
ar
X

iv
:1

60
7.

06
20

1v
2

 [
cs

.D
S]

 1
3

O
ct

 2
01

6

Faster Graph Coloring in Polynomial Space

Serge Gaspers1,2 and Edward J. Lee1,2

1UNSW Australia, Sydney, Australia., sergeg@cse.unsw.edu.au, e.lee@unsw.edu.au
2Data61, CSIRO, Sydney, Australia

September 1, 2018

Abstract

We present a polynomial-space algorithm that computes the number of independent sets of any
input graph in time O(1.1389n) for graphs with maximum degree 3 and in time O(1.2356n) for
general graphs, where n is the number of vertices. Together with the inclusion-exclusion approach of
Björklund, Husfeldt, and Koivisto [SIAM J. Comput. 2009], this leads to a faster polynomial-space
algorithm for the graph coloring problem with running time O(2.2356n). As a byproduct, we also
obtain an exponential-space O(1.2330n) time algorithm for counting independent sets.

Our main algorithm counts independent sets in graphs with maximum degree 3 and no ver-
tex with three neighbors of degree 3. This polynomial-space algorithm is analyzed using the re-
cently introduced Separate, Measure and Conquer approach [Gaspers & Sorkin, ICALP 2015]. Using
Wahlström’s compound measure approach, this improvement in running time for small degree graphs
is then bootstrapped to larger degrees, giving the improvement for general graphs. Combining both
approaches leads to some inflexibility in choosing vertices to branch on for the small-degree cases,
which we counter by structural graph properties. The main complication is to upper bound the
number of times the algorithm has to branch on vertices all of whose neighbors have degree 2, while
still decreasing the size of the separator each time the algorithm branches.

1 Introduction

Graph coloring is a central problem in discrete mathematics and computer science. In exponential time
algorithmics [16], graph coloring is among the most well studied problems, and it is an archetypical
partitioning problem. Given a graph G and an integer k, the problem is to determine whether the vertex
set of G can be partitioned into k independent sets. Already in 1976, Lawler [25] designed a dynamic
programming algorithm for graph coloring and upper bounded its running time by O(2.4423n), where n is
the number of vertices of the input graph. This was the best running time for graph coloring for 25 years,
when Eppstein [10, 11] improved the running time to O(2.4150n) by using better bounds on the number
of small maximal independent sets in a graph. Based on bounds on the number of maximal induced
bipartite subgraphs and refined bounds on the number of size-constrained maximal independent sets,
Byskov [7] improved the running time to O(2.4023n). An algorithm based on fast matrix multiplication
by Björklund and Husfeldt [3] improved the running time to O(2.3236n). The current fastest algorithm
for graph coloring, by Björklund et al. [2, 4, 24], is based on the principle of inclusion–exclusion and
Yates’ algorithm for the fast zeta transform. This breakthrough algorithm solves graph coloring in
O∗(2n) time, where the O∗-notation is similar to the O-notation but ignores polynomial factors.

A significant drawback of the aforementioned algorithms is that they use exponential space. Often,
the space bound is the same as the time bound, up to polynomial factors. This is undesirable [30],
certainly for modern computing devices. Polynomial-space algorithms for graph coloring have been
studied extensively as well with successive running times O∗(n!) [8], O((k/e)n) (randomized) [12], O((2+
log k)n) [1], O(5.283n) [6], O(2.4423n) [3], and O(2.2461n) [4]. The latter algorithm is an inclusion–
exclusion algorithm relying on a O(1.2461n) time algorithm [17] for computing the number of independent
sets in a graph. Their method transforms any polynomial-space O(cn) time algorithm for counting
independent sets into a polynomial space O((1 + c)n) time algorithm for graph coloring. The running
time bound for counting independent sets was subsequently improved by Fomin et al. [13] to O(1.2431n)
and by Wahlström [29] to O(1.2377n). Wahlström’s algorithm is the current fastest published algorithm
for counting independent sets of a graph, it uses polynomial space, and it works for the more general

1

http://arxiv.org/abs/1607.06201v2

problem of computing the number of maximum-weight satisfying assignments of a 2-CNF formula. For
a reduction from counting independent sets to counting maximum-weight satisfying assignments of a
2-CNF formula where the number of variables equals the number of vertices, see [9].

