the set. Subsequently, we use
our algorithm for the center-coverage problem as a decision procedure to find the optimal covering
range in the set.

Note that although we have assumed
∑mi

j=1 fij = 1 for each Pi ∈ P, it is quite straightforward
to adapt our algorithm to the general case where the assumption does not hold.

The rest of the paper is organized as follows. We introduce some notation in Section 2. In
Section 3, we describe our algorithmic scheme for the center-coverage problem but leave the im-
plementation details in the subsequent two sections. Specifically, the algorithm for computing all

3

medians p∗i is given in Section 4, and in the same section we also propose a connector-bounded
centroid decomposition of T , which is repeatedly used in the paper and may be interesting in its
own right. The data structures used in our algorithmic scheme are given in Section 5. We finally
solve the k-center problem in Section 6.

2 Preliminaries

Note that the locations of the uncertain points of P may be in the interior of the edges of T . A
vertex-constrained case happens if all locations of P are at vertices of T and each vertex of T holds
at least one location of P (but the centers we seek can still be in the interior of edges). As in [40],
we will show later in Section 5.4 that the general problem can be reduced to the vertex-constrained
case in O(|T |+M) time. In the following, unless otherwise stated, we focus our discussion on the
vertex-constrained case and assume our problem on P and T is a vertex-constrained case. For ease
of exposition, we further make a general position assumption that every vertex of T has only one
location of P (we explain in Section 5.4 that our algorithm easily extends to the degenerate case).
Under this assumption, it holds that |T | = M ≥ n.

Let e(u, v) denote the edge of T incident to two vertices u and v. For any two points p and q
on T , denote by π(p, q) the simple path from p to q on T .

Let π be any simple path on T and x be any point on π. For any location pij of an uncertain
point Pi, the distance d(x, pij) is a convex (and piecewise linear) function as x changes on π [31]. As
a sum of multiple convex functions, Ed(x, Pi) is also convex (and piecewise linear) on π, that is, in
general, as x moves on π, Ed(x, Pi) first monotonically decreases and then monotonically increases.
In particular, for each edge e of T , Ed(x, Pi) is a linear function for x ∈ e.

For any subtree T ′ of T and any Pi ∈ P, we call the sum of the probabilities of the locations of
Pi in T ′ the probability sum of Pi in T ′.

For each uncertain point Pi, let p∗i be a point x ∈ T that minimizes Ed(x, Pi). If we consider
wi · fij as the weight of pij, p

∗
i is actually the weighted median of all points pij ∈ Pi. We call p∗i

the median of Pi. Although p∗i may not be unique (e.g., when there is an edge e dividing T into
two subtrees such that the probability sum of Pi in either subtree is exactly 0.5), Pi always has a
median located at a vertex v of T , and we let p∗i refer to such a vertex.

Recall that λ is the given covering range for the center-coverage problem. If Ed(p∗i , Pi) > λ
for some i ∈ [1, n], then there is no solution for the problem since no point of T can cover Pi.
Henceforth, we assume Ed(p∗i , Pi) ≤ λ for each i ∈ [1, n].

3 The Algorithmic Scheme

In this section, we describe our algorithmic scheme for the center-coverage problem, and the im-
plementation details will be presented in the subsequent two sections.

We start with computing the medians p∗i of all uncertain points of P. We have the following
lemma, whose proof is deferred to Section 4.2.

Lemma 1. The medians p∗i of all uncertain points Pi of P can be computed in O(M logM) time.

3.1 The Medians-Spanning Tree Tm

Denote by P ∗ the set of all medians p∗i . Let Tm be the minimum connected subtree of T that
spans/connects all medians. Note that each leaf of Tm must hold a median. We pick an arbitrary

4

median as the root of T , denoted by r. The subtree Tm can be easily computed in O(M) time by
a post-order traversal on T (with respect to the root r), and we omit the details. The following
lemma is based on the fact that Ed(x, Pi) is convex for x on any simple path of T and Ed(x, Pi)
minimizes at x = p∗i .

Lemma 2. There exists an optimal solution for the center-coverage problem in which every center
is on Tm.

Proof. Consider an optimal solution and let C be the set of all centers in it. Assume there is a
center c ∈ C that is not on Tm. Let v be the vertex of Tm that holds a median and is closest to c.
Then v decomposes T into two subtrees T1 and T2 with the only common vertex v such that c is
in one subtree, say T1, and all medians are in T2. If we move a point x from c to v along π(c, v),
then Ed(x, Pi) is non-increasing for each i ∈ [1, n]. This implies that if we move the center c to v,
we can obtain an optimal solution in which c is in Tm.

If C has other centers that are not on Tm, we do the same as above to obtain an optimal solution
in which all centers are on Tm. The lemma thus follows. ⊓⊔

Due to Lemma 2, we will focus on finding centers on Tm. We also consider r as the root of Tm.
With respect to r, we can talk about ancestors and descendants of the vertices in Tm. Note that
for any two vertices u and v of Tm, π(u, v) is in Tm.

We reindex all medians and the corresponding uncertain points so that the new indices will
facilitate our algorithm, as follows. Starting from an arbitrary child of r in Tm, we traverse down
the tree Tm by always following the leftmost child of the current node until we encounter a leaf,
denoted by v∗. Starting from v∗ (i.e., v∗ is the first visited leaf), we perform a post-order traversal on
Tm and reindex all medians of P ∗ such that p∗1, p

∗
2, . . . , p

∗
n is the list of points of P ∗ visited in order

in the above traversal. Recall that the root r contains a median, which is p∗n after the reindexing.
Accordingly, we also reindex all uncertain points of P and their corresponding locations on T , which
can be done in O(M) time. In the following paper, we will always use the new indices.

For each vertex v of Tm, we use Tm(v) to represent the subtree of Tm rooted at v. The reason
we do the above reindexing is that for any vertex v of Tm, the new indices of all medians in Tm(v)
must form a range [i, j] for some 1 ≤ i ≤ j ≤ n, and we use R(v) to denote the range. It will be
clear later that this property will facilitate our algorithm.

3.2 The Algorithm

Our algorithm for the center-coverage problem works as follows. Initially, all uncertain points are
“active”. During the algorithm, we will place centers on Tm, and once an uncertain point Pi is
covered by a center, we will “deactivate” it (it then becomes “inactive”). The algorithm visits all
vertices of Tm following the above post-order traversal of Tm starting from leaf v∗. Suppose v is
currently being visited. Unless v is the root r, let u be the parent of v. Below we describe our
algorithm for processing v. There are two cases depending on whether v is a leaf or an internal
node, although the algorithm for them is essentially the same.

The Leaf Case If v is a leaf, then it holds a median p∗i . If Pi is inactive, we do nothing; otherwise,
we proceed as follows.

We compute a point c (called a candidate center) on the path π(v, r) closest to r such that
Ed(c, Pi) ≤ λ. Note that if we move a point x from v to r along π(v, r), Ed(x, Pi) is monotonically

5

increasing. By the definition of c, if Ed(r, Pi) ≤ λ, then c = r; otherwise, Ed(c, Pi) = λ. If c is in
π(u, r), then we do nothing and finish processing v. Below we assume that c is not in π(u, r) and
thus is in e(u, v) \ {u} (i.e., c ∈ e(u, v) but c 6= u).

In order to cover Pi, by the definition of c, we must place a center in e(u, v) \ {u}. Our strategy
is to place a center at c. Indeed, this is the best location for placing a center since it is the location
that can cover Pi and is closest to u (and thus is closest to every other active uncertain point). We
use a candidate-center-query to compute c in O(log n) time, whose details will be discussed later.
Next, we report all active uncertain points that can be covered by c, and this is done by a coverage-
report-query in output-sensitive O(logM log n+ k log n) amortized time, where k is the number of
uncertain points covered by c. The details for the operation will be discussed later. Further, we
deactivate all these uncertain points. We will show that deactivating each uncertain point Pj can
be done in O(mj logM log n) amortized time. This finishes processing v.

The Internal Node Case If v is an internal node, since we process the vertices of Tm following
a post-order traversal, all descendants of v have already been processed. Our algorithm maintains
an invariant that if the subtree Tm(v) contains any active median p∗i (i.e., Pi is active), then
Ed(v, Pi) ≤ λ. When v is a leaf, this invariant trivially holds. Our way of processing a leaf discussed
above also maintains this invariant.

To process v, we first check whether Tm(v) has any active medians. This is done by a range-
status-query in O(log n) time, whose details will be given later. If Tm(v) does not have any active
median, then we are done with processing v. Otherwise, by the algorithm invariant, for each active
median p∗i in Tm(v), it holds that Ed(v, Pi) ≤ λ. If v = r, we place a center at v and finish the
entire algorithm. Below, we assume v is not r and thus u is the parent of v.

We compute a point c on π(v, r) closest to r such that Ed(c, Pi) ≤ λ for all active medians
p∗i ∈ Tm(v), and we call c the candidate center. By the definition of c, if Ed(r, Pi) ≤ λ for all active
medians p∗i ∈ Tm(v), then c = r; otherwise, Ed(c, Pi) = λ for some active median p∗i ∈ Tm(v). As in
the leaf case, finding c is done in O(log n) time by a candidate-center-query. If c is on π(u, r), then
we finish processing v. Note that this implies Ed(u, Pi) ≤ λ for each active median p∗i ∈ Tm(v),
which maintains the algorithm invariant for u.

If c 6∈ π(u, r), then c ∈ e(u, v) \ {u}. In this case, by the definition of c, we must place a center
in e(u, v) \ {u} to cover Pi. As discussed in the leaf case, the best location for placing a center
is c and thus we place a center at c. Then, by using a coverage-report-query, we find all active
uncertain points covered by c and deactivate them. Note that by the definition of c, c covers Pj for
all medians p∗j ∈ Tm(v). This finishes processing v.

Once the root r is processed, the algorithm finishes.

3.3 The Time Complexity

To analyze the running time of the algorithm, it remains to discuss the three operations: range-
status-queries, coverage-report-queries, and candidate-center-queries. For answering range-status-
queries, it is trivial, as shown in Lemma 3.

Lemma 3. We can build a data structure in O(M) time that can answer each range-status-query
in O(log n) time. Further, once an uncertain point is deactivated, we can remove it from the data
structure in O(log n) time.

6

Proof. Initially we build a balanced binary search tree Φ to maintain all indices 1, 2, . . . , n. If an
uncertain point Pi is deactivated, then we simply remove i from the tree in O(log n) time.

For each range-status-query, we are given a vertex v of Tm, and the goal is to decide whether
Tm(v) has any active medians. Recall that all medians in Tm(v) form a range R(v) = [i, j]. As
preprocessing, we compute R(v) for all vertices v of Tm, which can be done in O(|Tm|) time by the
post-order traversal of Tm starting from leaf v∗. Note that |Tm| = O(M).

