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Abstract. In a recent breakthrough paper [M. Braverman, A. Garg, D.
Pankratov, and O. Weinstein, From information to exact communication,
STOC’13 Proceedings of the 2013 ACM Symposium on Theory of Com-
puting, ACM, New York, 2013, pp. 151–160.] Braverman et al. developed
a local characterization for the zero-error information complexity in the
two party model, and used it to compute the exact internal and external
information complexity of the 2-bit AND function.
In this article, we extend their result to the multiparty number-in-hand
model by proving that the generalization of their protocol has optimal
internal and external information cost for certain distributions. Our proof
has new components, and in particular it fixes some minor gaps in the
proof of Braverman et al.

1 Introduction

Although communication complexity has since its birth been witnessing steady
and rapid progress, it was not until recently that a focus on an information-
theoretic approach resulted in new and deeper understanding of some of the
classical problems in the area. This gave birth to a new area of complexity
theory called information complexity. Recall that communication complexity is
concerned with minimizing the amount of communication required for players
who wish to evaluate a function that depends on their private inputs. Information
complexity, on the other hand, is concerned with the amount of information that
the communicated bits reveal about the inputs of the players to each other, or
to an external observer.

One of the important achievements of information complexity is the recent
result of [BGPW13] that determines the exact asymptotics of the randomized
communication complexity of one of the oldest and most studied problems in
communication complexity, set disjointness:

lim
ε→0

lim
n→∞

Rε(DISJn)

n
≈ 0.4827. (1)
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Here Rε(·) denotes the randomized communication complexity with an error of
at most ε on every input, and DISJn denotes the set disjointness problem. In this
problem, Alice and Bob each receive a subset of {1, . . . , n}, and their goal is to
determine whether their sets are disjoint or not. Prior to the discovery of these
information-theoretic techniques, proving the lower bound Rε(DISJn) = Ω(n)
had already been a challenging problem, and even Razborov’s [Raz92] short
proof of that fact is intricate and sophisticated.

Note that the set disjointness function is nothing but an OR of AND func-
tions. More precisely, for i = 1, . . . , n, if xi is the Boolean variable which repre-
sents whether i belongs to Alice’s set or not, and yi is the corresponding variable
for Bob, then

∨n
i=1(xi ∧ yi) is true if and only if Alice’s input intersects Bob’s

input. Braverman et al. [BGPW13] exploited this fact to prove (1). Roughly
speaking, they first determined the exact information cost of the 2-bit AND
function for any underlying distribution µ on the set of inputs {0, 1}×{0, 1}, and
then used the fact that amortized communication equals information cost [BR14]
to relate this to the communication complexity of the set disjointness problem.
The constant 0.4827 in (1) is indeed the maximum of the information complex-
ity of the 2-bit AND function over all measures µ that assign a zero mass to
(1, 1) ∈ {0, 1} × {0, 1}. That is

max
µ:µ(11)=0

ICµ(AND) ≈ 0.4827,

where ICµ(AND) denotes the information cost of the 2-bit AND function with
respect to the distribution µ with no error (See Definition 1 below). These results
show the importance of knowing the exact information complexity of simple
functions such as the AND function.

Although obtaining the asymptotics of Rε(DISJn) from the information com-
plexity of the AND function is not straightforward and a formal proof requires
overcoming some technical difficulties, the bulk of [BGPW13] is dedicated to
computing the exact information complexity of the 2-bit AND function. This
rather simple-looking problem had been studied previously by Ma and Ish-
war [MI11, MI13], and some of the key ideas of [BGPW13] originate from their
work. In [BGPW13] Braverman et al introduced a protocol to solve the AND
function, and proved that it has optimal internal and external information cost.
Interestingly this protocol is not a conventional communication protocol as it has
access to a continuous clock, and the players are allowed to “buzz” at randomly
chosen times. However, one can approximate it by conventional communication
protocols through dividing the time into finitely many discrete units. Indeed, it
is known [BGPW13] that no protocol with a bounded number of rounds can have
optimal information cost for the AND function, and hence the infinite number
of rounds, implicit in the continuous clock, is essential. We shall refer to this
protocol as the buzzers protocol.

1.1 Our contributions

Fixing the argument of [BGPW13]: In order to show that the buzzers
protocol has optimal information cost, inspired by the work of Ma and Ish-
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war [MI11, MI13], Braverman et al came up with a local concavity condition,
and showed that if a protocol satisfies this condition, then it has optimal in-
formation cost. This condition, roughly speaking, says that it suffices to verify
that one does not gain any advantage over the conjectured optimal protocol if
one of the players starts by sending a bit B. In the original paper [BGPW13], it
is claimed that it suffices to verify this condition only for signals B that reveal
arbitrarily small information about the inputs. As we shall see, however, this is
not true, and one can easily construct counter-examples to this statement.

In Theorem 5 we prove a variant of the local concavity condition that allows
one to consider only signals B with small information leakage, and then apply
it to fix the argument in [BGPW13]. We have been informed through private
communication that Braverman et al have also independently fixed the argument
in [BGPW13].

Extension of [BGPW13] to the multi-party setting: We then apply The-
orem 5 to extend the result of [BGPW13] to the multiparty number-in-hand
model by defining a generalization of the buzzers protocol, and then prove in
Theorem 6 that it has optimal internal and external information cost when the
underlying distribution satisfies the following assumption:

Assumption 1. The support of µ is a subset of {0,1, e1, . . . , ek}, where ei is
the usual ith basis vector (0, . . . , 0, 1, 0, . . . , 0).

Note that in the two-party setting, every distribution satisfies this assumption
and thus our results are complete generalizations of the results of [BGPW13] in
the two party setting. The distribution in Assumption 1 arise naturally in the
study of the set disjointness problem, and as a result they have been considered
previously in [Gro09].

This extension is not straightforward since in [BGPW13], a large part of
the calculations for verifying the local concavity conditions are carried out by
the software Mathematica. However, in the number-in-hand model, having an
arbitrary number of players, one cannot simply rely on a computer program
for those calculations. Instead, first we had to analyze and understand what
happens at different stages of the protocol, and once we reduced the problem
to sufficiently simple equations (with a constant number of variables), then we
used a computer program to verify them. We believe our proof provides some
new insights even for the two-party setting.

2 Preliminaries

2.1 Notation

We typically denote the random variables by capital letters (e.gA,B,C,X, Y,Π).
For the sake of brevity, we shall write A1 . . . An to denote the random variable
(A1, . . . , An) and not the product of the Ai’s. We use [n] to denote the set
{1, . . . , n}, and supp(µ) to denote the support of a measure µ. We denote the
statistical distance (a.k.a. total variation distance) of two measures µ and ν on
the sample space Ω by |µ− ν| := 1

2

∑

a∈Ω |µ(a)− ν(a)|.
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For every ε ∈ [0, 1], H(ε) = −ε log ε − (1 − ε) log(1 − ε) denotes the binary
entropy, where here and throughout the paper log(·) is in base 2, and 0 log 0 = 0.

Recall D(µ||ν) means the divergence (a.k.a. relative entropy, or Kullback
Leibler distance) between two distributions µ and ν. LetX and Y be two random
variables, the standard notation I(X,Y ) means the mutual information between
X and Y , sometimes we use the notation D(X ||Y ) to denote the divergence
between the distributions of X and Y . For definitions and basic facts regarding
divergence and mutual information, see [CT12].

2.2 Communication complexity

The notion of two-party communication complexity was introduced by Yao [Yao79]
in 1979. In this model there are two players (with unlimited computational
power), often called Alice and Bob, who wish to collaboratively compute a given
function f : X × Y → Z. Alice receives an input x ∈ X and Bob receives y ∈ Y.
Neither of them knows the other player’s input, and they wish to communicate
in accordance with an agreed-upon protocol π to compute f(x, y). The protocol
π specifies as a function of (only) the transmitted bits whether the communica-
tion is over, and if not, who sends the next bit. Furthermore π specifies what
the next bit must be as a function of the transmitted bits, and the input of the
player who sends the bit. The cost of the protocol is the total number of bits
transmitted on the worst case input. The transcript Π of a protocol π is the list
of all the transmitted bits during the execution of the protocol.

In the randomized communication model, the players might have access to
a shared random string (public randomness), and their own private random
strings (private randomness). These random strings are independent, but they
can have any desired distributions individually. In the randomized model the
transcript also includes the public random string in addition to the transmitted
bits. Similar to the case of deterministic protocols, the cost is the total number
of bits transmitted on the worst case input and random strings. The average
cost of the protocol is the expected number of bits transmitted on the worst
case input.

For a function f : X × Y → Z and a parameter ε > 0, we denote by Rε(f)
the cost of the best randomized protocol for computing f with probability of
error at most ε on every input.

2.3 Information complexity

The setting is the same as in communication complexity, where Alice and Bob
(having infinite computational power) wish to mutually compute a function
f : X × Y → Z. To be able to measure information, we also need to assume
that there is a prior distribution µ on X × Y.

For the purpose of communication complexity, once we allow public ran-
domness, it makes no difference whether we permit the players to have private
random strings or not. This is because the private random strings can be simu-
lated by parts of the public random string. On the other hand, for information
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complexity, it is crucial to permit private randomness, and once we allow private
randomness, public randomness becomes inessential. Indeed, one of the players
can use her private randomness to generate the public random string, and then
transmit it to the other player. Although this might have very large communica-
tion cost, it has no information cost, as it does not reveal any information about
the players’ input.

Probably the most natural way to define the information cost of a protocol is
to consider the amount of information that is revealed about the inputs X and Y
to an external observer who sees the transmitted bits and the public randomness.
This is known as the external information cost and is formally defined as the
mutual information between XY and the transcript of the protocol (recall that
the transcript ΠXY contains the public random string R). While this notion is
interesting and useful, it turns out there is another way of defining information
cost that has some very useful properties. This is called the internal informa-
tion cost or just the information cost for short, and is equal to the amount of
information that Alice and Bob learn about each other’s input from the commu-
nication. Note that Bob knows Y , the public randomness R and his own private
randomness RB, and thus what he learns about X from the communication can
be measured by I(X ;Π |Y RRB). Similarly, what Alice learns about Y from the
communication can be measured by I(Y ;Π |XRRA) where RA is Alice’s pri-
vate random string. It is not difficult to see [BBCR10] that conditioning on the
public and private randomness does not affect these quantities. In other words
I(X ;Π |Y RRB) = I(X ;Π |Y ) and I(Y ;Π |XRRA) = I(Y ;Π |X). We summarize
these in the following definition.