We note that Junosza-Szaniawski and Tuczynski [23] present an algorithm for counting independent
sets with running time O(1.2369n) in a technical report that also strives to disconnect low-degree graphs.
For graphs with maximum degree 3 that have no degree-3 vertex with all neighbors of degree 3, they
present a new algorithm with running time 2n3/5+o(n), where n3 is the number of degree-3 vertices, and
the overall running time improvement comes from plugging this result into Wahlström’s [29] previously
fastest algorithm for the problem. However, we note that the 2n3/5+o(n) running time for counting inde-
pendent sets can easily be obtained from previous results. Namely, the problem of counting independent
sets is a polynomial PCSP with domain size 2, as shown in [27], and the algorithm of [20] for polynomial
PCSPs preprocesses all degree-2 vertices, leaving a cubic graph on n3 vertices that is solved in 2n/5+o(n)

time. Improving on this bound is challenging, and degree-3 vertices with all neighbors of degree 2 need
special attention since branching on them affects the degree-3 vertices of the graph exactly the same way
as for the much more general polynomial PCSP problem, whereas for other degree-3 vertices one can
take advantage of the asymmetric nature of the typical independent set branching (i.e., we can delete
the neighbors when counting the independent sets containing the vertex we branch on).

Our Results. We present a polynomial-space algorithm computing the number of independent sets
of any input graph G in time O(1.2356n), where n is the number of vertices of G. Our algorithm is a
branching algorithm that works initially similarly as Wahlström’s algorithm, where we slightly improve
the analysis using potentials (as, e.g., in [19, 22, 28]) to amortize some of the worst branching cases with
better ones. This algorithm uses a branching strategy that basically ensures that both the maximum
degree and the average degree of the graph do not increase. This makes it possible to divide the analysis
of the algorithm into sections depending on what local structures can still occur in the graph, use
a separate measure for the analysis of each section, and combine these measures giving a compound
(piecewise linear) measure for the analysis of the overall algorithm.

For instances where the maximum degree is 3 and no vertex has three neighbors with degree 3, we
substitute a subroutine that is designed and analyzed using the recently introduced Separate, Measure
and Conquer technique [20]. It computes a small balanced separator of the graph and prefers to branch
on vertices in the separator, adjusting the separator as needed by the analysis, and reaping a huge benefit
when the separator is exhausted and the resulting connected components can be handled independently.
The Separate, Measure and Conquer technique helps to amortize this sudden gain with the analysis of
the previous branchings, for an overall improvement of the running time.

Since using a separator restricts our choice in the vertices to branch on, we use the structure of the
graph and its separation to upper bound the number of unfavorable branching situations and adapt our
measure accordingly. Namely, the algorithm avoids branching on degree-3 vertices in the separator with
all neighbors of degree 2 as long as possible, often rearranging the separator to avoid this case. In our
analysis we can then upper bound the number of unfavorable branchings and give the central vertex
involved in such a branching a special weight and role in the analysis. We call these vertices spider
vertices. Our meticulous analysis of this subroutine upper bounds its running time by O(1.0963n). For
graphs with maximum degree at most 3, we obtain a running time of O(1.1389n). This improvement for
small degree graphs is bootstrapped, using Wahlström’s compound measure analysis, to larger degrees,
and gives a running time improvement to O(1.2356n) for counting independent sets of arbitrary graphs
and to O(2.2356n) for graph coloring. Bootstrapping an exponential-space pathwidth-based O(1.1225n)
time algorithm [15] for cubic graphs instead, we obtain an exponential-space algorithm for counting
independent sets with running time O(1.2330n). Some proofs have been moved to the appendix due to
space constraints.

2 Methods

Measure and Conquer. The analysis of our algorithm is based on the Measure and Conquer
method [14]. A measure for a problem (or its instances) is a function from the set of all instances of
the problem to the set of non-negative reals. Modern branching analyses often use a potential function
as measure that gives a more fine-grained way of tracking the progress of a branching algorithm than
a measure that is merely the number of vertices or edges of the graph. The following lemma is at the
heart of our analysis. It generalizes a similar lemma from [19] to the treatment of subroutines.