During the query, we simply check whether Φ still contains any index in the range R(v) = [i, j],
which can be done in O(log n) time by standard approaches (e.g., by finding the successor of i in
Φ). ⊓⊔

For answering the coverage-report-queries and the candidate-center-queries, we have the follow-
ing two lemmas. Their proofs are deferred to Section 5.

Lemma 4. We can build a data structure A1 in O(M log2M) time that can answer in O(logM log n+
k log n) amortized time each coverage-report-query, i.e., given any point x ∈ T , report all active
uncertain points covered by x, where k is the output size. Further, if an uncertain point Pi is
deactivated, we can remove Pi from A1 in O(mi · logM · log n) amortized time.

Lemma 5. We can build a data structure A2 in O(M logM + n log2 M) time that can answer in
O(log n) time each candidate-center-query, i.e., given any vertex v ∈ Tm, find the candidate center
c for the active medians of Tm(v). Further, if an uncertain point Pi is deactivated, we can remove
Pi from A2 in O(log n) time.

Using these results, we obtain the following.

Theorem 1. We can find a minimum number of centers on T to cover all uncertain points of P
in O(M log2 M) time.

Proof. First of all, the total preprocessing time of Lemmas 3, 4, and 5 is O(M log2M). Computing
all medians takes O(M logM) time by Lemma 1. Below we analyze the total time for computing
centers on Tm.

The algorithm processes each vertex of Tm exactly once. The processing of each vertex calls each
of the following three operations at most once: coverage-report-queries, range-status-queries, and
candidate-center-queries. Since each of the last two operations runs in O(log n) time, the total time
of these two operations in the entire algorithm is O(M log n). For the coverage-report-queries, each
operation runs in O(logM log n + k log n) amortized time. Once an uncertain point Pi is reported
by it, Pi will be deactivated by removing it from all three data structures (i.e., those in Lemmas 3,
4, and 5) and Pi will not become active again. Therefore, each uncertain point will be reported by
the coverage-report-query operations at most once. Hence, the total sum of the value k in the entire
algorithm is n. Further, notice that there are at most n centers placed by the algorithm. Hence,
there are at most n coverage-report-query operations in the algorithm. Therefore, the total time
of the coverage-report-queries in the entire algorithm is O(n logM log n). In addition, since each
uncertain point Pi will be deactivated at most once, the total time of the remove operations for all
three data structures in the entire algorithm is O(M logM log n) time.

As n ≤ M , the theorem follows. ⊓⊔

In addition, Lemma 6 will be used to build the data structure A2 in Lemma 5, and it will also
help to solve the k-center problem in Section 6. Its proof is given in Section 5.

7

Lemma 6. We can build a data structure A3 in O(M logM) time that can compute the expected
distance Ed(x, Pi) in O(logM) time for any point x ∈ T and any uncertain point Pi ∈ P.

4 A Tree Decomposition and Computing the Medians

In this section, we first introduce a decomposition of T , which will be repeatedly used in our
algorithms (e.g., for Lemmas 1, 4, 6). Later in Section 4.2 we will compute the medians with the
help of the decomposition.

4.1 A Connector-Bounded Centroid Decomposition

We propose a tree decomposition of T , called a connector-bounded centroid decomposition, which is
different from the centroid decompositions used before, e.g., [19,28,32,33] and has certain properties
that can facilitate our algorithms.

A vertex v of T is called a centroid if T can be represented as a union of two subtrees with v
as their only common vertex and each subtree has at most 2

3 of the vertices of T [28,33], and we
say the two subtrees are decomposed by v. Such a centroid always exists and can be found in linear
time [28,33]. For convenience of discussion, we consider v to be contained in only one subtree but
an “open vertex” in the other subtree (thus, the location of P at v only belongs to one subtree).

Our decomposition of T corresponds to a decomposition tree, denoted by Υ and defined recur-
sively as follows. Each internal node of Υ has two, three, or four children. The root of Υ corresponds
to the entire tree T . Let v be a centroid of T , and let T1 and T2 be the subtrees of T decomposed
by v. Note that T1 and T2 are disjoint since we consider v to be contained in only one of them.
Further, we call v a connector in both T1 and T2. Correspondingly, in Υ , its root has two children
corresponding to T1 and T2, respectively.

In general, consider a node µ of Υ . Let T (µ) represent the subtree of T corresponding to µ.
We assume T (µ) has at most two connectors (initially this is true when µ is the root). We further
decompose T (µ) into subtrees that correspond to the children of µ in Υ , as follows. Let v be the
centroid of T (µ) and let T1(µ) and T2(µ) respectively be the two subtrees of T (µ) decomposed by
v. We consider v as a connector in both T1(µ) and T2(µ).

If T (µ) has at most one connector, then each of T1(µ) and T2(µ) has at most two connectors.
In this case, µ has two children corresponding to T1(µ) and T2(µ), respectively.

If T (µ) has two connectors but each of T1(µ) and T2(µ) still has at most two connectors (with
v as a new connector), then µ has two children corresponding to T1(µ) and T2(µ), respectively.
Otherwise, one of them, say, T2(µ), has three connectors and the other T1(µ) has only one connector
(e.g., see Fig. 2). In this case, µ has a child in Υ corresponding to T1(µ), and we further perform
a connector-reducing decomposition on T2(µ), as follows (this is the main difference between our
decomposition and the traditional centroid decomposition used before [19,28,32,33]). Depending on
whether the three connectors of T2(µ) are in a simple path, there are two cases.

1. If they are in a simple path, without loss of generality, we assume v is the one between the other
two connectors in the path. We decompose T2(µ) into two subtrees at v such that they contain
the two connectors respectively. In this way, each subtree contains at most two connectors.
Correspondingly, µ has another two children corresponding the two subtrees of T2(µ), and thus
µ has three children in total.

8

v

y1

y2

T1(µ)
v′

T2(µ)

Fig. 2. Illustrating the decomposition of T (µ) into four subtrees enclosed by the (red) dashed cycles, where y1 and
y2 are two connectors of T (µ). T (µ) is first decomposed into two subtrees T1(µ) and T2(µ). However, since T2(µ) has
three connectors, we further decompose it into three subtrees each of which has at most two connectors.

2. Otherwise, there is a unique vertex v′ in T2(µ) that decomposes T2(µ) into three subtrees that
contain the three connectors respectively (e.g., see Fig. 2). Note that v′ and the three subtrees
can be easily found in linear time by traversing T2(µ). Correspondingly, µ has another three
children corresponding to the above three subtrees of T2(µ), respectively, and thus µ has four
children in total. Note that we consider v′ as a connector in each of the above three subtrees.
Thus, each subtree contains at most two connectors.

We continue the decomposition until each subtree T (µ) of µ ∈ Υ becomes an edge e(v1, v2) of
T . According to our decomposition, both v1 and v2 are connectors of T (µ), but they may only open
vertices of T (µ). If both v1 and v2 are open vertices of T (µ), then we will not further decompose
T (µ), so µ is a leaf of Υ . Otherwise, we further decompose T (µ) into an open edge and a closed
vertex vi if vi is contained in T (µ) for each i = 1, 2. Correspondingly, µ has either two or three
children that are leaves of Υ . In this way, for each leaf µ of Υ , T (µ) is either an open edge or a
closed vertex of T . In the former case, T (µ) has two connectors that are its incident vertices, and
in the latter case, T (µ) has one connector that is itself.

This finishes the decomposition of T . A major difference between our decomposition and the
traditional centroid decomposition [19,28,32,33] is that the subtree in our decomposition has at
most two connectors. As will be clear later, this property is crucial to guarantee the runtime of our
algorithms.

Lemma 7. The height of Υ is O(logM) and Υ has O(M) nodes. The connector-bounded centroid
decomposition of T can be computed in O(M logM) time.

Proof. Consider any node µ of Υ . Let T (µ) be the subtree of T corresponding to µ. According to
our decomposition, |T (µ)| = O(M · (23)

t), where t is the depth of µ in Υ . This implies that the
height of Υ is O(logM).

Since each leaf of Υ corresponds to either a vertex or an open edge of T , the number of leaves
of Υ is O(M). Since each internal node of Υ has at least two children, the number of internal nodes
is no more than the number of leaves. Hence, Υ has O(M) nodes.

According to our decomposition, all subtrees of T corresponding to all nodes in the same level
of Υ (i.e., all nodes with the same depth) are pairwise disjoint, and thus the total size of all these
subtrees is O(M). Decomposing each subtree can be done in linear time (e.g., finding a centroid
takes linear time). Therefore, decomposing all subtrees in each level of Υ takes O(M) time. As the
height of Υ is O(logM), the total time for computing the decomposition of T is O(M logM). ⊓⊔

9

v

T (µ1)

T (µ2)

T (y, µ)
y

T (µ)

Fig. 3. Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a connector of T (µ) = T (µ1) ∪ T (µ2). Note
that T (y, µ) is also T (y, µ1) as y ∈ T (µ1).

In the following, we assume our decomposition of T and the decomposition tree Υ have been
computed. In addition, we introduce some notation that will be used later. For each node µ of Υ ,
we use T (µ) to represent the subtree of T corresponding to µ. If y is a connector of T (µ), then
we use T (y, µ) to represent the subtree of T consisting of all points q of T \ T (µ) such that π(q, p)
contains y for any point p ∈ T (µ) (i.e., T (y, µ) is the “outside world” connecting to T (µ) through
y; e.g., see Fig. 3). By this definition, if y is the only connector of T (µ), then T = T (µ) ∪ T (y, µ);
if T (µ) has two connectors y1 and y2, then T = T (µ) ∪ T (y1, µ) ∪ T (y2, µ).

4.2 Computing the Medians

In this section, we compute all medians. It is easy to compute the median p∗i for a single uncertain
point Pi in O(M) time by traversing the tree T . Hence, a straightforward algorithm can compute
all n medians in O(nM) time. Instead, we present an O(M logM) time algorithm, which will prove
Lemma 1.

For any vertex v (e.g., the centroid) of T , let T1 and T2 be two subtrees of T decomposed by v
(i.e., v is their only common vertex and T = T1 ∪ T2), such that v is contained in only one subtree
and is an open vertex in the other. The following lemma can be readily obtained from Kariv and
Hakimi [27], and similar results were also given in [40].

Lemma 8. For any uncertain point Pi of P, we have the following.