Definition 1. The external information cost and the internal information cost
of a protocol π with respect to a distribution µ on inputs from X ×Y are defined
as

ICext
µ (π) = I(Π ;XY ),

and

ICµ(π) = I(Π ;X |Y ) + I(Π ;Y |X),

respectively, where Π = ΠXY is the transcript of the protocol when it is executed
on the inputs XY .

We will be interested in certain communication tasks. Let [f, ε] denote the
task of computing the value of f(x, y) correctly with probability at least 1 − ε
for every (x, y). Thus a protocol π performs this task if

Pr[π(x, y) 6= f(x, y)] 6 ε, ∀ (x, y) ∈ X × Y. (2)

Given another distribution ν on X ×Y, let [f, ν, ε] denote the task of computing
the value of f(x, y) correctly with probability at least 1− ε if the input (x, y) is
sampled from the distribution ν. A protocol π performs this task if

Pr
(x,y)∼ν

[π(x, y) 6= f(x, y)] 6 ε. (3)

5



Note that a protocol π performs [f, 0] if it computes f correctly on every input
while performing [f, ν, 0] means computing f correctly on the inputs that belong
to the support of ν.

The information complexity of a communication task T with respect to a
measure µ is defined as

ICµ(T ) = inf
π: π performs T

ICµ(π). (4)

It is essential here that we use infimum rather than minimum as there are tasks
for which there is no protocol that achieves ICµ(T ) while there is a sequence of
protocols whose information cost converges to ICµ(T ). The external information
complexity of a communication task T is defined similarly. We will abbreviate
ICµ(f, ε) = ICµ([f, ε]), ICµ(f, ν, ε) = ICµ([f, ν, ε]), etc. It is important to note
that when µ does not have full support, ICµ(f, µ, 0) can be strictly smaller than
ICµ(f, 0). We sometimes also abbreviate ICµ(f) = ICµ(f, 0).

Remark 1 (A warning regarding our notation). In the literature of information
complexity it is common to use “ICµ(f, ε)” to denote the distributional error
case, i.e. what we denote by ICµ(f, µ, ε). Unfortunately this has become the
source of some confusions in the past, as sometimes “ICµ(f, ε)” is used to de-
note both of the distributional error [f, µ, ε] and the point-wise error [f, ε]. To
avoid ambiguity we distinguish the two cases by using the different notations
ICµ(f, µ, ε) and ICµ(f, ε).

2.4 The continuity of information complexity

The information complexities ICµ(f, ε) and ICµ(f, ν, ε) are both continuous with
respect to ε. The following simple lemma from [Bra15] proves the continuity for
ε ∈ (0, 1]. The continuity at 0 is more complicated and is proven in [BGPW13].

Lemma 1. [Bra15] For every f : X × Y → Z, ε2 > ε1 > 0 and measures µ, ν
on X × Y, we have

ICµ(f, ν, ε1)− ICµ(f, ν, ε2) 6 (1 − ε1/ε2) log |X × Y|, (5)

Proof. Let f : X × Y → Z, and consider a protocol π with information cost I,
and error ε2 > 0. Set δ = 1− ε1/ε2, and let τ be the following protocol

– With probability 1− δ run π.
– With probability δ Alice and Bob exchange their inputs and compute f(x, y).

The theorem follows as the new protocol has error at most (1 − δ)ε2 = ε1, and
information cost at most I + δ log |X × Y|.

Remark 2. The same proof implies ICµ(f, ε1)− ICµ(f, ε2) 6 (1−ε1/ε2) log |X ×
Y|.
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Note that ICµ(f, µ, 0) is not always continuous with respect to µ. For exam-
ple, let

µε =

(

1−ε
3

1−ε
3

1−ε
3 ε

)

, µ = lim
ε→0

µε =

(

1
3

1
3

1
3 0

)

. (6)

Now for the 2-bit AND function, we have ICµ(AND, µ, 0) = 0, while ICµε
(AND, µε, 0) =

ICµε
(AND) as µε has full support. Thus

lim
ε→0

ICµε
(AND, µε, 0) = lim

ε→0
ICµε

(AND) = ICµ(AND),

which is known to be bounded away from 0. The same example also shows that
ICµ(f, µ, ε) is not always continuous with respect to ε at ε = 0 if µ depends on
ε. In fact, ICµε

(AND, µε, ε) = 0 while ICµε
(AND, µε, 0) = ICµε

(AND) for all
ε > 0, hence when ε > 0 is sufficiently small we find ICµε

(AND, µε, 0) is close
to ICµ(AND) which is bounded away from 0.

However it turns out that ICµ(f, ν, ε) is continuous with respect to µ for
all ε > 0 when ν is fixed. This follows from the fact, established in [BGPW16,
Lemma 4.4], that for every protocol π and every two measures µ1 and µ2 with
|µ1 − µ2| 6 δ (the distribution metric is statistical distance), we have

| ICµ1(π)− ICµ2(π)| 6 2 log(|X × Y|)δ + 2H(2δ). (7)

Consequently

| ICµ1(f, ν, ε)− ICµ2(f, ν, ε)| 6 2 log(|X × Y|)δ + 2H(2δ),

as ICµ1(f, ν, ε) = infπ ICµ1(π) and ICµ2(f, ν, ε) = infπ ICµ2(π) where both in-
fimums are over all protocols π that computes [f, ν, ε]. In particular, by taking
ε = 0 and ν to be a measure with full support, we get the following theorem.

Theorem 1 ([BGPW16, Lemma 4.4]). ICµ(f) is uniformly continuous with
respect to µ.

Finally, note that if |ν1 − ν2| 6 δ 6 ε, then

ICµ(f, ν1, ε+ δ) 6 ICµ(f, ν2, ε) 6 ICµ(f, ν1, ε− δ). (8)

This proves the continuity with respect to ν when ε > 0. The following theorem
summarizes the continuity of ICµ(f, ν, ε) with respect to its parameters.

Theorem 2 (Uniform continuity with error). Consider δ > 0. For each
f : X ×Y → Z, real numbers ε2 > ε1 > δ, and measures µ1, µ2, ν1, ν2 on X ×Y
with |µ1 − µ2| 6 δ and |ν1 − ν2| 6 δ, we have

| ICµ1(f, ν1, ε1)− ICµ2(f, ν2, ε2)| 6

(

1−
ε1
ε2

+
4δ

ε1

)

log |X × Y|+ 2H(2δ).
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Proof. By (5), we have

| ICµ2(f, ν2, ε2)− ICµ2(f, ν2, ε1)| 6 (1−
ε1
ε2

) log(|X × Y|).

By (8) and (5), we have

| ICµ2(f, ν2, ε1)− ICµ2(f, ν1, ε1)| 6 (1−
ε1 − δ

ε1 + δ
) log(|X × Y|) 6

2δ

ε1
log(|X × Y|).

By (7), we have

| ICµ2(f, ν1, ε1)− ICµ1(f, ν1, ε1)| 6 2 log(|X × Y|)δ + 2H(2δ).

These three inequalities imply the theorem.

2.5 The multiparty number-in-hand model

The number-in-hand model is the most straightforward generalization of Yao’s
two-party model to the settings where more than two players are present. In
this model there are k players who wish to collaboratively compute a function
f : X1 × . . . × Xk → Z. The communication is in the shared blackboard model,
which means that all the communicated bits are visible to all the players. Let
µ be a probability distribution on X1 × . . . × Xk, and let X = (X1, . . . , Xk)
be sampled from X1 × . . . × Xk according to µ. Definition 1 generalizes in a
straightforward manner to

ICext
µ (π) = I(Π ;X),

and

ICµ(π) =

k
∑

i=1

I(Π ;X−i|Xi),

whereX−i := (X1, . . . , Xi−1, Xi+1, . . . , Xk). Note also that I(Π ;X |Xi) = I(Π ;X−i|Xi),
and thus we have

ICµ(π) =

k
∑

i=1

I(Π ;X |Xi).

The notations ICµ(f), ICµ(f, ε), and ICµ(f, ν, ε), and the continuity results in
Section 2.4 also generalize in a straightforward manner to this setting.

3 The local characterization of the optimal information
cost

We start by some definitions. Let B be a random bit sent by one of the players,
and let µ0 = µ|B=0 and µ1 = µ|B=1, or in other words

µb(xy) := Pr[XY = xy|B = b],

for b = 0, 1. Denote Pr[·|xy] := Pr[·|XY = xy].

8



Definition 2. Let µ be a distribution and B be a signal sent by one of the
players.

– B is called unbiased with respect to µ if Pr[B = 0] = Pr[B = 1] = 1
2 .

– B is called non-crossing if µ(xy) < µ(x′y′) implies that µb(xy) 6 µb(x
′y′)

for b = 0, 1.
– B is called ε-weak if |Pr[B = 0|xy]−Pr[B = 1|xy]| 6 ε for every input xy.

A protocol is said to be in normal form with respect to µ if all its signals are
unbiased and non-crossing with respect to µ.

Let ∆(X × Y) denote the set of distributions on X × Y. A measure µ ∈
∆(X ×Y) is said to be internal-trivial (resp. external-trivial) for f if ICµ(f) = 0
(resp. ICext

µ (f) = 0). These measures are characterized in [DFHL16].

3.1 The Local Characterization

Suppose that after a random bit B is sent, if B = 0, the players continue by
running a protocol that is (almost) optimal for µ0, and if B = 1, they run a
protocol that is (almost) optimal for µ1. Note that the amount of information
that B reveals about the inputs to an external observer is I(B;XY ). This shows

ICext
µ (f) 6 I(B;XY ) + E

B
[ICext

µB
(f)], (9)

and similarly

ICµ(f) 6 I(B;X |Y ) + I(B;Y |X) + E
B
[ICµB

(f)]. (10)

In [BGPW13] it is shown that these inequalities essentially characterize ICext
µ (f, µ, 0)

and ICµ(f, µ, 0). Denote IextB := I(B;XY ), and IB := I(B;X |Y ) + I(B;Y |X).

Theorem 3 ([BGPW13]). Suppose that C : ∆(X × Y) → [0, log(|X × Y|)]
satisfies

(i) C(µ) = 0 for every measure µ such that ICµ(f, µ, 0) = 0, and
(ii) for every signal B that can be sent by one of the players

C(µ) 6 IB +E
B
[C(µB)].

Then C(µ) 6 ICµ(f, µ, 0). Similarly if ICµ(f, µ, 0) is replaced by ICext
µ (f, µ, 0),

and IB is replaced by IextB , then C(µ) 6 ICext
µ (f, µ, 0). Furthermore, in both of

the external and the internal cases, it suffices to verify (ii) only for non-crossing
unbiased signals B.