2

Lemma 1 ([18]). Let A be an algorithm for a problem P , B be an algorithm for a class C of instances
of P , c ≥ 0 and r > 1 be constants, and µ(·), µB(·), η(·) be measures for P , such that for any input
instance I from C, µB(I) ≤ µ(I), and for any input instance I, A either solves P on I ∈ C by invoking B
with running time O(η(I)c+1rµB (I)), or reduces I to k instances I1, . . . , Ik, solves these recursively, and
combines their solutions to solve I, using time O(η(I)c) for the reduction and combination steps (but not
the recursive solves),

(∀i) η(Ii) ≤ η(I) − 1, and (1)

k
∑

i=1

rµ(Ii) ≤ rµ(I). (2)

Then A solves any instance I in time O(η(I)c+1rµ(I)).

When Algorithm A does not invoke Algorithm B, we have the usual Measure and Conquer analysis.
Here, µ is used to upper bound the number of leaves of the search tree and deserves the most attention,
while η is usually a polynomial measure to upper bound the depth of the search tree. For handling
subroutines, it is crucial that the measure does not increase when Algorithm A hands over the instance
to Algorithm B and we constrain that µB(I) ≤ µ(I).

Compound analysis. We can view Wahlström’s compound analysis [29] as a repeated application
of Lemma 1. For example, there is one subroutine A3 for when the maximum degree of the graph is 3.
The algorithm prefers then to branch on a degree-3 vertex with all neighbors of degree 3. After all such
vertices have been exhausted, the algorithm calls a new subroutine A8/3 that takes as input a graph
with maximum degree 3 where no degree-3 vertex has only degree 3 neighbors. In this case the average
degree of the graph is at most 8/3, and the algorithm prefers to branch on vertices of degree 3 that have
2 neighbors of degree 3, etc. The analysis constrains that the measure for the analysis of A8/3 is at most
the measure for A3 for the instance that is handed by A3 to A8/3. In an optimal analysis, we expect
the measure for such an instance to be equal in the analysis of A3 and A8/3, and Wahlström actually
imposes equality at the pivot point 8/3.

Separate, Measure and Conquer. In our case, the A8/3 algorithm is based on Separate, Measure
and Conquer. For small-degree graphs, we can compute small balanced separators in polynomial time.
The algorithm then prefers to branch on vertices in the separator. The Separate, Measure and Conquer
technique allows to distribute the large gain obtained by disconnecting the instance onto the previous
branching vectors. While, often, the measure is made up of weights that are assigned to each vertex, this
method assigns these weights only to the larger part of the graph that is separated from the rest by the
separator, and somewhat larger weights to the vertices in the separator. See (4) on page 7. Thus, after
exhausting the separator, the measure accurately reflects the “amount of work” left to do. We artificially
increase the measure of very balanced instances by small penalty weights – this is so because branching
on vertices can change the measure of the parts that are separated by the separator and the branching
strategy might not always be able to make most of its progress on the large side. Since we may exhaust
the separators a logarithmic number of times, and computing a new separator might introduce a penalty
term each time, the measure also includes a logarithmic term that counteracts these artificial increases
in measure, and will in the end only contribute a polynomial factor to the running time. For an in-depth
treatment of the method we refer to [20]. Since we use the Separate, Measure and Conquer method
when the average degree drops to at most 8/3, we slightly generalize the separation computation from
[20], where the bound on the size of the separator depended only on the maximum degree. A separation
(L, S,R) of a graph G is a partition of the vertex set of G such that every path from a vertex in L to a
vertex in R contains a vertex from S.

Lemma 2. Let B ∈ R. Let µ be a measure for graph problems such that for every graph G = (V,E),
every R ⊆ V , and every v ∈ V , we have that |µ(R∪{v})−µ(R)| ≤ B. Assume that µ(R), the restriction
of µ to R, can be computed in polynomial time. If there is an algorithm computing a path decomposition
of width at most k of a graph G in polynomial time, then there is a polynomial time algorithm computing
a separation (L, S,R) of G with |S| ≤ k and |µ(L)− µ(R)| ≤ B.