1. If the probability sum of Pi in Tj is greater than 0.5 for some j ∈ {1, 2}, then the median p∗i
must be in Tj .

2. The vertex v is p∗i if the probability sum of Pi in Tj is equal to 0.5 for some j ∈ {1, 2}.

Consider the connector-bounded centroid decomposition Υ of T . Starting from the root of Υ ,
our algorithm will process the nodes of Υ in a top-down manner. Suppose we are processing a node
µ. Then, we maintain a sorted list of indices for µ, called the index list of µ and denoted by L(µ),
which consists of all indices i ∈ [1, n] such that p∗i is not found yet but is known to be in the subtree
T (µ). Since each index i of L(µ) essentially refers to Pi, for convenience, we also say that L(µ) is a
set of uncertain points. Let F [1 · · · n] be an array, which will help to compute the probability sums
in our algorithm.

The Root Case Initially, µ is the root and we process it as follows. We present our algorithm in
a way that is consistent with that for the general case.

Since µ is the root, we have T (µ) = T and L(µ) = {1, 2, . . . , n}. Let µ1 and µ2 be the two
children of µ. Let v be the centroid of T that is used to decompose T (µ) into T (µ1) and T (µ2) (e.g.,

10

see Fig. 3). We compute in O(|T (µ)|) time the probability sums of all uncertain points of L(µ) in
T (µ1) by using the array F and traversing T (µ1). Specifically, we first perform a reset procedure on
F to reset F [i] to 0 for each i ∈ L(µ), by scanning the list L(µ). Then, we traverse T (µ1), and for
each visited vertex, which holds some uncertain point location pij, we update F [i] = F [i]+fij . After
the traversal, for each i ∈ L(µ), F [i] is equal to the probability sum of Pi in T (µ1). By Lemma 8,
if F [i] = 0.5, then p∗i is v and we report p∗i = v; if F [i] > 0.5, then p∗i is in T1(µ) and we add i to
the end of the index list L(µ1) for µ1 (initially L(µ1) = ∅); if F [i] < 0.5, then p∗i is in T2(µ) and
add i to the end of L(µ2) for µ2. The above has correctly computed the index lists for µ1 and µ2.

Recall that v is a connector in both T (µ1) and T (µ2). In order to efficiently compute medians
in T (µ1) and T (µ2) recursively, we compute a probability list L(v, µj) at v for µj for each j = 1, 2.
We discuss L(v, µ1) first.

The list L(v, µ1) is the same as L(µ1) except that each index i ∈ L(v, µ1) is also associated with
a value, denoted by F (i, v, µ1), which is the probability sum of Pi in T (v, µ1) (recall the definition
of T (v, µ1) at the end of Section 4.1; note that T (v, µ1) = T (µ2) in this case). The list L(v, µ1) can
be built in O(|T (µ)|) time by traversing T (µ2) and using the array F . Specifically, we scan the list
L(µ1), and for each index i ∈ L(µ1), we reset F [i] = 0. Then, we traverse the subtree T (µ2), and
for each location pij in T (µ2), we update F [i] = F [i] + fij (if i is not in L(µ1), this step is actually
redundant but does not affect anything). After the traversal, for each index i ∈ L(µ1), we copy it
to L(v, µ1) and set F (i, v, µ1) = F [i].

Similarly, we compute the probability list L(v, µ2) at v for µ2 in O(|T (µ)|) time by traversing
T (µ1). This finishes the processing of the root µ. The total time is O(|T (µ)|) since |L(µ)| ≤ |T (µ)|.
Note that our algorithm guarantees that for each i ∈ L(µ1), Pi must have at least one location in
T (µ1), and thus |L(µ1)| ≤ |T (µ1)|. Similarly, for each i ∈ L(µ2), Pi must have at least one location
in T (µ2), and thus |L(µ2)| ≤ |T (µ2)|.

The General Case Let µ be an internal node of Υ such that the ancestors of µ have all been
processed. Hence, we have a sorted index list L(µ). If L(µ) = ∅, then we do not need to process
µ and any of its descendants. We assume L(µ) 6= ∅. Thus, for each i ∈ L(µ), p∗i is in T (µ) and Pi

has at least one location in T (µ) (and thus |L(µ)| ≤ |T (µ)|). Further, for each connector y of T (µ),
the algorithm maintains a probability list L(y, µ) that is the same as L(µ) except that each index
i ∈ L(y, µ) is associated with a value F (i, y, µ), which is the probability sum of Pi in the subtree
T (y, µ). Our processing algorithm for µ works as follows, whose total time is O(|T (µ)|).

According to our decomposition, T (µ) has at most two connectors and µ may have two, three,
or four children. We first discuss the case where µ has two children, and other cases can be handled
similarly.

Let µ1 and µ2 be the two children of µ, respectively. Let v be the centroid of T (µ) that is used
to decompose it. We discuss the subtree T (µ1) first, and T (µ2) is similar. Since v is a connector of
T (µ1) and T (µ1) has at most two connectors, T (µ1) has at most one connector y other than v. We
consider the general situation where T (µ1) has such a connector y (the case where such a connector
does not exist can be handled similarly but in a simpler way). Note that y must be a connector of
T (µ).

We first compute the probability sums of Pi’s for all i ∈ L(µ) in the subtree T (µ1) ∪ T (y, µ)
(e.g., see Fig. 3), which can be done in O(|T (µ)|) time by traversing T (µ1) and using the array F
and the probability list L(y, µ) at y, as follows. We scan the list L(µ) and for each index i ∈ L(µ),
we reset F [i] = 0. Then, we traverse T (µ1) and for each location pij, we update F [i] = F [i] + fij

11

(it does not matter if i 6∈ L(µ)). When the traversal visits y, we scan the list L(y, µ) and for each
index i ∈ L(y, µ), we update F [i] = F [i] + F (i, y, µ). After the traversal, for each i ∈ L(µ), F [i] is
the probability sum of Pi in T (µ1) ∪ T (y, µ). For each i ∈ L(µ), if F [i] = 0.5, we report p∗i = v;
if F [i] > 0.5, we add i to L(µ1); if F [i] < 0.5, we add i to L(µ2). This builds the two lists L(µ1)
and L(µ2), which are initially ∅. Note that since for each i ∈ L(µ), Pi has at least one location in
T (µ), the above way of computing L(µ1) (resp., L(µ2)) guarantees that for each i in L(µ1) (resp.,
L(µ2)), Pi has at least one location in T (µ1) (resp., T (µ2)), which implies |L(µ1)| ≤ |T (µ1)| (resp.,
|L(µ2)| ≤ |T (µ2)|).

Next we compute the probability lists for the connectors of T (µ1). Note that T (µ1) has two
connectors v and y. For v, we compute the probability list L(v, µ1) that is the same as L(µ1) except
that each i ∈ L(v, µ1) is associated with a value F (i, v, µ1), which is the probability sum of Pi in the
subtree T (v, µ1). To compute L(v, µ1), we first reset F [i] = 0 for each i ∈ L(µ1). Then we traverse
T (µ2) and for each location pij ∈ T (µ2), we update F [i] = F [i] + fij. If T (µ2) has a connector y′

other than v, then y′ is also a connector of T (µ) (note that there is at most one such connector);
we scan the probability list L(y′, µ) and for each i ∈ L(y′, µ), we update F [i] = F [i] + F (i, y′, µ).
Finally, we scan L(µ1) and for each i ∈ L(µ1), we copy it to L(v, µ1) and set F (i, v, µ1) = F [i].
This computes the probability list L(v, µ1).

Further, we also need to compute the probability list L(y, µ1) at y for T (µ1). The list L(y, µ1) is
the same as L(µ1) except that each i ∈ L(y, µ1) also has a value F (i, y, µ1), which is the probability
sum of Pi in T (y, µ1). To compute L(y, µ1), we first copy all indices of L(µ1) to L(y, µ1), and then
compute the values F (i, y, µ1), as follows. Note that T (y, µ1) is exactly T (y, µ) (e.g., see Fig. 3).
Recall that as a connector of T (µ), y has a probability list L(y, µ) in which each i ∈ L(y, µ) has
a value F (i, y, µ). Notice that L(y, µ1) ⊆ L(y, µ). Due to T (y, µ1) = T (y, µ), for each i ∈ L(y, µ1),
F (i, y, µ1) is equal to F (i, y, µ). Since indices in each of L(y, µ1) and L(y, µ) are sorted, we scan
L(y, µ1) and L(y, µ) simultaneously (like merging two sorted lists) and for each i ∈ L(y, µ1), if
we encounter i in L(y, µ), then we set F (i, y, µ1) = F (i, y, µ). This computes the probability list
L(y, µ1) at y for T (µ1).

The above has processed the subtree T (µ1). Using the similar approach, we can process T (µ2)
and we omit the details.

This finishes the processing of µ for the case where µ has two children. The total time is
O(|T (µ)|). To see this, the algorithm traverses T (µ) for a constant number of times. The algorithm
also visits the list L(µ) and the probability list of each connector of T (µ) for a constant number of
times. Recall that |L(µ)| ≤ |T (µ)| and |L(µ)| = |L(µ, y)| for each connector y of T (µ). Also recall
that T (µ) has at most two connectors. Thus, the total time for processing µ is O(|T (µ)|).

Remark. If the number of connectors of T (µ) were not bounded by a constant, then we could not
bound the processing time for µ as above. This is one reason our decomposition on T requires each
subtree T (µ) to have at most two connectors.

If µ has three children, µ1, µ2, µ3, then T (µ) is decomposed into three subtrees T (µj) for j =
1, 2, 3. In this case, T (µ) has two connectors. To process µ, we apply the above algorithm for the
two-children case twice. Specifically, we consider the procedure of decomposing T (µ) into three
subtrees consisting of two “intermediate decomposition steps”. According to our decomposition,
T (µ) was first decomposed into two subtrees by its centroid such that one subtree T1(µ) contains
at most two connectors while the other one T2(µ) contains three connectors, and we consider this
as the first intermediate step. The second intermediate step is to further decompose T2(µ) into two

12

subtrees each of which contains at most two connectors. To process µ, we apply our two-children
case algorithm on the first intermediate step and then on the second intermediate step. The total
time is still O(|T (µ)|). We omit the details.

Similarly, if µ has four children, then the decomposition can be considered as consisting of three
intermediate steps (e.g., in Fig. 3, the first step is to decompose T (µ) into T1(µ) and T2(µ), and
then decomposing T2(µ) into three subtrees can be considered as consisting of two steps each of
which decomposes a subtree into two subtrees), and we apply our two-children case algorithm three
times. The total processing time for µ is also O(|T (µ)|).

The above describes the algorithm for processing µ when µ is an internal node of Υ .

If µ is a leaf, then T (µ) is either a vertex or an open edge of T . If T (µ) is an open edge, the
index list L(µ) must be empty since our algorithm only finds medians on vertices. Otherwise, T (µ)
is a vertex v of T . If L(µ) is not empty, then for each i ∈ L(µ), we simply report p∗i = v.