In light of Theorem 3, in order to determine the values of ICµ(f, µ, 0), one
has to first prove an upper bound by constructing a protocol (or a sequence of
protocols) for every measure µ. Then it suffices to verify that the bound satisfies
the conditions of Theorem 3.

9



In [BGPW13], ICµ(AND2) is determined using Theorem 3. However, the
proof presented in [BGPW13] contains some gaps. One error is the claim that
it suffices to verify (ii) for sufficiently weak signals. While it is not difficult to
see that indeed it suffices to verify (ii) for signals B which are ε-weak for an
absolute constant ε > 0, in [BGPW13] the condition (ii) is only verified for ε
that is smaller than a function of µ. This is not sufficient, and one can easily
construct a counter-example by allowing the signal B to become increasingly
weaker as µ moves closer to the boundary (by boundary we mean the set of
measures µ that satisfy Theorem 3 (i)). Indeed, for example, set C(µ) = K for
a very large constant K if µ does not satisfy Theorem 3 (i), and otherwise set
C(µ) = 0. Obviously (ii) holds if µ is on the boundary. On the other hand, if µ
is not on the boundary, then by taking B to be sufficiently weak as a function
of µ, we can guarantee that µ0 and µ1 are not on the boundary either, and thus
(ii) holds in this case as well. However, taking K to be sufficiently large violates
the desired conclusion that C(µ) 6 ICµ(f, µ, 0).

To fix these errors, we start by observing that a straightforward adaptation of
the proof of Theorem 3 yields an identical characterization of ICµ(f), however,
with a different boundary condition.

Theorem 4. Suppose that C : ∆(X × Y) → [0, log(|X × Y|)] satisfies

(i) C(µ) = 0 for every measure µ such that ICµ(f) = 0, and
(ii) for every signal B that can be sent by one of the players

C(µ) 6 IB + E
B
[C(µB)].

Then C(µ) 6 ICµ(f). Similarly, if we replace ICµ(f) by ICext
µ (f), and IB by

IextB , then C(µ) 6 ICext
µ (f). Furthermore, in both cases, it suffices to verify (ii)

only for non-crossing unbiased signals B.

Proof. We only prove the internal case as the external case is similar. Let π
be a c-bit protocol in normal form and Π be its transcript. For every possible
transcript t, let µt := µ|Π=t. Condition (ii) says that for every 1-bit protocol π,

C(µ) 6 ICµ(π) + E
t∼Π

[C(µt)]. (11)

By a simple induction (see [BGPW13, Lemma 5.6]) this implies that (11) holds
for every c-bit protocol π in a normal form where c < ∞.

Now consider an arbitrary protocol τ that computes [f, 0]. Lemma 4 below
shows that one can simulate τ with a protocol π that is in normal form and ter-
minates with probability 1. Note that π also computes [f, 0] and by Proposition 1
we have ICµ(τ) = ICµ(π).

Consider a large integer c, and let πc be the protocol that is obtained by
truncating π after c bits of communication, clearly ICµ(πc) 6 ICµ(π) as πc is a
truncation of π. Let Gc denote the set of leaves of πc in which the protocol is
forced to terminate, and had we run π instead, the communication would have
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continued. Let Πc denote the transcript of πc. For any given δ > 0, one can
guarantee that for every xy,

Pr[Πc(xy) ∈ Gc] < δ

by choosing c to be sufficiently large. As π computes [f, 0], for every leaf t in
πc such that t 6∈ Gc, µt is an internal-trivial distribution, hence Condition (i) is
satisfied on µt implying C(µt) = 0. Therefore (11) shows

C(µ) 6 ICµ(πc)+δ log(|X×Y|) 6 ICµ(π)+δ log(|X×Y|) = ICµ(τ)+δ log(|X×Y|).

Letting δ → 0 one obtains the desired bound.

We use the uniform continuity of ICµ(f) with respect to µ to prove that it
suffices to verify Theorem 4 (ii) for signals B that are weaker than quantities
that can depend on µ. This as we shall see suffices to fix the proof of [BGPW13].

Theorem 5 (Main Theorem 1). Let w : (0, 1] → (0, 1] be a non-decreasing
function, Ω ⊆ ∆(X × Y) be a subset of measures containing the internal trivial
distributions for function f . Let δ(µ) denote the distance of µ from Ω. Suppose
that C : ∆(X × Y) → [0, log(|X × Y|)] satisfies

(i) C(µ) is uniformly continuous with respect to µ;
(ii) C(µ) = ICµ(f) if δ(µ) = 0, and
(iii) for every non-crossing unbiased w(δ(µ))-weak signal B that can be sent by

one of the players,
C(µ) 6 IB + E

B
[C(µB)]. (12)

Then C(µ) 6 ICµ(f). Similarly, if we replace Ω by a subset containing the
external trivial distributions for function f , in Condition (ii) replace ICµ(f) by
ICext

µ (f), and in Condition (iii) replace IB by IextB , then C(µ) 6 ICext
µ (f).

The proof of Theorem 5 is presented in Section 4.2.

3.2 The local characterization in a different form

Information cost measures the amount of information that is revealed by commu-
nicated bits. The local concavity conditions in Section 3.1 become more natural
if they are represented in terms of the amount of information that is not re-
vealed. Define the concealed information and external concealed information of
a protocol π with respect to µ, respectively, as

CIµ(π) = H(X |ΠY ) +H(Y |ΠX) = H(X |Y ) +H(Y |X)− ICµ(π),

and
CIextµ (π) = H(XY |Π) = H(XY )− ICext

µ (π),

where Π is the transcript of π.
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Remark 3. In the setting of multi-party number-in-hand model, we have

CIµ(π) =
k
∑

i=1

H(X |ΠXi) =

(

k
∑

i=1

H(X |Xi)

)

− ICµ(π),

and
CIextµ (π) = H(X |Π) = H(X)− ICext

µ (π),

where X = (X1, . . . , Xk) is the random vector of all inputs.

By using concealed information rather than information cost, the local char-
acterization turns into a condition about the local concavity of the function.

Lemma 2. Inequalities (9) and (10) are respectively equivalent to

CIextµ (f) > E
B
[CIextµB

(f)], and CIµ(f) > E
B
[CIµB

(f)].

Proof. Substituting I(B;XY ) = H(XY )−H(XY |B) in ICext
µ (f) 6 I(B;XY )+

EB [IC
ext
µB

(f)] leads to

CIextµ (f) > H(XY |B)− E
B
[H(XY |B = b)− CIextµB

(f)]

which simplifies to the desired CIextµ (f) > EB[CI
ext
µB

(f)].
Similarly substituting I(B;X |Y ) + I(B;Y |X) = H(X |Y ) − H(X |Y B) +

H(Y |X)−H(Y |XB) in ICµ(f) 6 I(B;X |Y ) + I(B;Y |X) + EB[ICµB
(f)] leads

to

CIµ(f) > H(X |Y B)+H(Y |XB)−E
B
[H(X |Y B = b)+H(Y |XB = b)− ICµB

(f)]

which simplifies to CIµ(f) > EB [CIµB
(f)].

4 Communication protocols as random walks on
∆(X × Y)

Consider a protocol π and a prior distribution µ on the set of inputs X × Y.
Suppose that in the first round Alice sends a random signal B to Bob. We can
interpret this as a random update of the prior distribution µ to a new distribution
µ0 = µ|B=0 or µ1 = µ|B=1 depending on the value of B. It is not difficult to see

that µb(x, y) = pb(x)µ(x, y) for b = 0, 1, where pb(x) =
Pr[B=b|x]
Pr[B=b] . In other words,

µb is obtained by multiplying the rows of µ by non-negative numbers. Similarly
if Bob is sending a message, then µb is obtained by multiplying the columns of

µ by the numbers pb(y) =
Pr[B=b|y]
Pr[B=b] . That is µb(x, y) = µ(x, y)pb(y). Therefore,

we can think of a protocol as a random walk on ∆(X ×Y) that starts at µ, and
every time that a player sends a message, it moves to a new distribution. Note
further that this random walk is without drift as µ = EB[µB ].
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Let Π denote the transcript of the protocol. When the protocol terminates,
the random walk stops at µΠ := µ|Π . Since Π itself is a random variable, µΠ

is a random variable that takes values in ∆(X × Y). Interestingly, both the
internal and external information costs of the protocol depend only on the dis-
tribution of µΠ (this is a distribution on the set ∆(X ×Y), which itself is a set of
distributions). To see this, note I(X ;Π |Y ) = Eπ∼Π,y∼Y D(X |Π=π,Y =y‖X |Y=y)
and I(XY ;Π) = Eπ∼Π D(XY |Π=π‖XY ), and thus both of these quantities are
determined by µ and µΠ . This immediately leads to the following observation:

Proposition 1. [BS15] Let π and τ be two communication protocols with the
same input set X ×Y endowed with a probability measure µ. Let Π and T denote
the transcripts of π and τ , respectively. If µΠ has the same distribution as µT ,
then ICµ(π) = ICµ(τ) and ICext

µ (π) = ICext
µ (τ).

Proposition 1 shows that in the context of information complexity, it does
not matter how different the steps of two protocol are, and as long as they
both yield the same distribution on ∆(X ×Y), they have the same internal and
external information cost. Consequently, one can directly work with this random
walk (or the resulting distribution on ∆(X × Y)) instead of working with the
actual protocols. Indeed, let CT

µ (∆(X × Y)) denote the set of all probability
distributions on ∆(X × Y) that can be obtained, starting from the distribution
µ, through communication protocols that perform a given communication task T .
The information cost of performing the task T is the infimum of the information
costs of the distributions in CT

µ (∆(X ×Y)). Although, as mentioned earlier, this

infimum is not always attained, if one takes the closure of CT
µ (∆(X ×Y)) (under

weak convergence) then one can replace the infimum with minimum. For the 2-
bit AND function, the buzzers protocol of [BGPW13] yields the distribution in
the closure of CT

µ (∆(X × Y)) that achieves the minimum information cost. The
buzzers protocol is not a communication protocol, but one can consider it as the
limit of a sequence of communication protocols. We believe that the following is
an important open problem.

Problem 1. Define a paradigm such that for every communication task T and
every measure µ on an input set X × Y, the set of distributions on ∆(X × Y)
resulting from the protocols performing the task T in this paradigm is exactly
equal to the closure of CT

µ (∆(X × Y)).