We will use the lemma for graphs with maximum degree 3 and graphs with maximum degree 3 and
average degree at most 8/3, for which path decompositions of width at most n/6 + o(n) and n/9 + o(n)
can be computed in polynomial time, respectively [13, 15].

3

One disadvantage of using the Separate, Measure and Conquer method for A8/3 is that the algorithm
needs to choose vertices for branching so that the size of the separator decreases in each branch. However,
Wahlström’s algorithm defers to branch on degree-3 vertices with all neighbors of degree 2 until this is
no longer possible, since this case leads to the largest branching factor for degree 3. For our approach,
we instead rearrange the separator in some cases until we are only left with spider vertices, a structure
where our algorithm cannot avoid branching on a degree-3 vertex with all neighbors of degree 2, we give
a special weight to these spider vertices and upper bound their number.

Potentials. To optimize the running time further, we also use potentials; see [19, 22, 28]. These
are constant weights that are added to the measure if certain global properties of the instance hold.
For instance, we may use them to slightly increase the measure when an unfavorable branching strategy
needs to be used. The constraint (2) for this unfavorable case then becomes less constraining, while all
branchings that can lead to this unfavorable case get tighter constraints. This allows then to amortize
unfavorable cases with favorable ones.

3 Algorithm

We first introduce notation necessary to present the algorithm. Let V (G) and E(G) denote the vertex
set and the edge set of the input graph G. For a vertex v ∈ V (G), its neighborhood, NG(v), is the set of
vertices adjacent to v. The closed neighborhood of a vertex v is NG[v] = NG(v) ∪ {v}. If G is clear from
context, we just use N(v) and N [v].

The degree of v is denoted d(v) = |NG(v)|. An edge uv ∈ E(G) is adjacent to vertex u ∈ V (G) and
v ∈ V (G). For two vertices u and v connected by a path, let P ⊂ V (G) with u, v 6∈ P be the intermediate
vertices between u and v on the path. If P consists only of degree-2 vertices then we call P a 2-path of
u and v.

The maximum degree of G is denoted ∆(G) and d(G) = 2|E(G)|/|V (G)| is its average degree. A
cubic graph consists only of degree-3 vertices. A subcubic graph has maximum degree at most 3. A
(k1, k2, ..., kd) vertex is a degree-d vertex with all neighbors of degree k1, k2, ..., kd. A separation (L, S,R)
of G is a partition of its vertex set into the three sets L, S,R such that no vertex in L is adjacent to
any vertex in R. The sets L, S,R are also known as the left set, separator, and right set. Using a similar
notion to [20], a separation (L, S,R) of G is balanced with respect to some measure µ, and a branching
constant B if |µ(R)− µ(L)| ≤ 2B and imbalanced if |µ(R)− µ(L)| > 2B.

By convention, µ(R) ≥ µ(L) otherwise, we swap L and R. We use the measure µr defined on page 7
to compute the separation in our algorithm. We will now describe the algorithm #IS which takes as input
a graph G, a separation (L, S,R), and a cardinality function c : {0, 1} × V (G) → N, and computes the
number of independent sets of G weighted by the cardinality function c. For clarity, let cout(v) = c(0, v)
and cin(v) = c(1, v). More precisely, it computes

ind(G, c) =
∑

X⊆V (G)

1(X is an independent set in G) ·
∏

v∈X

cin(v) ·
∏

v∈V \X

cout(v)

where 1(·) is an indicator function which returns 1 if its arguments is true and 0 otherwise. Note that
for a cardinality function c initialized to c(0, v) = c(1, v) = 1 for every vertex v ∈ V (G), we have
that ind(G, c) is the number of independent sets of G. Cardinality functions are used for bookkeeping
during the branching process and have been used in this line of work before. The separation (L, S,R) is
initialized to (∅, ∅, V (G)) and will only come into play when G is subcubic and has no (3,3,3)-vertex. In
this case, the algorithm calls a subroutine #3IS, which constitutes the main contribution of this paper.
#3IS computes a balanced separation of G, preferring to branch on vertices in the separator, readjusting
the separator as needed, and is analyzed using the Separate, Measure and Conquer method.