The running time of the entire algorithm is O(M logM). To see this, processing each node µ
of Υ takes O(|T (µ)|) time. For each level of Υ , the total sum of |T (µ)| of all nodes µ in the level
is O(|T |). Since the height of Υ is O(logM), the total time of the algorithm is O(M logM). This
proves Lemma 1.

5 The Data Structures A1, A2, and A3

In this section, we present the three data structures A1, A2, and A3, for Lemmas 4, 5, and 6,
respectively. In particular, A3 will be used to build A2 and it will also be needed for solving
the k-center problem in Section 6. Our connector-bounded centroid decomposition Υ will play an
important role in constructing both A1 and A3. In the following, we present them in the order of
A1,A3, and A2.

5.1 The Data Structure A1

The data structure A1 is for answering the coverage-report-queries, i.e., given any point x ∈ T ,
find all active uncertain points that are covered by x. Further, it also supports the operation of
removing an uncertain point once it is deactivated.

Consider any node µ ∈ Υ . If µ is the root, let L(µ) = ∅; otherwise, define L(µ) to be the sorted
list of all indices i ∈ [1, n] such that Pi does not have any locations in the subtree T (µ) but has at
least one location in T (µ′), where µ′ is the parent of µ. Let y be any connector of T (µ). Let L(y, µ) be
an index list the same as L(µ) and each index i ∈ L(y, µ) is associated with two values: F (i, y, µ),
which is the probability sum of Pi in the subtree T (y, µ), and D(i, y, µ), which is the expected
distance from y to the locations of Pi in T (y, µ), i.e., D(i, y, µ) = wi ·

∑
pij∈T (y,µ) fij · d(pij , y). We

refer to L(µ) and L(y, µ) for each connector y ∈ T (µ) as the information lists of µ.

Lemma 9. Suppose L(µ) 6= ∅ and the information lists of µ are available. Let tµ be the number
of indices in L(µ). Then, we can build a data structure of O(tµ) size in O(|T (µ)| + tµ log tµ) time
on T (µ), such that given any point x ∈ T (µ), we can report all indices i of L(µ) such that Pi

is covered by x in O(log n + k log n) amortized time, where k is the output size; further, if Pi is
deactivated with i ∈ L(µ), then we can remove i from the data structure and all information lists
of µ in O(log n) amortized time.

13

y1

y2

qx

x

Fig. 4. Illustrating the definition of qx in the subtree T (µ) with two connectors y1 and y2. The path π(y1, y2) is
highlighted with thicker (red) segments.

Proof. As L(µ) 6= ∅, µ is not the root. Thus, T (µ) has one or two connectors. We only discuss the
most general case where T (µ) has two connectors since the other case is similar but easier. Let
y1 and y2 denote the two connectors of T (µ), respectively. So the lists L(y1, µ) and L(y2, µ) are
available.

Note that for any two points p and q in T (µ), π(p, q) is also in T (µ) since T (µ) is connected.

Consider any point x ∈ T (µ). Suppose we traverse on T (µ) from x to y1, and let qx be the first
point on π(y1, y2) we encounter (e.g. see Fig 4; so qx is x if x ∈ π(y1, y2)). Let ax = d(x, qx) and
bx = d(qx, y1). Thus, d(y1, x) = ax + bx and d(y2, x) = ax + d(y1, y2)− bx.

For any i ∈ L(µ), since Pi does not have any location in T (µ), we have F (i, y1, µ)+F (i, y2, µ) = 1,
and thus the following holds for Ed(x, Pi):

Ed(x, Pi) = wi ·
∑

pij∈T

fij · d(x, pij)

= wi ·
∑

pij∈T (y1,µ)

fij · d(x, pij) +wi ·
∑

pij∈T (y2,µ)

fij · d(x, pij)

= wi · [F (i, y1, µ) · (ax + bx) +D(i, y1, µ)] + wi · [F (i, y2, µ) · (ax + d(y1, y2)− bx) +D(i, y2, µ)]

= wi · [ax + (F (i, y1, µ)− F (i, y2, µ)) · bx +D(i, y1, µ) +D(i, y2, µ) + F (i, y2, µ) · d(y1, y2)].

Notice that for any x ∈ T (µ), all above values are constant except ax and bx. Therefore, if we
consider ax and bx as two variables of x, Ed(x, Pi) is a linear function of them. In other words,
Ed(x, Pi) defines a plane in R

3, where the z-coordinates correspond to the values of Ed(x, Pi) and
the x- and y-coordinates correspond to ax and bx respectively. In the following, we also use Ed(x, Pi)
to refer to the plane defined by it in R

3.

Remark. This nice property for calculating Ed(x, Pi) is due to that µ has at most two connec-
tors. This is another reason our decomposition requires every subtree T (µ) to have at most two
connectors.

Recall that x covers Pi if Ed(x, Pi) ≤ λ. Consider the plane Hλ : z = λ in R
3. In general the

two planes Ed(x, Pi) and Hλ intersect at a line li and we let hi represent the closed half-plane of
Hλ bounded by li and above the plane Ed(x, Pi). Let xλ be the point (ax, bx) in the plane Hλ. An
easy observation is that Ed(x, Pi) ≤ λ if and only if xλ ∈ hi. Further, we say that li is an upper
bounding line of hi if hi is below li and a lower bounding line otherwise. Observe that if li is an
upper bounding line, then Ed(x, Pi) ≤ λ if and only if xλ is below li; if li is a lower bounding line,
then Ed(x, Pi) ≤ λ if and only if xλ is above li.

14

Given any query point x ∈ T (µ), our goal for answering the query is to find all indices i ∈ L(µ)
such that Pi is covered by x. Based on the above discussions, we do the following preprocessing.
After d(y1, y2) is computed, by using the information lists of y1 and y2, we compute all functions
Ed(x, Pi) for all i ∈ L(µ) in O(tµ) time. Then, we obtain a set U of all upper bounding lines and a
set of all lower bounding lines on the planeHλ defined by Ed(x, Pi) for all i ∈ L(µ). In the following,
we first discuss the upper bounding lines. Let SU denote the indices i ∈ L(µ) such that Pi defines
an upper bounding line in U .

Given any point x ∈ T (µ), we first compute ax and bx. This can be done in constant time
after O(|T (µ)|) time preprocessing, as follows. In the preprocessing, for each vertex v of T (µ), we
compute the vertex qv (defined in the similar way as qx with respect to x) as well as the two values
av and bv (defined similarly as ax and bx, respectively). This can be easily done in O(|T (µ)|) time
by traversing T (µ) and we omit the details. Given the point x, which is specified by an edge e
containing x, let v be the incident vertex of e closer to y1 and let δ be the length of e between v and
x. Then, if e is on π(y1, y2), we have ax = 0 and bx = bv + δ. Otherwise, ax = av + δ and bx = bv.

After ax and bx are computed, the point xλ = (ax, bx) on the plane Hλ is also obtained. Then,
according to our discussion, all uncertain points of SU that are covered by x correspond to exactly
those lines of U above xλ. Finding the lines of U above xλ is actually the dual problem of half-
plane range reporting query in R

2. By using the dynamic convex hull maintenance data structure
of Brodal and Jacob [10], with O(|U | log |U |) time and O(|U |) space preprocessing, for any point
xλ, we can easily report all lines of U above xλ in O(log |U | + k log |U |) amortized time (i.e., by
repeating k deletions), where k is the output size, and deleting a line from U can be done in
O(log |U |) amortized time. Clearly, |U | ≤ tµ.

On the set of all lower bounding lines, we do the similar preprocessing, and the query algorithm
is symmetric.

Hence, the total preprocessing time is O(|T (µ)| + tµ log tµ) time. Each query takes O(log tµ +
k log2 tµ) amortized time and each remove operation can be performed in O(log tµ) amortized time.
Note that tµ ≤ n. The lemma thus follows. ⊓⊔

The preprocessing algorithm for our data structure A1 consists of the following four steps. First,
we compute the information lists for all nodes µ of Υ . Second, for each node µ ∈ Υ , we compute
the data structure of Lemma 9. Third, for each i ∈ [1, n], we compute a node list Lµ(i) containing
all nodes µ ∈ Υ such that i ∈ L(µ). Fourth, for each leaf µ of Υ , if T (µ) is a vertex v of T
holding a location pij, then we maintain at µ the value Ed(v, Pi). Before giving the details of the
above processing algorithm, we first assume the preprocessing work has been done and discuss the
algorithm for answering the coverage-report-queries.

Given any point x ∈ T , we answer the coverage-report-query as follows. Note that x is in T (µx)
for some leaf µx of Υ . For each node µ in the path of Υ from the root to µx, we apply the query
algorithm in Lemma 9 to report all indices i ∈ L(µ) such that x covers Pi. In addition, if T (µx) is
a vertex of T holding a location pij such that Pi is active, then we report i if Ed(v, Pi), which is
maintained at v, is at most λ. The following lemma proves the correctness and the performance of
our query algorithm.

Lemma 10. Our query algorithm correctly finds all active uncertain points that are covered by x
in O(logM log n+ k log n) amortized time, where k is the output size.

15

Proof. Let πx represent the path of Υ from the root to the leaf µx. To show the correctness of the
algorithm, we argue that for each active uncertain point Pi that is covered by x, i will be reported
by our query algorithm.

Indeed, if T (µx) is a vertex v of T holding a location pij of Pi, then the leaf µx maintains the
value Ed(v, Pi), which is equal to Ed(x, Pi) as x = v. Hence, our algorithm will report i when it
processes µx. Otherwise, no location of Pi is in T (µx). Since Pi has locations in T , if we go from
the root to µx along π, we will eventually meet a node µ such that T (µ) does not have any location
of Pi while T (µ′) has at least one location of Pi, where µ′ is the parent of µ. This implies that i is
in L(µ), and consequently, our query algorithm will report i when it processes µ. This establishes
the correctness of our query algorithm.

For the runtime, as the height of Υ is O(logM), we make O(logM) calls on the query algorithm
in Lemma 9. Further, notice that each i will be reported at most once. This is because if i is in L(µ)
for some node µ, then i cannot be in L(µ′) for any ancestor µ′ of µ. Therefore, the total runtime is
O(logM log n+ k log n). ⊓⊔

If an uncertain point Pi is deactivated, then we scan the node list Lµ(i) and for each node
µ ∈ Lµ(i), we remove i from the data structure by Lemma 9. The following lemma implies that the
total time is O(mi logM log n).

Lemma 11. For each i ∈ [1, n], the number of nodes in Lµ(i) is O(mi logM).