Partial progress towards resolving this problem has been made in [DF16],
see also [DFHL16].

4.1 A signal simulation lemma

Here we prove a simulation lemma that will be useful in the proof of the lo-
cal characterization theorems. We start by restating a splitting lemma from
[BGPW13]. We use the notation [µ0, µ1] for the set of all convex combinations
αµ0 + (1− α)µ1, where α ∈ [0, 1].
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Lemma 3 (Splitting Lemma, [BGPW13]). Consider µ ∈ ∆(X × Y) and a
signal B sent by one of the players, and let µb = µ|B=b for b = 0, 1. Consider
ρ0, ρ1 ∈ [µ0, µ1] and ρ ∈ (ρ0, ρ1). There exists a signal B′ that the same player
can send starting at ρ such that ρb = ρ|B′=b for b = 0, 1.

Lemma 3 is proved in [BGPW13, Lemma 7.11], there is a minor error in the
original statement as it is claimed that the lemma holds for ρ ∈ [ρ0, ρ1] where
the interval is closed.

We are now ready to prove the signal simulation lemma, which says every
signal can be perfectly simulated by a non-crossing unbiased ε-weak signal se-
quence. This lemma generalizes [BGPW13, Lemma 5.2].

Lemma 4 (Signal Simulation). Let ε > 0, and consider µ ∈ ∆(X × Y)
and a signal B sent by one of the players. There exists a sequence of non-
crossing unbiased ε-weak random signals B = (B1B2 . . .) that with probability 1
terminates, and furthermore µ|B has the same distribution as µ|B.

Proof. Let µ0 = µ|B=0 and µ1 = µ|B=1. The following protocol explains how
the sequence (B1B2 . . .) is constructed from the signal B.

– Set µc = µ and i = 1;
– Repeat until µc = µ0 or µc = µ1;
– If µc ∈ [µ0, µ], then
– Set λ to be the largest value in [0, 1] satisfying

– λmaxxy
|µc(x,y)−µ0(x,y)|

µc(x,y)
6 ε, and

– λ|µ0(x, y)−µ0(x
′, y′)−µc(x, y)+µc(x

′, y′)| 6 µc(x
′, y′)−

µc(x, y) if µc(x, y) < µc(x
′, y′).

– Send a signal Bi that splits µc to (1 − λ)µc + λµ0 and (1 +
λ)µc − λµ0;

– If µc ∈ (µ, µ1], then
– Set λ to be the largest value in [0, 1] satisfying

– λmaxxy
|µc(x,y)−µ1(x,y)|

µc(x,y)
6 ε, and

– λ|µ1(x, y)−µ1(x
′, y′)−µc(x, y)+µc(x

′, y′)| 6 µc(x
′, y′)−

µc(x, y) if µc(x, y) < µc(x
′, y′).

– Send a signal Bi that splits µc to (1 − λ)µc + λµ1 and (1 +
λ)µc − λµ1;

– Update µc to the current distribution;
– Increase i;

14



Note that every signal Bi sent in the above protocol is ε-weak and non-
crossing. Indeed, if Bi splits µc into (1− λ)µc + λµ0 and (1 + λ)µc − λµ0, then

|Pr[Bi = 0|xy]−Pr[Bi = 1|xy]| =

∣

∣

∣

∣

µc(xy|Bi = 0)

2µc(xy)
−

µc(xy|Bi = 1)

2µc(xy)

∣

∣

∣

∣

= λ
|µc(xy)− µ0(xy)|

µc(xy)
,

and the choice of λ guarantees that this is bounded by ε. The same calculation
shows the ε-weakness for µc ∈ [µ, µ1]. It can also be easily verified that the signal
is non-crossing.

To see that this sequence terminates with probability 1, define

Ω = {ν ∈ [µ0, µ1] : ∃ (x, y), (x′, y′) s.t. ν(x, y) = ν(x′, y′),

while µ0(x, y) 6= µ0(x
′, y′) or µ1(x, y) 6= µ1(x

′, y′)},

and notice that Ω is a finite set. Consider µc ∈ [µ0, µ]. If the value of λ is set by
the first condition, then there is a uniform lower-bound for λ:

λ > λ0 := ε/max
xy

|µ(x, y)− µ0(x, y)|

µ(x, y)
= ε/max

xy

|µ(x, y)− µ1(x, y)|

µ(x, y)
> 0.

Moreover if λ is set by the other condition, then it means µc(x, y) < µc(x
′, y′),

and at least one of µc|Bi=0 or µc|Bi=1 belongs to Ω. Hence starting at any
point µc, the random walk terminates with probability at least 2−⌈1/λ0⌉+|Ω|

after ⌈1/λ0⌉ + |Ω| steps. It follows that with probability 1, the random walk
terminates.

4.2 Proofs of Theorem 5

We present the proof for the internal case only as the external case is similar.

Lemma 5. Let w, δ(µ) and C be as in Theorem 5, and suppose C satisfies
Conditions (i), (ii) and (iii). Let τ be a protocol that terminates with probability
1, and further assume τ is in normal form and every signal sent in τ is ε-weak.
Given a probability distribution µ ∈ ∆(X × Y), for every node u in the protocol
tree of τ , let µu be the probability distribution conditioned on the event that the
protocol reaches u. If µ satisfies w(δ(µu)) > ε for every internal node u, then

C(µ) 6 ICµ(τ) + E
ℓ
[C(µℓ)],

where the expected value is over all leaves ℓ of τ chosen according to the distri-
bution (on the leaves) when the inputs are sampled according to µ.

Proof. For every internal node u, the assumption in the statement of the lemma
implies that the signal sent from u is w(δ(µu))-weak. Hence Condition (iii) shows
that the claim is true if τ is a 1-bit protocol, and thus by a simple induction
(See [BGPW13, Lemma 5.6]) it is true if τ is a c-bit protocol for any c < ∞.
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Now assume τ has infinite depth. Consider a large integer c, obtain τc by
truncating τ after c bits of communication, trivially ICµ(τc) 6 ICµ(τ). Let Gc

denote the set of the leaves of τc in which the protocol is forced to terminate.
Let Lc be the set of leaves in τ with depth at most c. Clearly, the set of leaves
in τc is exactly Gc ∪ Lc. As τc has a bounded depth, we have

C(µ) 6 ICµ(τc) + E
ℓ∈Lc∪Gc

[C(µℓ)] 6 ICµ(τ) + E
ℓ∈Lc∪Gc

[C(µℓ)].

Let Πc denote the transcript of τc. As τ terminates with probability 1, given
any α > 0, one can guarantee Pr[Πc(xy) ∈ Gc] < α for every xy by choosing c
to be sufficiently large. Hence

C(µ) 6 ICµ(τ) + E
ℓ∈Lc

[C(µℓ)] + α log(|X × Y|).

Taking the limit α → 0 shows C(µ) 6 ICµ(τ) + Eℓ∈L[C(µℓ)] where L is the set
of all leaves of τ .

Proof of Theorem 5. Firstly by (ii), δ(µ) = 0 implies C(µ) = ICµ(f) 6 ICµ(f).
Hence assume δ(µ) > 0. Consider an arbitrary signal B sent by Alice. As we
discussed before, one can interpret B as a one step random walk that starts
at µ and jumps either to µ0 or to µ1 with corresponding probabilities Pr[B =
0|X = x] and Pr[B = 1|X = x]. The idea behind the proof is to use Lemma
4 to simulate this random jump with a random walk that has smaller steps so
that we can apply the concavity assumption of the theorem to those steps.

Let π be a protocol that computes [f, 0]. For 0 < η < δ(µ), applying Lemma 4
one gets a new protocol π̃ by replacing every signal sent in π with a random walk
consisting of w(η)-weak non-crossing unbiased signals. Note π̃ terminates with
probability 1. Moreover, since π̃ is a perfect simulation of π, by Proposition 1
we have ICµ(π) = ICµ(π̃).

For every node v in the protocol tree of π̃, let µv be the measure µ condi-
tioned on the event that the protocol reaches the node v. Obtain τ from π̃ by
terminating at every node v that satisfies δ(µv) 6 η. Note that by the construc-
tion, Condition (iii) is satisfied on every internal node v of τ , as every such node
satisfies η < δ(µv), thus w(η) 6 w(δ(µv)) implying the signal sent on node v is
w(δ(µv))-weak. Hence by Lemma 5,

C(µ) 6 ICµ(τ) + E
ℓ
[C(µℓ)],

where the expected value is over all leaves of τ . For every µℓ, let µ′
ℓ ∈ Ω be

a distribution such that δ(µℓ) = |µℓ − µ′
ℓ|. By Conditions (i) and (ii), and the

uniform continuity of ICµ(f), we have that for every ε > 0 there exists η > 0,
such that for all µℓ, as long as δ(µℓ) = |µℓ − µ′

ℓ| 6 η, then

C(µℓ) 6 C(µ′
ℓ) + ε = ICµ′

ℓ
(f) + ε 6 ICµℓ

(f) + ε+ ε = ICµℓ
(f) + 2ε.

As a result,

C(µ) 6 ICµ(τ) + E
ℓ
[ICµℓ

(f) + 2ε] = ICµ(τ) + E
ℓ
[ICµℓ

(f)] + 2ε.
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Since µℓ is generated by truncating π̃, we have

ICµ(τ) + E
ℓ
[ICµℓ

(f)] 6 ICµ(π̃) = ICµ(π).

Therefore C(µ) 6 ICµ(π) + 2ε. As this holds for arbitrary ε, we must have
C(µ) 6 ICµ(π).

5 The multiparty AND function in the number-in-hand
model

In [BGPW13] it is shown that in the two-player setting, a certain (unconven-
tional) protocol that we refer to as the buzzers protocol, has optimal information
and external information cost for the 2-bit AND function. In this section we show
that the buzzers protocol can be generalized to an optimal protocol for the multi-
party AND function in the number-in-hand model (assuming Assumption 1).

For the sake of brevity, we denote µx := µ({x}) for every x ∈ {0, 1}k. Fur-
thermore we assume that µe1 6 . . . 6 µek . The protocol is given by having
buzzers with waiting times which have independent exponential distributions,
and start at times t1, . . . , tk for players 1, . . . , k, respectively. Although the pro-
tocol π∧

µ described in Figure 1 is not a conventional communication protocol, it
can be easily approximated by discretization and truncation of time.

Fig. 1. The protocol π∧

µ for solving the AND function on a distribution µ.

– There is a clock whose time starts at 0 and increases continuously to +∞.
– Let ti := ln

µei
µe1

for i = 1, . . . , k, and let tk+1 := ∞.

– For every i = 1, . . . , k, if xi = 0, then the i-th player privately picks an
independent random variable Ti with exponential distribution, and if time
reaches ti +Ti, the player announces that his/her input is 0, and the protocol
terminates immediately with all the players knowing that

∧k

i=1
xi = 0.

– If the clock reaches +∞ without any player announcing their input, the players
will know that

∧k

i=1
xi = 1.

Recall that the exponential distribution is memoryless, and intuitively can be
generated in the following manner: Consider a buzzer starting at time t = 0. At
every infinitesimal time interval of length dt, independently of the past, it buzzes
with probability dt, and then stops. The waiting time for a buzz to happen has
exponential distribution.

Thus we can describe π∧
µ as in the following: For every i ∈ [k], if xi = 0,

the i-th player activates a buzzer at time ti. When the first buzz happens the
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protocol terminates, and the players decide that
∧k

i=1 xi = 0. If the time reaches

∞ without anyone buzzing, they decide
∧k

i=1 xi = 1. In Theorem 6 we show
that for the measures µ that satisfy Assumption 1, the protocol π∧

µ has optimal
external and internal information cost.

Theorem 6 (Main Theorem 2). For every µ satisfying Assumption 1, the
protocol π∧

µ has the smallest external and internal information cost.

In order to prove Theorem 6, we need to verify that the concavity conditions
of Theorem 5 are satisfied. Consider the measure µ that is uniformly distributed
over e1, . . . , ek. That is µ0 = 0 and µe1 = . . . = µek = 1/k. Note that when
the protocol π∧ is executed on this measure, all the players become active at
time 0, and as time proceeds, they do not obtain any new information about
the inputs of the other players until one of the players buzzes. Then at that
point the input is revealed to all the players. Due to this discrete nature of the
corresponding random-walk on ∆(X × Y), we need to analyze this particular
measure separately, and afterwards when verifying the concavity conditions, we
can let Ω in the statement of Theorem 5 include this measure. Claim 1 below
verifies Theorem 6 for this particular measure.

Claim 1. Let µ be the measure that µ0 = 0 and µe1 = . . . = µek = 1/k. The
internal and external information cost of the protocol π∧ is optimal with respect
to µ.

Proof. First we present the proof for the external information complexity. Let
π be any protocol that solves the multi-party AND function correctly, and let
t be a possible transcript of the protocol. First note that it is not possible to
have Pr[Πem = t] > 0 for all 1 6 m 6 k. Indeed by rectangle property this
would imply Pr[Π1 = t] > 0, and since the correct output for 1 is different
from that of e1, . . . , ek, we would get a contradiction with the assumption that
π solves AND correctly on all inputs. Hence to every transcript t, we can assign
a j(t) ∈ {1, . . . ,m} with Pr[Πej = t] = 0. Now for a random X ∼ µ, denote
J = j(ΠX), and notice that conditioned on J = j, X is supported on the set
{e1, . . . , ek} \ {ej} of size k− 1, and thus H(X |J) 6 log(k− 1). Consequently, we
have

ICext
µ (π) = I(X ;ΠX) = I(X ;ΠXJ) > I(X ; J) = H(X)−H(X |J) > log k−log(k−1).

On the other hand, consider our protocol π∧
µ . Note that under µ, all players

are activated at the same time, and consequently by symmetry, for every ter-
mination time τ and player j ∈ {1, . . . , k}, the random variable X |ΠX=(τ,j) is
uniformly distributed on {e1, . . . , ek} \ {ej}. Hence H(X |ΠX) = log(k − 1). We
conclude that

ICext
µ (π∧) = I(X ;ΠX) = H(X)−H(X |ΠX) = log k − log(k − 1).

Next we turn to the internal case. Again, let π be any protocol that solves
the multi-party AND correctly, and let J be defined as above. First note that for
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i ∈ [k], X |Xi=1 is supported on the single point {ei} and X |Xi=0 is uniformly
distributed on {e1, . . . , ek} \ {ei}. Hence

H(X |Xi) =
1

k
H(X |Xi = 1) +

k − 1

k
H(X |Xi = 0) =

k − 1

k
log(k − 1).

Moreover for i, j ∈ [k], X |J=j,Xi=0 is supported on {e1, . . . , ek} \ {ei, ej}. Hence
using Pr[J = i] = Pr[J = i,Xi = 0], we have

H(X |JXi) =

k
∑

j=1

Pr[J = j,Xi = 0]H(X |J=j,Xi=0)

6

k
∑

j=1

Pr[J = j,Xi = 0] log |{e1, . . . , ek} \ {ei, ej}|

=
k − 1

k
log(k − 2) +Pr[J = i](log(k − 1)− log(k − 2)).

Summing over i, we obtain

k
∑

i=1

H(X |JXi) = (k − 2) log(k − 2) + log(k − 1),

and thus

ICµ(π) =

k
∑

i=1

I(X ;ΠX |Xi) =

k
∑

i=1

I(X ;ΠXJ |Xi)

>

k
∑

i=1

I(X ; J |Xi) =

k
∑

i=1

H(X |Xi)−H(X |JXi)

> (k − 1) log(k − 1)− ((k − 2) log(k − 2) + log(k − 1))

= (k − 2)(log(k − 1)− log(k − 2)).

On the other hand, for the protocol π∧
µ , by symmetry, for every termina-

tion time τ and player j ∈ {1, . . . , k}, the random variable X |ΠX=(τ,j),Xi=0 is
uniformly distributed on {e1, . . . , ek} \ {ej, ei}. Hence

H(X |ΠXXi) =
1

k
log(k − 1) +

k − 2

k
log(k − 2).

We conclude that

ICµ(π
∧) =

k
∑

i=1

I(X ;ΠX |Xi) = (k − 1) log(k − 1)−
k
∑

i=1

H(X |ΠXXi)

= (k − 2)(log(k − 1)− log(k − 2)).

Claim 2. It suffices to verify Theorem 6 for measures µ with µ(1) = 0.
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Proof. Let µ be a measure satisfying Assumption 1, and let π be a protocol that
solves the multiparty AND function correctly on all the inputs. Let Π denote the
transcript of this protocol, and let B = 1[X=1]. Since π solves the AND function
correctly, Π determines the value of B. We have

ICext
µ (π) = I(X ;ΠX) = I(XBX ;ΠX) = I(BX ;ΠX) + I(X ;ΠX |BX)

= 0 +Pr[X = 1] I(X ;ΠX |X = 1) +Pr[X 6= 1] I(X ;ΠX |X 6= 1)

= Pr[X 6= 1] I(X ;ΠX |X 6= 1) = (1 − µ1) IC
ext
µ′ (π),

where µ′ is the measure µ conditioned on the event that the input is not equal
to 1. Similarly

ICµ(π) = (1− µ1) ICµ′(π).

Finally, to conclude the claim, note that π∧
µ and π∧

µ′ are identical as µei/µe1 =
µ′
ei/µ

′
e1 for all i = 1, . . . , k.

6 Proof of Theorem 6

In this section we prove Theorem 6 by verifying the concavity conditions of
Theorem 5. Let µ be a measure satisfying Assumption 1, and X = (X1, . . . , Xk)
denote the random k-bit input. Let Π be the random variable corresponding to
the transcript of the protocol π∧

µ . Let Πx = Π |X=x.

To verify the concavity condition, we consider a signal B with parameter ε
sent by the player s. That is

Pr[B = 0|Xs = 0] =
1 + εPr[Xs = 1]

2
,

and

Pr[B = 1|Xs = 1] =
1 + εPr[Xs = 0]

2
.

Note that Pr[B = 0] = Pr[B = 1] = 1
2 , i.e., the signal B is unbiased. Let µ0 and

µ1 respectively denote the distributions of X0 := X |B=0 and X1 := X |B=1. We

have µ = µ0+µ1

2 . Let Π0 and Π1 denote the random variables corresponding to
the transcripts of π∧

µ0 and π∧
µ1 , respectively.

Note that the transcript of π∧
µ contains the termination time t, and if t < ∞,

also the name of the player who first buzzed. We denote by π∞ the transcript
corresponding to termination time t = ∞, and by πm

t the termination time
t < ∞ with the m-th player buzzing.

For t ∈ [0,∞), let Φx(t) denote the total amount of active time spent by all
players before time t if the input is x. For tr 6 t < tr+1, we have

Φx(t) =
∑

i:xi=0

max(t− ti, 0) =
∑

i∈[1,r],xi=0

t− ti.
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The probability density function fx of Πx is given by

fx(π
m
t ) =

{

0 tm > t or xm = 1
e−Φx(t) otherwise

,

and Pr(Π1 = π∞) = 1. The distribution of the transcript Π is then

f(πm
t ) =

∑

x

µxfx(π
m
t ).

Define f0, f0
x and f1, f1

x analogously for π∧
µ0 and π∧

µ1 , respectively.

6.1 Probability distributions µ0 and µ1

Denote βs := Pr[Xs = 1], and ζs := Pr[Xs = 0]. For B = 0, we have,

µ0
x =

{

(1 + εPr[xs = 1])µx = (1 + εβs)µx xs = 0
(1 − εPr[xs = 0])µx = (1− εζs)µx xs = 1

Consequently, the new starting times are t0i = ti for i 6= s, and t0s = ts − γ0
where

γ0 = ln

(

1 + εβs

1 − εζs

)

. (13)

Hence

µ0
xf

0
x(π

m
t ) =























µ0
xfx(π

m
t ) t < ts − γ0

(1 + εβs)µxfx(π
m
t )e−(t−ts+γ0) t ∈ [ts − γ0, ts), xs = 0,m 6= s

(1− εζs)µxfx(π
m
t ) t ∈ [ts − γ0, ts), xs = 1,m 6= s

µ0
xf

0
x(π

s
t ) t ∈ [ts − γ0, ts),m = s

(1− εζs)µxfx(π
m
t ) t > ts

On the other hand, for B = 1, we have,

µ1
x =

{

(1− εβs)µx xs = 0
(1 + εζs)µx xs = 1

Consequently the new starting times are t1i = ti for i 6= s, and t1s = ts+γ1 where

γ1 = ln

(

1 + εζs
1− εβs

)

. (14)

Hence when m 6= s,

µ1
xf

1
x(π

m
t ) =















µ1
xfx(π

m
t ) t 6 ts

(1− εβs)µxfx(π
m
t )et−ts t ∈ [ts, ts + γ1), xs = 0

(1 + εζs)µxfx(π
m
t ) t ∈ [ts, ts + γ1), xs = 1

(1 + εζs)µxfx(π
m
t ) t > ts + γ1

For m = s,

µ1
xf

1
x(π

s
t ) =

{

(1 + εζs)µxfx(π
s
t ) t > ts + γ1 and xs = 0

0 otherwise.
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6.2 Setting up and first reductions

We set Ω to be the set of all external (resp. internal) trivial measures together
with the measure in Claim 1, and in the external case we set w(x) = ck−20x4

for some fixed constant c > 0 (one may need to pick a different w(x) for internal
case). Using the memoryless property of exponential distribution, we can shift
the activation time of all the players by − ln(µes/µe1), and assume that t1 =
− ln(µes/µe1), . . . , ts = 0, . . . , tk = ln(µek/µes).