Proof. Let α denote the number of nodes of Lµ(i). Our goal is to argue that i appears in L(µ) for
O(mi logM) nodes µ of Υ . Recall that if i is in L(µ) for a node µ ∈ Υ , then Pi has at least one
location in T (µ′), where µ′ is the parent of µ. Since each node of Υ has at most four children, if N
is the total number of nodes µ′ such that Pi has at least one location in T (µ′), then it holds that
α ≤ 4N . Below we show that N = O(mi logM), which will prove the lemma.

Consider any location pij of Pi. According to our decomposition, the subtrees T (µ) for all nodes
µ in the same level of Υ are pairwise disjoint. Let v be the vertex of T that holds pij , and let µv

be the leaf of Υ with T (µv) = v. Observe that for any node µ ∈ Υ , pij appears in T (µ) if and only
if µ is in the path of Υ from µv to the root. Hence, there are O(logM) nodes µ ∈ Υ such that pij
appears in T (µ). As Pi has mi locations, we obtain N = O(mi logM). ⊓⊔

The following lemma gives our preprocessing algorithm for building A1.

Lemma 12.
∑

µ∈Υ tµ = O(M logM), and the preprocessing time for constructing the data struc-
ture A1 excluding the second step is O(M logM).

Proof. We begin with the first step of the preprocessing algorithm for A1, i.e., computing the
information lists for all nodes µ of Υ .

In order to do so, for each node µ ∈ Υ , we will also compute a sorted list L′(µ) of all such indices
i ∈ [1, n] that Pi has at least one location in T (µ), and further, for each connector y of T (µ), we
will compute a list L′(y, µ) that is the same as L′(µ) except that each i ∈ L′(y, µ) is associated
with two values: F (i, y, µ), which is equal to the probability sum of Pi in the subtree T (y, µ), and
D(i, y, µ), which is equal to the expected distance from y to the locations of Pi in T (y, µ), i.e.,
D(i, y, µ) = wi ·

∑
pij∈T (y,µ) fij · d(y, pij). With a little abuse of notation, we call all above the

information lists of µ (including its original information lists). In the following, we describe our
algorithm for computing the information lists of all nodes µ of Υ . Let F [1 · · · n] and D[1 · · ·n] be

16

v

T (µ2)

T (µ1)

T (y, µ)
y

T (µ)

Fig. 5. Illustrating the subtrees T (µ1), T (µ2), and T (y, µ), where y is a connector of T (µ) = T (µ1) ∪ T (µ2). Note
that T (y, µ) is also T (y, µ2) as y ∈ T (µ2).

two arrays that we are going to use in our algorithm (they will mostly be used to compute the F
values and D values of the information lists of connectors).

Initially, if µ is the root of Υ , we have L′(µ) = {1, 2, . . . , n} and L(µ) = ∅. Since T (µ) does not
have any connectors, we do not need to compute the information lists for connectors.

Consider any internal node µ. We assume all information lists for µ has been computed (i.e.,
L(µ), L′(µ), and L′(y, µ), L(y, µ) for each connector y of T (µ)). In the following we present our
algorithm for processing µ, which will compute the information lists of all children of µ in O(|T (µ)|)
time.

We first discuss the case where µ has two children, denoted by µ1 and µ2, respectively. Let v
be the centroid of T (µ) that is used to decompose T (µ) into T (µ1) and T (µ2) (e.g., see Fig. 5). We
first compute the information lists of µ1, as follows.

We begin with computing the two lists L(µ1) and L′(µ1). Initially, we set both of them to ∅. We
scan the list L′(µ) and for each i ∈ L′(µ), we reset F [i] = 0. Then, we scan the subtree T (µ1), and
for each location pij , we set F [i] = 1 as a flag showing that Pi has locations in T (µ1). Afterwards,
we scan the list L′(µ) again, and for each i ∈ L′(µ), if F [i] = 1, then we add i to L′(µ1); otherwise,
we add i to L(µ1). This computes the two index lists L(µ1) and L′(µ1) for µ1. The running time is
O(|T (µ)|) since the size of L′(µ) is no more than |T (µ)|.

We proceed to compute the information lists for the connectors of T (µ1). Recall that v is a
connector of T (µ1). So we need to compute the two lists L(v, µ1) and L′(v, µ1), such that each
index i in either list is associated with the two values F (i, v, µ1) and D(i, v, µ1). We first copy all
indices of L(µ1) to L(v, µ1) and copy all indices of L′(µ1) to L′(v, µ1). Next we compute their F
and D values as follows.

We first scan L′(µ) and for each i ∈ L′(µ), we reset F [i] = 0 and D[i] = 0. Next, we traverse
T (µ2) and for each location pij , we update F [i] = F [i] + fij and D[i] = D[i] + wi · fij · d(v, pij)
(d(v, pij) can be computed in constant time after O(T (µ))-time preprocessing that computes d(v, v′)
for every vertex v′ ∈ T (µ) by traversing T (µ)). Further, if T (µ2) has a connector y other than v,
then y must be a connector of T (µ) (e.g., see Fig. 5; there exists at most one such connector
y); we scan the list L′(y, µ2), and for each i ∈ L′(y, µ2), we update F [i] = F [i] + F (i, y, µ) and
D[i] = D[i] + D(i, y, µ) + wi · d(v, y) · F (i, y, µ) (d(v, y) is already computed in the preprocessing
discussed above). Finally, we scan L(v, µ1) (resp., L

′(v, µ1)) and for each index i in L(v, µ1) (resp.,
L′(v, µ1)), we set F (i, v, µ1) = F [i] and D(i, v, µ1) = D[i]. This computes the two information lists
L(v, µ1) and L′(v, µ1). The total time is O(|T (µ)|).

In addition, if T (µ1) has a connector y other than v, then y must be a connector of T (µ) (e.g., see
Fig. 3; there is only one such connector), and we further compute the two information lists L(y, µ1)
and L′(y, µ1). To do so, we first copy all indices of L(µ1) to L(y, µ1) and copy all indices of L′(µ1)

17

to L′(y, µ1). Observe that L(y, µ1) and L′(y, µ1) form a partition of the indices of L′(y, µ). For each
index i in L(y, µ1) (resp., L′(y, µ1)), we have F (i, y, µ1) = F (i, y, µ) and D(i, y, µ1) = D(i, y, µ).
Therefore, the F and D values for L′(y, µ1) and L(y, µ1) can be obtained from L′(y, µ) by scanning
the three lists L′(y, µ1), L(y, µ1), and L′(y, µ) simultaneously, as they are all sorted lists.

The above has computed the information lists for µ1 and the total time is O(|T (µ)|). Using
the similar approach, we can compute the information lists for µ2, and we omit the details. This
finishes the algorithm for processing µ where µ has two children.

If µ has three children, then T (µ) is decomposed into three subtrees in our decomposition. As
discussed in Section 4.2 on the algorithm for Lemma 1, we can consider the decomposition of T (µ)
consisting of two intermediate decomposition steps each of which decompose a subtree into two
subtrees. For each intermediate step, we apply the above processing algorithm for the two-children
case. In this way, we can compute the information lists for all three children of µ in O(|T (µ)|) time.
If µ has four children, then similarly there are four intermediate decomposition steps and we apply
the two-children case algorithm three times. The total processing time for µ is still O(|T (µ)|).

Once all internal nodes of Υ are processed, the information lists of all nodes are computed. Since
processing each node µ of Υ takes O(|T (µ)|) time, the total time of the algorithm is O(M logM).
This also implies that the total size of the information lists of all nodes of Υ is O(M logM), i.e.,∑

µ∈Υ tµ = O(M logM).

This above describes the first step of our preprocessing algorithm for A1. For the third step,
the node lists Lµ(i) can be built during the course of the above algorithm. Specifically, whenever
an index i is added to L(µ) for some node µ of Υ , we add µ to the list Lµ(i). This only introduces
constant extra time each. Therefore, the overall algorithm has the same runtime asymptotically as
before.

For the fourth step, for each leaf µ of Υ such that T (µ) is a vertex v of T , we do the following.
Let pij be the uncertain point location at v. Based on our above algorithm, we have L′(µ) = {i}.
Since v is a connector, we have a list L′(v, µ) consisting of i itself and two values F (i, v, µ) and
D(i, v, µ). Notice that Ed(v, Pi) = D(i, v, µ). Hence, once the above algorithm finishes, the value
Ed(v, Pi) is available.

As a summary, the preprocessing algorithm for A1 except the second step runs in O(M logM)
time. The lemma thus follows. ⊓⊔

For the second step of the preprocessing of A1, since
∑

µ∈Υ tµ = O(M logM) by Lemma 12,

applying the preprocessing algorithm of Lemma 9 on all nodes of Υ takes O(M log2M) time and
O(M logM) space in total. Hence, the total preprocessing time of A1 is O(M log2 M) and the space
is O(M logM). This proves Lemma 4.

5.2 The Data Structure A3

In this section, we present the data structure A3. Given any point x and any uncertain point Pi,
A3 is used to compute the expected distance Ed(x, Pi). Note that we do not need to consider the
remove operations for A3.

We follow the notation defined in Section 5.1. As preprocessing, for each node µ ∈ Υ , we compute
the information lists L(µ) and L(y, µ) for each connector y of T (µ). This is actually the first step
of the preprocessing algorithm of A1 in Section 5.1. Further, we also preform the fourth step of the
preprocessing algorithm for A1. The above can be done in O(M logM) time by Lemma 12.

18

Consider any node µ ∈ Υ with L(µ) 6= ∅. Given any point x ∈ T (µ), we have shown in the proof
of Lemma 9 that Ed(x, Pi) is a function of two variables ax and bx. As preprocessing, we compute
these functions for all i ∈ L(µ), which takes O(tµ) time as shown in the proof of Lemma 9. For each
i ∈ L(µ), we store the function Ed(x, Pi) at µ. The total preprocessing time for A3 is O(M logM).

Consider any query on a point x ∈ T and Pi ∈ P. Note that x is specified by an edge e and its
distance to a vertex of e. Let µx be the leaf of Υ with x ∈ T (µx). If x is in the interior of e, then
T (µx) is the open edge e; otherwise, T (µx) is a single vertex v = x.

We first consider the case where x is in the interior of e. In this case, Pi does not have any
location in T (µx) since T (µx) is an open edge. Hence, if we go along the path of Υ from the root to
µx, we will encounter a first node µ′ with i ∈ L(µ′). After finding µ′, we compute ax and bx in T (µ′),
which can be done in constant time after O(|T (µ′)|) time preprocessing on T (µ′), as discussed in
the proof of Lemma 9 (so the total preprocessing time for all nodes of Υ is O(M logM)). After ax
and bx are computed, we can obtain the value Ed(x, Pi).

Remark. One can verify (from the proof of Lemma 9) that as x changes on e, Ed(x, Pi) is a linear
function of x because one of ax and bx is constant and the other linearly changes as x changes in
e. Hence, the above also computes the linear function Ed(x, Pi) for x ∈ e.