Let φ(x) := x ln(x). Using the notion of concealed information from Sec-
tion 3.2, the concavity conditions of Theorem 5 reduce to verifying

∫ ∞

−∞

∑

m

(

φ(f(πm
t ))−

φ(f0(πm
t )) + φ(f1(πm

t ))

2

)

−
∑

m

∑

x

(

φ(µxfx(π
m
t ))−

φ(µ0
xf

0
x(π

m
t )) + φ(µ1

xf
1
x(π

m
t ))

2

)

dt > 0, (15)

for the external case, and

k
∑

j=1

∫ ∞

−∞

∑

m

1
∑

b=0

(

φ(fxj=b(π
m
t ))−

φ(f0
xj=b(π

m
t )) + φ(f1

xj=b(π
m
t ))

2

)

−
∑

m

∑

x

(

φ(µxfx(π
m
t ))−

φ(µ0
xf

0
x(π

m
t )) + φ(µ1

xf
1
x(π

m
t ))

2

)

dt > 0,

(16)

for the internal case, where

fxj=b(π
m
t ) :=

∑

X:Xj=b

µXfX(πm
t ),

and

f0
xj=b(π

m
t ) :=

∑

X:Xj=b

µ0
Xf0

X(πm
t ), f1

xj=b(π
m
t ) :=

∑

X:Xj=b

µ1
Xf1

X(πm
t ).

Denote the function inside the integral of (16) by concavµ(t, j), and the
function inside the integral of (15) by concavextµ (t). Note further that by Claim 2
we can assume that µ1 = 0. Hence our goal reduces to show the following:

Statement 1 (First reduction). To prove Theorem 6 it suffices to assume µ
satisfies µ(1) = 0, and verify

∫ ∞

−∞

concavextµ (t)dt > 0 and

k
∑

j=1

∫ ∞

−∞

concavµ(t, j)dt > 0.

Recall we assumed ts = 0 by shifting the time. The next two claims show
that one only needs to focus on the interval [−γ0, γ1].
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Claim 3. We have
∫ −γ0

−∞
concavextµ (t)dt > 0 and

∑k
j=1

∫ −γ0

−∞
concavµ(t, j)dt > 0.

Proof. Observe that Π,Π0 and Π1 are identical up to time −γ0. Let ΠP denote
a similar protocol, with the only difference that in ΠP at time t = −γ0 all the
players reveal their inputs. Then,

∫ −γ0

−∞

concavextµ (t)dt = H(X |ΠP )−H(X |ΠP , B) > 0,

and

k
∑

j=1

∫ −γ0

−∞

concavµ(t, j)dt =

k
∑

j=1

(H(X |Xj, ΠP )−H(X |Xj, ΠP , B)) > 0.

Claim 4. We have
∫∞

γ1
concavextµ (t)dt = 0 and

∑k
j=1

∫∞

γ1
concavµ(t, j)dt = 0.

Proof. We use the formula in (15) by integrating in the corresponding range
[γ1,∞). As t > γ1, plug in µ0

xf
0
x(π

m
t ) = (1 − εζs)µxfx(π

m
t ) and µ1

xf
1
x(π

m
t ) =

(1 + εζs)µxfx(π
m
t ), a simple calculation shows

∫∞

γ1
concavextµ (t)dt = 0. Similarly

one can calculate the internal case.

Statement 2 (Second reduction). To prove Theorem 6 it suffices to assume µ
satisfies µ(1) = 0, and verify

∫ γ1

−γ0

concavextµ (t)dt > 0 and
k
∑

j=1

∫ γ1

−γ0

concavµ(t, j)dt > 0.

Remark 4. The computation result of the two-party AND done in [BGPW13,
Section 7.7] shows the concavity term (the one that we want to verify its non-
negativity) can be of order ε2. One will see in Section 6.4 that our computation
gives only an order ε3. This is because we choose to focus our computation, as
allowed by Statement 2, on the interval [−γ0, γ1] only. Claim 5 below shows an
order ε2 term can appear if the whole range is considered.

Claim 5. Suppose s > 2 and L = |ts−1| > 0. If γ0 6 L/2, then

∫ −γ0

ts−1

concavextµ (t)dt >
(1 − e−(s−1)L/2)µ0µes

2(s− 1)
ε2 > 0, (17)

and

k
∑

j=1

∫ −γ0

ts−1

concavµ(t, j)dt >
(k − 1)(1− e−(s−1)L/2)µ0µes

2(s− 1)
ε2 > 0. (18)

Proof. Consider external case first. Let µ′ be defined as

µ′
x =

{

βµx, xs = 0,

−ζµx, xs = 1.
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Then µ0 = µ + εµ′ and µ1 = µ − εµ′, hence f0(πm
t ) = f(πm

t ) + ε
∑

µ′
xfx(π

m
t )

and f1(πm
t ) = f(πm

t ) − ε
∑

µ′
xfx(π

m
t ). Note that f(πm

t ) = 0 (in our case this
happens when m > s) implies concavextµ (t) = 0. On the other hand, when
f(πm

t ) 6= 0 (i.e., 1 6 m 6 s− 1), using Taylor expansion at the point f(πm
t ) for

functions φ(f0(πm
t )) and φ(f1(πm

t )), and expansion at µxfx(π
m
t ) for functions

φ(µ0
xf

0
x(π

m
t )) and φ(µ1

xf
1
x(π

m
t )), we obtain (note here we won’t have ε3)

concavextµ (t) >

s−1
∑

m=1

(

∑

x

(µ′
xfx(π

m
t ))2

2µxfx(πm
t )

−
(
∑

µ′
xfx(π

m
t ))2

2f(πm
t )

)

ε2

=
1

2

s−1
∑

m=1

(

µesfes(π
m
t )

(

1−
µesfes(π

m
t )

f(πm
t )

))

ε2

>
1

2

s−1
∑

m=1

(

µesfes(π
m
t )

µ0f0(π
m
t )

f(πm
t )

)

ε2 > 0.

(19)

By Statement 3 one can assume µes = · · · = µek and µe1 = · · · = µes−1 =
µese

−L, thus µ0 = 1− (k− s+1)µes − (s− 1)µese
−L. Then ts−1 = 0 and ts = L.

As γ0 6 L/2 implies ts − γ0 = L − γ0 > L/2, and (19) says the integrand is
non-negative, hence a lower bound is given by the integration of (19) in the
range [0, L/2]. For t ∈ [0, L/2] and 1 6 m 6 s− 1, we have f0(π

m
t ) = fes(π

m
t ) =

. . . = fek(π
m
t ) = e−(s−1)t, and fe1(π

m
t ) = . . . = fes−1(π

m
t ) = e−(s−2)t, thus

f(πm
t ) = (1− (s−1)µese

−L+(s−2)µes e
−L et)e−(s−1)t 6 (s−1)e−(s−1)t. Hence,

(19) >
s− 1

2
µesfes

µ0f0(π
m
t )

(s− 1)e−(s−1)t
ε2 =

µ0µes

2
e−(s−1)tε2.

Integrating in the range [0, L/2] with respect to t gives the desired bound (17).
Similarly, in the internal case one has

k
∑

j=1

concavµ(t, j) >
1

2

s−1
∑

m=1

k
∑

j=1,j 6=s

(

µesfes(π
m
t )

µ0f0(π
m
t )

f(πm
t )− µejfej (π

m
t )

)

ε2

>
k − 1

2

s−1
∑

m=1

(

µesfes(π
m
t )

µ0f0(π
m
t )

f(πm
t )

)

ε2.

Hence we get the bound (18) after integration.

6.3 Futher reductions

In this section we obtain a futher reduction of Statement 2 that will have a
constant number of variables and so one can finally verify it using Wolfram
Mathematica:

Statement 3 (Third reduction). To prove Theorem 6 it suffices to assume µ
satisfies

µe1 = · · · = µes−1 = β, µes = · · · = µek = eγ0β, µ0 = 1−(s−1)β−(k−s+1)eγ0β,
(20)
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where 0 < β < 1, and verify

∫ γ1

−γ0

concavextµ (t)dt > 0 and

k
∑

j=1

∫ γ1

−γ0

concavµ(t, j)dt > 0.

Statement 3 follows from Claim 7 showing that it suffices to consider measures
µ such that µej = µes for all j > s, together with the observation that condi-
tioned on the buzz time t ∈ [−γ0, γ1], we have µe1 |t>ts−γ0 = · · · = µes−1 |t>ts−γ0 .

Claim 6. For every z,

Pr [X = z ∧ t(Πz) ∈ [−γ0, γ1]]

=
Pr
[

X0 = z ∧ t(Π0
z ) ∈ [−γ0, γ1]

]

+Pr
[

X1 = z ∧ t(Π1
z ) ∈ [−γ0, γ1]

]

2
.

Proof. We need to show

µz

∑

m

∫ γ1

−γ0

fz(π
m
t )dt =

1

2

(

µ0
z

∑

m

∫ γ1

−γ0

f0
z (π

m
t )dt+ µ1

z

∑

m

∫ γ1

−γ0

f1
z (π

m
t )dt

)

.

Recall that Φz(t) denotes the total amount of active time spent by all players
before time t. The probability that Πz finishes in the interval [−γ0, γ1] is equal
to

e−Φz(−γ0) − e−Φz(γ1).

Denoting by Φ0
z(t) and Φ1

z(t) the total active time for the protocols π∧
µ0

and π∧
µ1

on the input z, the claim is equivalent to

µz·(e
−Φz(−γ0)−e−Φz(γ1)) =

µ0
z · (e

−Φ0
z(−γ0) − e−Φ0

z(γ1))

2
+
µ1
z · (e

−Φ1
z(−γ0) − e−Φ1

Z(γ1))

2
.