To find the above node µ′, for each node µ in the path of Υ from the root to µx, we need
to determine whether i ∈ L(µ). If we represented the sorted index list L(µ) by a binary search
tree, then we could spend O(log n) time on each node µ and thus the total query time would
be O(log n logM). To remove the O(log n) factor, we further enhance our preprocessing work by
building a fractional cascading structure [12] on the sorted index lists L(µ) for all nodes µ of Υ . The
total preprocessing time for building the structure is linear in the total number of nodes of all lists,
which is O(M logM) by Lemma 12. For each node µ, the fractional cascading structure will create
a new list L∗(µ) such that L(µ) ⊆ L∗(µ). Further, for each index i ∈ L∗(µ), if it is also in L(µ),
then we set a flag as an indicator. Setting the flags for all nodes of Υ can be done in O(M logM)
time as well. Using the fractional cascading structure, we only need to do binary search on the list
in the root and then spend constant time on each subsequent node [12], and thus the total query
time is O(logM).

If x is a vertex v of T , then depending on whether the location at v is Pi’s or not, there are two
subcases. If it is not, then we apply the same query algorithm as above. Otherwise, let pij be the
location at v. Recall that in our preprocessing, the value Ed(v, Pi) has already been computed and
stored at µx as T (µx) = v. Due to v = x, we obtain Ed(x, Pi) = Ed(v, Pi).

Hence, in either case, the query algorithm runs in O(logM) time. This proves Lemma 6.

5.3 The Data Structure A2

The data structure A2 is for answering candidate-center-queries: Given any vertex v ∈ Tm, the
query asks for the candidate center c for the active medians in Tm(v), which is the subtree of Tm

rooted at v. Once an uncertain point is deactivated, A2 can also support the operation of removing
it.

Consider any vertex v ∈ Tm. Recall that due to our reindexing, the indices of all medians in
Tm(v) exactly form the range R(v). Recall that the candidate center c is the point on the path
π(v, r) closest to r with Ed(v, Pi) ≤ λ for each active uncertain point Pi with i ∈ R(v). Also recall
that our algorithm invariant guarantees that whenever a candidate-center-query is called at a vertex
v, then it holds that Ed(v, Pi) ≤ λ for each active uncertain point Pi with i ∈ R(v). However, we

19

actually give a result that can answer a more general query. Specifically, given a range [k, j] with
1 ≤ k ≤ j ≤ n, let vkj be the lowest common ancestor of all medians p∗i with i ∈ [k, j] in Tm; if
Ed(vkj, Pi) > λ for some active Pi with i ∈ [k, j], then our query algorithm will return ∅; otherwise,
our algorithm will compute a point c on π(vkj , r) closest to r with Ed(c, Pi) ≤ λ for each active Pi

with i ∈ [k, j]. We refer to it as the generalized candidate-center-query.

In the preprocessing, we build a complete binary search tree T whose leaves from left to right
correspond to indices 1, 2, . . . , n. For each node u of T , let R(u) denote the set of indices corre-
sponding to the leaves in the subtree of T rooted at u. For each median p∗i , define qi to be the point
x on the path π(p∗i , r) of Tm closest to r with Ed(x, Pi) ≤ λ.

For each node u of T , we define a node q(u) as follows. If u is a leaf, define q(u) to be qi, where
i is the index corresponding to leaf u. If u is an internal node, let vu denote the vertex of Tm that
is the lowest common ancestor of the medians p∗i for all i ∈ R(u). If Ed(vu, Pi) ≤ λ for all i ∈ R(u)
(or equivalently, qi is in π(vu, r) for all i ∈ R(u)), then define q(u) to be the point x on the path
π(vu, r) of Tm closest to r with Ed(x, Pi) ≤ λ for all i ∈ R(u); otherwise, q(u) = ∅.

Lemma 13. The points q(u) for all nodes u ∈ T can be computed in O(M logM +n log2M) time.

Proof. Assume the data structure A3 for Lemma 6 has been computed in O(M logM) time. In the
following, by using A3 we compute q(u) for all nodes u ∈ T in O(M + n log2M) time.

We first compute qi for all medians p∗i . Consider the depth-first-search on Tm starting from the
root r. During the traversal, we use a stack S to maintain all vertices in order along the path π(r, v)
whenever a vertex v is visited. Such a stack can be easily maintained by standard techniques (i.e.,
push new vertices into S when we go “deeper” and pop vertices out of S when backtrack), without
affecting the linear-time performance of the traversal asymptotically. Suppose the traversal visits a
median p∗i . Then, the vertices of S essentially form the path π(r, p∗i). To compute qi, we do binary
search on the vertices of S, as follows.

We implement S by using an array of size M . Since the order of the vertices of S is the same as
their order along π(r, p∗i), the expected distances Ed(v, Pi) of the vertices v ∈ S along their order in
S are monotonically changing. Consider a middle vertex v of S. The vertex v partitions S into two
subarrays such that one subarray contains all vertices of π(r, v) and the other contains vertices of
π(v, p∗i). We compute Ed(v, Pi) by using data structure A3. Depending on whether Ed(v, Pi) ≤ λ,
we can proceed on only one subarray of M . The binary search will eventually locate an edge
e = (v, v′) such that Ed(v, Pi) ≤ λ and Ed(v′, Pi) > λ. Then, we know that qi is located on e \ {v′}.
We further pick any point x in the interior of e and the data structure A3 can also compute the
function Ed(x, Pi) for x ∈ e as remarked in Section 5.2. With the function Ed(x, Pi) for x ∈ e, we
can compute qi in constant time. Since the binary search calls A3 O(logM) times, the total time
of the binary search is O(log2M).

In this way, we can compute qi for all medians p∗i with i ∈ [1, n] in O(M+n log2M) time, where
the O(n log2 M) time is for the binary search procedures in the entire algorithm and the O(M)
time is for traversing the tree Tm. Note that this also computes q(u) for all leaves u of T .

We proceed to compute the points q(u) for all internal nodes µ of T in a bottom-up manner.
Consider an internal node u such that q(u1) and q(u2) have been computed, where u1 and u2 are
the children of u, respectively. We compute q(u) as follows.

If either one of q(u1) and q(u2) is ∅, then we set q(u) = ∅. Otherwise, we do the following. Let i
(resp., j) be the leftmost (resp., rightmost) leaf in the subtree T (u) of T rooted at u. We first find
the lowest comment ancestor of p∗i and p∗j in the tree Tm, denoted by vij . Due to our particular

20

way of defining indices of all medians, vij is the lowest common ancestor of the medians p∗k for
all k ∈ [i, j]. We determine whether q(u1) and q(u2) are both on π(r, vij). If either one is not on
π(r, vij), then we set q(u) = ∅; otherwise, we set q(u) to the one of q(u1) and q(u2) closer to vij .

The above for computing q(u) can be implemented in O(1) time, after O(M) time preprocessing
on Tm. Specifically, with O(M) time preprocessing on Tm, given any two vertices of Tm, we can
compute their lowest common ancestor in O(1) time [7,21]. Hence, we can compute vij in constant
time. To determine whether q(u1) is on π(r, vij), we use the following approach. As a point on
Tm, q(u1) is specified by an edge e1 and its distance to one incident vertex of e1. Let v1 be the
incident vertex of e1 that is farther from the root r. Observe that q(u1) is on π(r, vij) if and only
if the lowest common ancestor of v1 and vij is v1. Hence, we can determine whether q(u1) is on
π(r, vij) in constant time by a lowest common ancestor query. Similarly, we can determine whether
q(u2) is on π(r, vij) in constant time. Assume both q(u1) and q(u2) are on π(r, vij). To determine
which one of q(u1) and q(u2) is closer to vij , if they are on the same edge e of Tm, then this can
be done in constant time since both points are specified by their distances to an incident vertex
of e. Otherwise, let e1 be the edge of Tm containing q(u1) and let v1 be the incident vertex of e1
farther to r; similarly, let e2 be the edge of Tm containing q(u2) and let v2 be the incident vertex
of e2 farther to r. Observe that q(u1) is closer to vij if and only if the lowest common ancestor of
v1 and v2 is v2, which can be determined in constant time by a lowest common ancestor query.

The above shows that we can compute q(u) in constant time based on q(u1) and q(u2). Thus,
we can compute q(u) for all internal nodes u of T in O(n) time. The lemma thus follows. ⊓⊔

In addition to constructing the tree T as above, our preprocessing for A2 also includes building
a lowest common ancestor query data structure on Tm in O(M) time, such that given any two
vertices of Tm, we can compute their lowest common ancestor in O(1) time [7,21]. This finishes the
preprocessing for A2. The total time is O(M logM + n log2 M).

The following lemma gives our algorithm for performing operations on T .

Lemma 14. Given any range [k, j], we can answer each generalized candidate-center-query in
O(log n) time, and each remove operation (i.e., deactivating an uncertain point) can be performed
in O(log n) time.

Proof. We first describe how to perform the remove operations. Suppose an uncertain point Pi is
deactivated. Let ui be the leaf of T corresponding to the index i. We first set q(ui) = ∅. Then, we
consider the path of T from ui to the root in a bottom-up manner, and for each node u, we update
q(u) based on q(u1) and q(u2) in constant time in exactly the same way as in Lemma 13, where u1
and u2 are the two children of u, respectively. In this way, each remove operation can be performed
in O(log n) time.

Next we discuss the generalized candidate-center-query on a range [k, j]. By standard techniques,
we can locate a set S of O(log n) nodes of T such that the descendant leaves of these nodes exactly
correspond to indices in the range [k, j]. We find the lowest common ancestor vkj of p∗k and p∗j in
Tm in constant time. Then, for each node u ∈ S, we check whether q(u) is on π(r, vkj), which can
be done in constant time by using the lowest common ancestor query in the same way as in the
proof of Lemma 13. If q(u) is not on π(r, vkj) for some u ∈ S, then we simply return ∅. Otherwise,
q(u) is on π(r, vkj) for every u ∈ S. We further find the point q(u) that is closest to vkj among
all u ∈ S, and return it as the answer to the candidate-center-query on [k, j]. Such a q(u) can
be found by comparing the nodes of S in O(log n) time. Specifically, for each pair u and u′ in a
comparison, we find among q(u) and q(u′) the one closer to vkj, which can be done in constant

21

time by using the lowest common ancestor query in the same way as in the proof of Lemma 13,
and then we keep comparing the above closer one to the rest of the nodes in S. In this way, the
candidate-center-query can be handled in O(log n) time. ⊓⊔

This proves Lemma 5.