Since µz =
µ0
z+µ1

z

2 and Φz(−γ0) = Φ0
z(−γ0) = Φ1

z(−γ0), the equality reduces to

µze
−Φz(γ1) =

µ0
ze

−Φ0
z(γ1) + µ1

ze
−Φ1

z(γ1)

2
.

When zs = 1, Φz = Φ0
z = Φ1

z , and thus µz =
µ0
z+µ1

z

2 verifies the equality. In the
case of zs = 0, we have that Φ0

z(γ1) = Φz(γ1) + γ0, and Φ1
z(γ1) = Φz(γ1) − γ1.

Substituting γ0 = ln
(

1+εβs

1−εζs

)

, γ1 = ln
(

1+εζs
1−εβs

)

, µ0
z = (1 + εβs)µz and µ1

z =

(1− εβs)µz verifies the equality.

Claim 7. Suppose µ satisfies µes = . . . = µes+a
< µes+a+1 for some a > 0 with

s + a + 1 6 k. Assume ε is sufficiently small so that γ1 6 ts+a+1. Let µ
′ be a

measure for the (s+a)-player AND function, defined as: µ′
0
= µ0+

∑

j>s+a µej ,
and µ′

ej = µej for 1 6 j 6 s+ a. Then the following hold.

(1).
∫ γ1

−γ0
concavextµ (t)dt =

∫ γ1

−γ0
concavextµ′ (t)dt;
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(2). If
∑s+a

j=1

∫ γ1

−γ0
concavµ′(t, j)dt > 0, then

∑k
j=1

∫ γ1

−γ0
concavµ(t, j)dt > 0.

This claim shows that to verify the concavity conditions (15) and (16) it
suffices to consider only those measures satisfying µej = µes for all j > s.

Proof. We confine ourselves in the interval t ∈ [−γ0, γ1] throughout the proof.
Let f, f ′ and Π,Π ′ denote the pdf and protocols for π∧

µ and π∧
µ′ , respectively.

(1). Obviously we have

f ′
0
(πm

t ) = f0(π
m
t ), and f ′

ej (π
m
t ) = fej (π

m
t ), 1 6 j 6 s+ a. (21)

For the protocol π∧
µ , observe we have

f0(π
m
t ) = fej (π

m
t ), j > s+ a, (22)

for all m = 1, . . . , k. Hence (21) and (22) imply that f(πm
t ) = f ′(πm

t ).
Clearly similar results hold for Π0, Π1 and Π ′0, Π ′1 . This imply that the
first integral in (15) does not change from µ to µ′.
It remains to show that the second integral in (15) does not change either.
Expand this integral gives,

∫ γ1

−γ0

∑

X

∑

m

(

fX(πm
t )µX log(µX)−

µ0
Xf0

X(πm
t ) log(µX) + µ1

Xf1
X(πm

t ) log(µX)

2

)

dt

+

∫ γ1

−γ0

∑

X

∑

m

(

µXφ(fX(πm
t ))−

µ0
X

(

φ(f0
X(πm

t )) + f0
X(πm

t ) log(1 + εβ)
)

+ µ1
X

(

φ(f1
X(πm

t )) + f1
X(πm

t ) log(1− εβ)
)

2

)

dt.

(23)
By Claim 6 the first integral in (23) is 0. Hence it only remains to show the
second integral in (23) does not change. But this is again a direct conse-
quence of (21) and (22) with corresponding facts for Π0

X and Π1
X .

(2). By definition of the measures µ, µ′, one has

k
∑

j=1

∫ γ1

−γ0

concavµ(t, j)dt−
s+a
∑

j=1

∫ γ1

−γ0

concavµ′(t, j)dt =
k
∑

j=s+a+1

∫ γ1

−γ0

concavµ(t, j)dt.

Hence it suffices to show
∑k

j=s+a+1

∫ γ1

−γ0
concavµ(t, j)dt > 0.

Let µXj=b denote the distribution µ of X conditioned on Xj = b, one can
check that

∫ γ1

−γ0

concavµ(t, j)dt = E
b

∫ γ1

−γ0

concavextµXj=b
(t)dt. (24)

In section 6.4 we show the external concavity condition indeed holds, hence
(24) implies

∫ γ1

−γ0
concavµ(t, j)dt > 0, as desired.
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Proof of Theorem 6. We use ∧ to denote the multiparty AND function. Consider
the external case first. Recall we setΩ to be the set of all external trivial measures
together with the measure in Claim 1, hence Condition (i) and (ii) are satisfied.
Picking w(x) = ck−20x4 for some fixed constant c > 0, we verify Condition (iii)
in Section 6.4. Hence ICext

µ (π∧) 6 ICext
µ (∧), as ICext

µ (π∧) is also an upper bound,

hence we proved ICext
µ (π∧) = ICext

µ (∧).

Similarly for the internal case the concavity Condition (iii) is verified in
Section 6.4.

6.4 Information cost of multiparty AND function

To simplify the notation, since every function has the argument πm
t , we some-

times omit it from the writing while knowing it was there, such as we write f to
mean f(πm

t ). We will use µ0, µj , f0, fj instead of µ0, µej , f0, fej when there is no
ambiguity, similar notations are used for measures µ0, µ1 and functions f0, f1.

Taylor expansions Recall βs = µs and ζs = 1 − βs. By the claims in Section
6.3, we can assume that

µ1 = · · · = µs−1 = β, µs = · · · = µk = eγ0β, µ0 = 1−(s−1)β−(k−s+1)eγ0β.
(25)

Observe that 0 < β < 1/k (the measure when β = 0 is both external and internal
trivial). Furthermore, viewing γ0 and γ1 as functions of ε, plugging βs = eγ0β
and ζs = 1 − βs = 1 − eγ0β into (13) and (14), by implicit differentiation, we
have

{

γ0(0) = 0, γ′
0(0) = 1, γ′′

0 (0) = 1− 2β, γ′′′
0 (0) = 2− 10β + 8β2;

γ1(0) = 0, γ′
1(0) = 1, γ′′

1 (0) = 2β − 1, γ′′′
1 (0) = 2 + 6β2.

(26)

These derivatives are used in the Mathematica computation. To simplify the
notation we let ζ = ζs = 1− eγ0β.

Assuming ε < 1/2, then γ0 + γ1 6 2 ln(1 + 2ε) 6 4ε. Also note |e−x − 1| 6 x
for x > 0, which together with the fact that Φx(t) 6 k(γ0 + γ1) 6 4kε implies
the following:

– µ0f0(π
m
t ) is either 0 or close to 1− kβ with distance bounded by 4kε;

– for j 6= 0, we have µjfj(π
m
t ) is either 0 or close to β with distance bounded

by 4(k + 1)ε;

– f(πm
t ) is either 0 or close to 1− β with distance bounded by 16k2ε;

– for j 6= 0 and j 6= m, we have f(πm
t )−µjfj(π

m
t ) is either 0 or close to 1−2β

with distance bounded by 16k2ε.

Note that f(πm
t ) = 0 implies µxfx(π

m
t ) = 0 for every x, hence φ(·) = 0 for

all functions under consideration. On the other hand when f(πm
t ) 6= 0, then all
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µxfx(π
m
t ) are nonzero except when xm = 1. In this case these functions φ(·)

have the following Taylor expansions at corresponding points as follows,

φ(µ0f0(π
m
t )) = −

1− kβ

2
+ (ln(1 − kβ))µ0f0(π

m
t ) +

(µ0f0(π
m
t ))2

2(1− kβ)
+O(ε3),

φ(µjfj(π
m
t )) = −

β

2
+ (lnβ)µjfj(π

m
t ) +

(µjfj(π
m
t ))2

2β
+O(ε3), j 6= 0, j 6= m

φ(f(πm
t )) = −

1− β

2
+ (ln(1− β))f(πm

t ) +
f(πm

t )2

2(1− β)
+O(ε3),

φ(f(πm
t )− µjfj(π

m
t )) = −

1− 2β

2
+ (ln(1− 2β))f(πm

t ) +
f(πm

t )2

2(1− 2β)
−

(ln(1− 2β))µjfj(π
m
t ) +

(µjfj(π
m
t ))2

2(1− 2β)
−

µjfj(π
m
t )f(πm

t )

1− 2β
+O(ε3), j 6= 0, j 6= m.

Recall Taylor’s theorem with the remainder in Lagrange form says that the error

term O(ε3) in the expansion of φ(µ0f0(π
m
t )) equals |φ(3)(ξ)|

6 |µ0f0(π
m
t )−(1−kβ)|3

for some ξ between µ0f0(π
m
t ) and 1− kβ. Since |µ0f0(π

m
t )− (1− kβ)| 6 4kε, we

have |ξ−(1−kβ)| 6 4kε, hence ξ > (1−kβ)−4kε > 0 if ε < 1−kβ
4k . Furthermore,

we have 0 < 1
(1−kβ)−4kε 6

2
1−kβ as long as ε 6 1−kβ

8k . Therefore,

|φ(3)(ξ)|

6
|µ0f0(π

m
t )− (1− kβ)|3 =

1

6ξ2
|µ0f0(π

m
t )− (1− kβ)|3

6
1

6(1− kβ − 4kε)2
(4kε)3

6
4

6(1− kβ)2
(4k)3ε3 6

k11

6(1− kβ)2
ε3,

when 0 < ε 6 1−kβ
k7 < 1−kβ

8k . Denote the constant in this upper bound by R1.
Similarly, let R2, R3 and R4 denote the constants that we can get as upper

bounds of the absolute values of error terms in the expansions of φ(µjfj(π
m
t )), φ(f(πm

t ))
and φ(f(πm

t )− µjfj(π
m
t )), respectively. We have























R1 6
k11

6(1−kβ)2 , when 0 < ε 6 1−kβ
k7 ;

R2 6 k14

6β2 , when 0 < ε 6 β
k7 ;

R3 6
k20

6(1−β)2 , when 0 < ε 6 1−β
k7 ;

R4 6 k20

6(1−2β)2 , when 0 < ε 6 1−2β
k7 .