5.4 Handling the Degenerate Case and Reducing the General Case to the

Vertex-Constrained Case

We have solved the vertex-constrained case problem, i.e., all locations of P are at vertices of T and
each vertex of T contains at least one location of P. Recall that we have made a general position
assumption that every vertex of T has only one location of P. For the degenerate case, our algorithm
still works in the same way as before with the following slight change. Consider a subtree T (µ)
corresponding to a node µ of Υ . In the degenerate case, since a vertex of T (µ) may hold multiple
uncertain point locations of P, we define the size |T (µ)| to be the total number of all uncertain
point locations in T (µ). In this way, the algorithm and the analysis follow similarly as before. In
fact, the performance of the algorithm becomes even better in the degenerate case since the height
of the decomposition tree Υ becomes smaller (specifically, it is bounded by O(log t), where t is the
number of vertices of T , and t < M in the degenerate case).

The above has solved the vertex-constrained case problem (including the degenerate case). In
the general case, a location of P may be in the interior of an edge of T and a vertex of T may
not hold any location of P. The following theorem solves the general case by reducing it to the
vertex-constrained case. The reduction is almost the same as the one given in [40] for the one-center
problem and we include it here for the completeness of this paper.

Lemma 15. The center-coverage problem on P and T is solvable in O(τ +M + |T |) time, where
τ is the time for solving the same problem on P and T if this were a vertex-constrained case.

Proof. We reduce the problem to an instance of the vertex-constrained case and then apply our
algorithm for the vertex-constrained case. More specifically, we will modify the tree T to obtain
another tree T ′ of size Θ(M). We will also compute another set P ′ of n uncertain points on T ′,
which correspond to the uncertain points of P with the same weights, but each uncertain point
Pi of P ′ has at most 2mi locations on T ′. Further, each location of P ′ is at a vertex of T ′ and
each vertex of T ′ holds at least one location of P ′, i.e., it is the vertex-constrained case. We will
show that we can obtain T ′ and P ′ in O(M + |T |) time. Finally, we will show that given a set of
centers on T ′ for P ′, we can find a corresponding set of the same number of centers on T for P in
O(M + |T |) time. The details are given below.

We assume that for each edge e of T , all locations of P on e have been sorted (otherwise we
sort them first, which would introduce an additional O(M logM) time on the problem reduction).
We traverse T , and for each edge e, if e contains some locations of P in its interior, we create a new
vertex in T for each such location. In this way, we create at most M new vertices for T . The above
can be done in O(M + |T |) time. We use T1 to denote the new tree. Note that |T1| = O(M + |T |).
For each vertex v of T1, if v does not hold any location of P, we call v an empty vertex.

Next, we modify T1 in the following way. First, for each leaf v of T1, if v is empty, then we
remove v from T1. We keep doing this until each leaf of the remaining tree is not empty. Let T2

denote the tree after the above step (e.g., see Fig. 6(b)). Second, for each internal vertex v of T2,
if the degree of v is 2 and v is empty, then we remove v from T2 and merge its two incident edges

22

(a) (b) (c)

Fig. 6. Illustrating the three trees: (a) T1, (b) T2, and (c) T ′, where the empty and non-empty vertices are shown
with squares and disks, respectively.

as a single edge whose length is equal to the sum of the lengths of the two incident edges of v. We
keep doing this until each degree-2 vertex of the remaining tree is not empty. Let T ′ represent the
remaining tree (e.g., see Fig. 6(c)). The above two steps can be implemented in O(|T1|) time, e.g.,
by a post-order traversal of T1. We omit the details.

Notice that every location of P is at a vertex of T ′ and every vertex of T ′ except those whose
degrees are at least three holds a location of P. Let V denote the set of all vertices of T ′ and let V3

denote the set of the vertices of T ′ whose degrees are at least three. Clearly, |V3| ≤ |V \ V3|. Since
each vertex in V \ V3 holds a location of P, we have |V \ V3| ≤ M , and thus |V3| ≤ M .

To make every vertex of T ′ contain a location of an uncertain point, we first arbitrarily pick
m1 vertices from V3 and remove them from V3, and set a “dummy” location for P1 at each of these
vertices with zero probability. We keep picking next m2 vertices from V3 for P2 and continue this
procedure until V3 becomes empty. Since |V3| ≤ M , the above procedure will eventually make V3

empty before we “use up” all n uncertain points of P. We let P ′ be the set of new uncertain points.
For each Pi ∈ P, it has at most 2mi locations on T ′.

Since now every vertex of T ′ holds a location of P ′ and every location of P ′ is at a vertex of T ′,
we obtain an instance of the vertex-constrained case on T ′ and P ′. Hence, we can use our algorithm
for the vertex-constrained case to compute a set C ′ of centers on T ′ in O(τ) time. In the following,
for each center c′ ∈ C ′, we find a corresponding center c on the original tree T such that Pi is
covered by c on T if and only if P ′

i is covered by c′ on T ′.

Observe that every vertex v of T ′ also exists as a vertex in T1, and every edge (u, v) of T ′

corresponds to the simple path in T1 between u and v. Suppose c′ is on an edge (u, v) of T ′ and
let δ be the length of e between u and c′. We locate a corresponding c1 in T1 in the simple path
from u to v at distance δ from u. On the other hand, by our construction from T to T1, if an edge
e of T does not appear in T1, then e is broken into several edges in T1 whose total length is equal
to that of e. Hence, every point of T corresponds to a point on T1. We find the point on T that
corresponds to c1 of T1, and let the point be c.

Let C be the set of points c on T corresponding to all c′ ∈ C ′ on T , as defined above. Let C1 be
the set of points c1 on T1 corresponding to all c′ ∈ C ′ on T ′. To compute C, we first compute C1.
This can be done by traversing both T ′ and T1, i.e., for each edge e of T ′ that contains centers c′

of C ′, we find the corresponding points c1 in the path of T1 corresponding to the edge e. Since the
paths of T1 corresponding to the edges of T ′ are pairwise edge-disjoint, the runtime for computing
C1 is O(|T1|+ |T ′|). Next we compute C, and similarly this can be done by traversing both T1 and
T in O(|T1|+ |T |) time. Hence, the total time for computing C is O(|T |+M) since both |T1| and
|T ′| are bounded by O(|T |+M).

23

p∗i p∗j

Ed(x, Pj)
Ed(x, Pi)

cij

Fig. 7. Illustrating cij and the two functions Ed(x,Pi) and Ed(x, Pj) as x changes in the path π(p∗i , p
∗
j) (shown as a

segment).

As a summary, we can find an optimal solution for the center-coverage problem on T and P in
O(τ +M + |T |) time. The lemma thus follows. ⊓⊔

6 The k-Center Problem

The k-center problem is to find a set C of k centers on T minimizing the value max1≤i≤n d(C,Pi),
where d(C,Pi) = minc∈C d(c, Pi). Let λopt = max1≤i≤n d(C,Pi) for an optimal solution C, and we
call λopt the optimal covering range.

As the center-coverage problem, we can also reduce the general k-center problem to the vertex-
constrained case. The reduction is similar to the one in Lemma 15 and we omit the details. In the
following, we only discuss the vertex-constrained case and we assume the problem on T and P is
a vertex-constrained case. Let τ denote the running time for solving the center-coverage algorithm
on T and P.

To solve the k-center problem, the key is to compute λopt, after which we can compute k centers
in additional O(τ) time using our algorithm for the center-coverage problem with λ = λopt. To
compute λopt, there are two main steps. In the first step, we find a set S of O(n2) candidate values
such that λopt must be in S. In the second step, we compute λopt in S. Below we first compute the
set S.

For any two medians p∗i and p∗j on Tm, observe that as x moves on π(p∗i , p
∗
j) from p∗i to p∗j ,

Ed(x, Pi) is monotonically increasing and Ed(x, Pj) is monotonically decreasing (e.g., see Fig. 7);
we define cij to be a point on the path π(p∗i , p

∗
j) with Ed(cij , Pi) = Ed(cij , Pj), and we let cij = ∅ if

such a point does not exist on π(p∗i , p
∗
j). We have the following lemma.

Lemma 16. Either λopt = Ed(p∗i , Pi) for some uncertain point Pi or λopt = Ed(cij , Pi) = Ed(cij , Pj)
for two uncertain points Pi and Pj .

Proof. Consider any optimal solution and let C be the set of all centers. For each c ∈ C, let Q(c)
be the set of uncertain points that are covered by c with respect to λopt, i.e., for each Pi ∈ Q(c),
Ed(c, Pi) ≤ λopt. Let C ′ be the subset of all centers c ∈ C such that Q(c) has an uncertain point
Pi with Ed(c, Pi) = λopt and there is no other center c′ ∈ C with Ed(c′, Pi) < λopt. For each c ∈ C ′,
let Q′(c) be the set of all uncertain points Pi such that Ed(c, Pi) = λopt.

If there exists a center c ∈ C ′ with an uncertain point Pi ∈ Q′(c) such that c is at p∗i , then the
lemma follows since λopt = Ed(c, Pi) = Ed(p∗i , Pi). Otherwise, if there exists a center c ∈ C ′ with
two uncertain points Pi and Pj in Q′(c) such that c is at cij , then the lemma also follows since
λopt = Ed(cij , Pi) = Ed(cij , Pj). Otherwise, if we move each c ∈ C ′ towards the median p∗j for any
Pj ∈ Q′(c), then Ed(c, Pi) for every Pi ∈ Q′(c) becomes non-increasing. During the above movements
of all c ∈ C ′, one of the following two cases must happen (since otherwise we would obtain another

24

set C ′′ of k centers with max1≤i≤n d(C
′′, Pi) < λopt, contradicting with that λopt is the optimal

covering range): either a center c of C ′ arrives at a median p∗i with λopt = Ed(c, Pi) = Ed(p∗i , Pi) or
a center c of C ′ arrives at cij for two uncertain points Pi and Pj with λopt = Ed(cij , Pi) = Ed(cij , Pj).
In either case, the lemma follows. ⊓⊔

In light of Lemma 16, we let S = S1 ∪ S2 with S1 = {Ed(p∗i , Pi) | 1 ≤ i ≤ n} and S2 =
{Ed(cij , Pi) | 1 ≤ i, j ≤ n} (if cij = ∅ for a pair i and j, then let Ed(cij , Pi) = 0). Hence, λopt must
be in S and |S| = O(n2).

We assume the data structure A3 has been computed in O(M logM) time. Then, computing
the values of S1 can be done in O(n logM) time by using A3. The following lemma computes S2

in O(M + n2 log n logM) time.

Lemma 17. After O(M) time preprocessing, we can compute Ed(cij , Pi) in O(log n · logM) time
for any pair i and j.