(27)

Observe that µ0
xf

0
x and µ1

xf
1
x are both close to µxfx with distance bounded by

3ε, hence the corresponding functions φ(µ0
xf

0
x) and φ(µ1

xf
1
x) have the same expan-

sions as above, the same holds for functions φ(f0), φ(f1) and φ(f0−µ0
xf

0
x), φ(f

1−
µ1
xf

1
x).
We continue to use the Taylor expansions to expand the concavity conditions

(15) and (16).
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– Taylor expansion of external concavity condition (15).
When f(πm

t ) 6= 0, we have the following expansion,

φ(f(πm
t ))−

∑

x

φ(µxfx(π
m
t ))

= φ(f(πm
t ))− φ(µ0f0(π

m
t ))−

k
∑

j=1,j 6=m

φ(µjfj(π
m
t ))

= (ln(1 − β))f +
1

2(1− β)
f2 − (ln(1− kβ))µ0f0 −

1

2(1− kβ)
(µ0f0)

2

− lnβ

k
∑

j=1,j 6=m

µjfj −
1

2β

k
∑

j=1,j 6=m

(µjfj)
2 +O(ε3),

(28)

where constant in O(ε3) can be bounded by R1 + (k − 1)R2 +R3 according
to (27). Using Claim 6, we see that the first, third and fifth terms in (28)
become 0 in (15). Let

F ext
m (t) =

1

2(1− β)
f2 −

1

2(1− kβ)
(µ0f0)

2 −
1

2β

k
∑

j=1,j 6=m

(µjfj)
2.

Define F ext,0
m (t) and F ext,1

m (t) with f replaced by f0 and f1, respectively,
etc. Observe that F ext

m (t) = 0 when f(πm
t ) = 0, hence in general F ext

m (t) is a
correct representation of φ(f(πm

t )) −
∑

x φ(µxfx(π
m
t )). Therefore, what we

want to verify in (15) becomes

∫ γ1

−γ0

k
∑

m=1

(

F ext
m (t)−

F ext,0
m (t) + F ext,1

m (t)

2

)

dt+O(ε4). (29)

As γ0 + γ1 6 4ε, by (27), the constant in O(ε4) in (29) can be bounded by

8k(R1 + (k − 1)R2 +R3) 6 4k21
(

1

(1− kβ)2
+

1

β2

)

,

when ε 6 1
k7 min{β, 1− kβ}.

– Taylor expansion of internal concavity condition (16).
A direct calculation gives,

k
∑

j=1

∑

b=0,1

φ(fxj=b(π
m
t ))− k

∑

x

φ(µxfx(π
m
t ))

= φ(f(πm
t ))− kφ(µ0f0(π

m
t ))

+

k
∑

j=1,j 6=m

(

φ(f(πm
t )− µjfj(π

m
t ))− (k − 1)φ(µjfj(π

m
t ))
)

.

(30)
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As did for the external case, when f(πm
t ) 6= 0 the above formula expands as

follows,

(30) = (ln(1− β) + (k − 2) ln(1 − 2β)− (k − 1) lnβ) f

+

(

1

2(1− β)
+

k − 3

2(1− 2β)

)

f2

+ (ln(1− 2β) + (k − 1) lnβ − k ln(1 − kβ))µ0f0

−
k

2(1− kβ)
(µ0f0)

2 +

(

1

2(1− 2β)
−

k − 1

2β

) k
∑

j=1,j 6=m

(µjfj)
2

+
1

1− 2β
µ0f0f +O(ε3).

(31)

Claim 6 implies the first and third terms in (31) become 0 in (16). Let

Fm(t) =

(

1

2(1− β)
+

k − 3

2(1− 2β)

)

f2 −
k

2(1− kβ)
(µ0f0)

2

+

(

1

2(1− 2β)
−

k − 1

2β

) k
∑

j=1,j 6=m

(µjfj)
2 +

1

1− 2β
µ0f0f.

Define F 0
m(t) and F 1

m(t) similarly. Then Fm(t) is a correct representation for
(30). Therefore what we want to verify in (16) becomes

∫ γ1

−γ0

k
∑

m=1

(

Fm(t)−
F 0
m(t) + F 1

m(t)

2

)

dt+O(ε4). (32)

Density functions in explicit form We continue to calculate functions ex-
plicitly that will be used for computing.

– In the protocol π∧
µ .

Consider the interval t ∈ [−γ0, 0). Let A = (s−1)(t+γ0) = (s−1)t+(s−1)γ0,
The total active time Φ0(t) = Φj(t) = A for s 6 j 6 k, and Φj(t) =
A− (t+ γ0) for 1 6 j 6 s− 1. Hence for 1 6 m 6 s− 1, we have,

µjfj(π
m
t ) =



















µ0e
−A, j = 0,

µje
t+γ0e−A = eγ0βete−A, 1 6 j 6 s− 1 and j 6= m,

µje
−A = eγ0βe−A, s 6 j 6 k,

0, j = m.

For m > s, we have µxfx(π
m
t ) = 0 for all x. Therefore when t ∈ [−γ0, 0),

f(πm
t ) =

{

0, m > s,

(1− (s− 1)β + (s− 2)eγ0βet)e−A, 1 6 m 6 s− 1.
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Similarly for the interval t ∈ [0, γ1), let B = (s− 1)(t+ γ0) + (k − s+ 1)t =
kt + (s − 1)γ0, the total active time is Φ0(t) = B, Φj(t) = B − (t + γ0) for
1 6 j 6 s− 1, and Φj(t) = B − t for s 6 j 6 k. Hence for all 1 6 m 6 k we
have,

µjfj(π
m
t ) =



















µ0e
−B, j = 0,

µje
t+γ0e−B = eγ0βete−B, 1 6 j 6 s− 1 and j 6= m,

µje
te−B = eγ0βete−B, s 6 j 6 k and j 6= m,

0, j = m.

Therefore when t ∈ [0, γ1),

f(πm
t ) = (1− (s− 1)β − (k − s+ 1)eγ0β + (k − 1)eγ0βet)e−B.

– In the protocol π∧
µ0 .

Using results from Section 6.1, we have,

µ0
xf

0
x(π

m
t ) =











(1− εζ)e−tµxfx(π
m
t ), t ∈ [−γ0, 0), xs = 0,m 6= s,

(1− εζ)µxfx(π
m
t ), t ∈ [−γ0, 0), xs = 1,m 6= s,

(1− εζ)µxfx(π
m
t ), t ∈ [0, γ1).

For the special case m = s and t ∈ [−γ0, 0), we have,

µ0
jf

0
j (π

s
t ) =



















(1− εζ)µ0e
−te−A, t ∈ [−γ0, 0), j = 0,

(1− εζ)eγ0βe−A, t ∈ [−γ0, 0), 1 6 j 6 s− 1,

0, t ∈ [−γ0, 0), j = s

(1− εζ)eγ0βe−te−A, t ∈ [−γ0, 0), s+ 1 6 j 6 k.

Therefore when t ∈ [−γ0, 0),

f0(πm
t ) =

{

(1− εζ)((1 − eγ0β − (s− 1)β)e−t + (s− 1)eγ0β)e−A, 1 6 m 6 s,

0, s+ 1 6 m 6 k.

When t ∈ [0, γ1), it is simply,

f0(πm
t ) = (1− εζ)f(πm

t ).

– In the protocol π∧
µ1 .

Using results from Section 6.1, when m = s, then µ1
xf

1
x(π

m
t ) = 0 for all x for

t ∈ [−γ0, γ1]. Therefore f1(πs
t ) = 0 for all t ∈ [−γ0, γ1].

When m 6= s, we have,

µ1
xf

1
x(π

m
t ) =











µ1
xfx(π

m
t ), t ∈ [−γ0, 0),

(1 − εeγ0β)etµxfx(π
m
t ), t ∈ [0, γ1), xs = 0,

(1 + εζ)µxfx(π
m
t ), t ∈ [0, γ1), xs = 1.
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Hence when t ∈ [−γ0, 0), we have f1(πm
t ) = (1− εeγ0β)f(πm

t ) + εµsfs(π
m
t ),

and when t ∈ [0, γ1) we have f1(πm
t ) = (1− εeγ0β)etf(πm

t ) + (1 + εζ − (1−
εeγ0β)et)µsfs(π

m
t ). Plug in f we get, when t ∈ [−γ0, 0),

f1(πm
t ) =

{

0, m > s,

(1 + eγ0β(1− εeγ0β)((s − 2)et − (s− 1)e−γ0))e−A, 1 6 m 6 s− 1.

When t ∈ [0, γ1),

f1(πm
t ) =

{

0, m = s,

(1 + eγ0β(1− εeγ0β)((k − 2)et − (s− 1)e−γ0 − k + s))ete−B, m 6= s.

External information cost Using Wolfram Mathematica with results from
Section 6.4 and 6.4, we obtain

(29) =
(k + 5s− 6)(1− 2β)β

12(1− β) ln 2
ε3 +O(ε4). (33)

Therefore, using the bound of the error term given in Section 6.4, one finds
(33) > 0 as long as

ε < min

{

(k + 5s− 6)(1− 2β)β

12(1− β) ln 2

/

4k21
(

1

(1− kβ)2
+

1

β2

)

,
1

k7
min{β, 1− kβ}

}

.

Note that 2
1/x+1/y = 2xy

x+y > min{x, y} for all x, y > 0. Simplifying the above

formula, one obtains (33) > 0 as long as

ε < ck−20 min{β, 1− kβ}3,

for some constant c > 0. So we have verified the concavity condition (15) is
satisfied for all ε-weak signals such that ε is no greater than ck−20 min{β, 1 −
kβ}3.

Let µE denote the distribution in Claim 1, we have |µ − µE | 6 1 − kβ. Let
µ′ be defined as µ′

s−1 = 0, µ′
s = eγ0β + β, and µ′

j = µj for all other j, then

|µ − µ′| = β. Observe that µ′ is external trivial, hence µE , µ′ ∈ Ω (the Ω we
chose at the beginning of Section 6.2). Therefore we have δ(µ) 6 min{β, 1−kβ}.
Thus as we choose w(x) = ck−20x4, the concavity condition (15) is satisfied for
all w(δ(µ))-weak signals because

w(δ(µ)) 6 ck−20 min{β, 1− kβ}4 < ck−20min{β, 1− kβ}3.

By Theorem 5, we have proved the protocol π∧ in Figure 1 is optimal for external
information cost.
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Internal information cost Similarly, using Wolfram Mathematica, we obtain

(32) =

{

(k+5s−6)(1−2β)β
12(1−β) ln 2 ε3 +O(ε4), k = 2,

(k+5s−6)((3k−2)β2−4(k−1)β+k−1)β
12(1−β)(1−2β) ln 2 ε3 +O(ε4), k > 3.

(34)

As did in Section 6.4, one can show (34) is positive when ε is sufficiently small.
And furthermore one can pick an appropriate function w to verify that the
concavity condition (16) is satisfied for all w(δ(µ))-weak signals. Hence by The-
orem 5, our protocol is optimal for internal information cost.
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