Proof. As preprocessing, we do the following. First, we compute a lowest common ancestor query
data structure on Tm in O(M) time such that given any two vertices of Tm, their lowest common
ancestor can be found in O(1) time [7,21]. Second, for each vertex v of Tm, we compute the length
d(v, r), i.e., the number of edges in the path of Tm from v to the root r of Tm. Note that d(v, r)
is also the depth of v. Computing d(v, r) for all vertices v of Tm can be done in O(M) time by a
depth-first-traversal of Tm starting from r. For each vertex v ∈ Tm and any integer d ∈ [0, d(v, r)],
we use α(v, d) to denote the ancestor of v whose depth is d. We build a level ancestor query data
structure on Tm in O(M) time that can compute α(v, d) in constant time for any vertex v and any
d ∈ [0, d(v, r)] [8]. The total time of the above processing is O(M).

Consider any pair i and j. We present an algorithm to compute cij in O(log n · logM) time,
after which Ed(cij , Pi) can be computed in O(logM) time by using the data structure A3.

Observe that cij 6= ∅ if and only if Ed(p∗i , Pi) ≤ Ed(p∗i , Pj) and Ed(p∗j , Pj) ≤ Ed(p∗j , Pi). Using
A3, we can compute the four expected distances in O(logM) time and thus determine whether
cij = ∅. If yes, we simply return zero. Otherwise, we proceed as follows.

Note that cij is a point x ∈ π(p∗i , p
∗
j) minimizing the value max{Ed(x, Pi),Ed(x, Pj)} (e.g., see

Fig. 7). To compute cij , by using a lowest common ancestor query, we find the lowest common
ancestor vij of p∗i and p∗j in constant time. Then, we search cij on the path π(p∗i , vij), as follows
(we will search the path π(p∗j , vij) later). To simplify the notation, let π = π(p∗i , vij). By using the
level ancestor queries, we can find the middle edge of π in O(1) time. Specifically, we find the two
vertices v1 = α(p∗i , k) and v2 = α(p∗i , k +1), where k = ⌊(d(p∗i , r) + d(vij , r))/2⌋. Note that the two
values d(p∗i , r) and d(vij , r) are computed in the preprocessing. Hence, v1 and v2 can be found in
constant time by the level ancestor queries. Clearly, the edge e = (v1, v2) is the middle edge of π.

After e is obtained, by using the data structure A3 and as remarked in Section 5.2, we can
obtain the two functions Ed(x, Pi) and Ed(x, Pj) on x ∈ e in O(logM) time, and both functions are
linear in x for x ∈ e. As x moves in e from one end to the other, one of Ed(x, Pi) and Ed(x, Pj) is
monotonically increasing and the other is monotonically decreasing. Therefore, we can determine
in constant time whether cij is on π1, π2, or e, where π1 and π2 are the sub-paths of π partitioned
by e. If cij is on e, then cij can be computed immediately by the two functions and we can finish
the algorithm. Otherwise, the binary search proceeds on either π1 or π2 recursively.

For the runtime, the binary search has O(log n) iterations and each iteration runs in O(logM)
time. So the total time of the binary search on π(p∗i , vij) is O(log n logM). The binary search will
either find cij or determine that cij is at vij . The latter case actually implies that cij is in the path

25

π(p∗j , vij), and thus we apply the similar binary search on π(p∗j , vij), which will eventually compute
cij . Thus, the total time for computing cij is O(log n logM).

The lemma thus follows. ⊓⊔

The following theorem summarizes our algorithm.

Theorem 2. An optimal solution for the k-center problem can be found in O(n2 log n logM +
M log2M log n) time.

Proof. Assume the data structure A3 has been computed in O(M logM) time. Computing S1 can
be done in O(n logM) time. Computing S2 takes O(M+n2 log n logM) time. After S is computed,
we find λopt from S as follows.

Given any λ in S, we can use our algorithm for the center-coverage problem to find a minimum
number k′ of centers with respect to λ. If k′ ≤ k, then we say that λ is feasible. Clearly, λopt is the
smallest feasible value in S. To find λopt from S, we first sort all values in S and then do binary
search using our center-coverage algorithm as a decision procedure. In this way, λopt can be found
in O(n2 log n+ τ log n) time.

Finally, we can find an optimal solution using our algorithm for the covering problem with
λ = λopt in O(τ) time. Therefore, the total time of the algorithm is O(n2 log n logM + τ log n),
which is O(n2 log n logM +M log2M log n) by Theorem 1. ⊓⊔

References

1. P.K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Indexing uncertain data. In Proc. of the 28th Symposium on
Principles of Database Systems (PODS), pages 137–146, 2009.

2. P.K. Agarwal, A. Efrat, S. Sankararaman, and W. Zhang. Nearest-neighbor searching under uncertainty. In Proc.
of the 31st Symposium on Principles of Database Systems (PODS), pages 225–236, 2012.

3. P.K. Agarwal, S. Har-Peled, S. Suri, H. Yıldız, and W. Zhang. Convex hulls under uncertainty. In Proc. of the
22nd Annual European Symposium on Algorithms (ESA), pages 37–48, 2014.

4. P.K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Computing Surveys,
30(4):412–458, 1998.

5. I. Averbakh and S. Bereg. Facility location problems with uncertainty on the plane. Discrete Optimization,
2:3–34, 2005.

6. I. Averbakh and O. Berman. Minimax regret p-center location on a network with demand uncertainty. Location
Science, 5:247–254, 1997.

7. M. Bender and M. Farach-Colton. The LCA problem revisited. In Proc. of the 4th Latin American Symposium
on Theoretical Informatics, pages 88–94, 2000.

8. M.A. Bender and M. Farach-Colton. The level ancestor problem simplied. Theoretical Computer Science, 321:5–
12, 2004.

9. S. Bereg, B. Bhattacharya, S. Das, T. Kameda, P.R.S. Mahapatra, and Z. Song. Optimizing squares covering a
set of points. Theoretical Computer Science, in press, 2015.

10. G. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. of the 43rd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 617–626, 2002.

11. T.M. Chan and N. Hu. Geometric red–blue set cover for unit squares and related problems. Computational
Geometry, 48(5):380–385, 2015.

12. B. Chazelle and L. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1(1):133–162,
1986.

13. R. Cheng, J. Chen, and X. Xie. Cleaning uncertain data with quality guarantees. Proceedings of the VLDB
Endowment, 1(1):722–735, 2008.

14. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J.S. Vitter. Efficient indexing methods for probabilistic threshold
queries over uncertain data. In Proc. of the 30th International Conference on Very Large Data Bases (VLDB),
pages 876–887, 2004.

26

15. R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the ACM, 34(1):200–208,
1987.

16. M. de Berg, M. Roeloffzen, and B. Speckmann. Kinetic 2-centers in the black-box model. In Proc. of the 29th
Annual Symposium on Computational Geometry (SoCG), pages 145–154, 2013.

17. X. Dong, A.Y. Halevy, and C. Yu. Data integration with uncertainty. In Proceedings of the 33rd International
Conference on Very Large Data Bases, pages 687–698, 2007.

18. G.N. Frederickson. Parametric search and locating supply centers in trees. In Proc. of the 2nd International
Workshop on Algorithms and Data Structures (WADS), pages 299–319, 1991.

19. G.N. Frederickson and D.B. Johnson. Finding kth paths and p-centers by generating and searching good data
structures. Journal of Algorithms, 4(1):61–80, 1983.

20. T. F. Gonzalez. Covering a set of points in multidimensional space. Information Processing Letters, 40(4):181–188,
1991.

21. D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing,
13:338–355, 1984.

22. D.S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems in image processing
and vlsi. Journal of the ACM, 32(1):130–136, 1985.

23. L. Huang and J. Li. Stochasitc k-center and j-flat-center problems. In Proc. of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 110–129, 2017.

24. A. Jørgensen, M. Löffler, and J.M. Phillips. Geometric computations on indecisive points. In Proc. of the 12nd
Algorithms and Data Structures Symposium (WADS), pages 536–547, 2011.

25. P. Kamousi, T.M. Chan, and S. Suri. Closest pair and the post office problem for stochastic points. In Proc. of
the 12nd International Workshop on Algorithms and Data Structures (WADS), pages 548–559, 2011.

26. P. Kamousi, T.M. Chan, and S. Suri. Stochastic minimum spanning trees in Euclidean spaces. In Proc. of the
27th Annual Symposium on Computational Geometry (SoCG), pages 65–74, 2011.

27. O. Kariv and S. Hakimi. An algorithmic approach to network location problems. II: The p-medians. SIAM
Journal on Applied Mathematics, 37(3):539–560, 1979.

28. O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems. I: The p-centers. SIAM J.
on Applied Mathematics, 37(3):513–538, 1979.

29. S.-S. Kim, S.W. Bae, and H.-K. Ahn. Covering a point set by two disjoint rectangles. International Journal of
Computational Geometry and Applications, 21:313–330, 2011.

30. M. Löffler and M. van Kreveld. Largest bounding box, smallest diameter, and related problems on imprecise
points. Computational Geometry: Theory and Applications, 43(4):419–433, 2010.

31. N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems. SIAM Journal on
Computing, 12(4):759–776, 1983.

32. N. Megiddo and A. Tamir. New results on the complexity of p-centre problems. SIAM Journal on Computing,
12(4):751–758, 1983.

33. N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran. An O(n log2 n) algorithm for the k-th longest path in
a tree with applications to location problems. SIAM J. on Computing, 10:328–337, 1981.

34. N.H. Mustafa and S. Ray. PTAS for geometric hitting set problems via local search. In Proc. of the 25th Annual
Symposium on Computational Geometry (SoCG), pages 17–22, 2009.

35. S. Suri and K. Verbeek. On the most likely voronoi diagram and nearest neighbor searching. In Proc. of the 25th
International Symposium on Algorithms and Computation (ISAAC), pages 338–350, 2014.

36. S. Suri, K. Verbeek, and H. Yıldız. On the most likely convex hull of uncertain points. In Proc. of the 21st
European Symposium on Algorithms (ESA), pages 791–802, 2013.

37. Y. Tao, X. Xiao, and R. Cheng. Range search on multidimensional uncertain data. ACM Transactions on
Database Systems, 32, 2007.

38. H. Wang. Minmax regret 1-facility location on uncertain path networks. European Journal of Operational
Research, 239:636–643, 2014.

39. H. Wang and J. Zhang. One-dimensional k-center on uncertain data. Theoretical Computer Science, 602:114–124,
2015.

40. H. Wang and J. Zhang. Computing the center of uncertain points on tree networks. Algorithmica, 78(1):232–254,
2017.

41. M.L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis. Efficient evaluation of probabilistic advanced spatial
queries on existentially uncertain data. IEEE Transactions on Knowledge and Data Engineering, 21:108–122,
2009.

27

	Covering Uncertain Points in a Tree