Skeleton Graph. The skeleton graph Γ(G), or just Γ, of a subcubic graph G is a graph where
the degree-3 vertices of G are in bijection with the vertices in Γ. Two vertices in Γ are adjacent if the
corresponding vertices are adjacent in G, or there exists a 2-path between the corresponding vertices
in G. If G has a separation (L, S,R) then denote (LΓ, SΓ, RΓ) to be the same separation of G in Γ
consisting of only degree-3 vertices. Dragging refers to moving vertices or a set of vertices of G from one
component of (L, S,R) to another, creating a new separation (L′, S′, R′) such that S′ is still a separator
of G.

4

Spider Vertices. As Wahlström’s [29] analysis showed, an unfavorable branching case occurs on
vertices of degree 3 which have neighbors of degree (2,2,2). Due to our algorithm’s handling of these
vertices we narrowed down the undesirable vertices called spider vertices down to a specific list of
properties. If s is a spider vertex then:

• s ∈ S

• s has neighbors of degree (2,2,2)

• Either:

– |NΓ(s) ∩ L| = 2 and NΓ(s) ∩R = {r} with r having neighbors of degree (2,2,2). In this case
we call s a left spider vertex

– |NΓ(s) ∩ R| = 2 and NΓ(s) ∩ L = {l} with l having neighbors of degree (2,2,2). In this case
we call s a right spider vertex

– |NΓ(s) ∩ L| = 1, |NΓ(s) ∩R| = 1, NΓ(s) ∩ S = {s′} and s′ has neighbors of degree (2,2,2). In
this case we call both s and s′ a center spider vertex, which occur in pairs.

A left spider vertex s ∈ S can be dragged to the left along with the 2-path from s to r. If this were ever
to occur, then r would be a right spider vertex, and vice versa.

rs

Figure 1: A left spider vertex s.

Multiplier Reduction. We use a reduction called multiplier reduction to simplify graphs that
have a cut vertex efficiently. Suppose G has a separation (V1, {x}, V2) and G1 = G[V1∪{x}] has measure
at most a constant B. The multiplier reduction can be applied to compute #IS(G, (L, S,R), c) as follows.

1. Let:

• Gout = G1 \ {x}

• Gin = G1 \NG1
[x]

• cout =#IS(Gout,(L[Gout], S[Gout], R[Gout]),c)

• cin = #IS(Gin, (L[Gin], S[Gin], R[Gin]), c)

2. Modify c such that cin(x) = cin(x) · cin and cout(x) = cout(x) · cout

3. Return #IS(G[V2 ∪ {x}], (L, S,R), c)

Since G1 has a measure of constant size, both steps 1 and 2 take polynomial time.

Lazy 2-separator. Suppose there is a vertex x initially chosen to branch on as well as two vertices
{y, z} ⊂ V (G) with d(y) ≥ 3 and d(z) ≥ 3 such that {y, z} is a separator which separates x from G
in a constant measure subgraph. We call such vertices lazy 2-separators, for a vertex x. Similar to
Walhström’s elimination of separators of size 2 in [28], in line 15 of #IS instead of branching on x, if
there exists a lazy 2-separator {y, z} for x we branch on y. A multiplier reduction will be performed
on z in the recursive calls. Prioritizing lazy 2-separators allows to exclude some unfavorable cases when
branching on x.

Associated Average Degree. Similar to [29], we define the associated average degree of a vertex
x ∈ V (G) as α(x)/β(x), in G with average degree d(G) = k where

α(x) = d(x) + |{y ∈ N(x) : d(y) < k}|, and β(x) = 1 +
∑

{y∈N(x)|d(y)<k}

1/d(y). (3)

By selecting vertices with high associated average degree, our algorithm prioritizes branching on vertices
with larger decreases in measure.

5

Algorithm: #IS(G, (L, S,R), c) - #Independent Set algorithm
Input : Graph G = (V,E), separation (L, S,R) of G, cardinality function c
Output : ind(G, c)

1 if V = ∅ then
2 return 1

3 if |V | = 1 then
4 return cin(x) + cout(x) where V = {x}

5 if ∆(G) ≤ 2 then
6 return a solution in polynomial time

7 else if G is not connected and has j connected components G1, G2, ..., Gj then

8 return
∏j

i=1 #IS(Gi, (∅, ∅, V (Gi)), c)

9 else if ∆(G) = 4, and all degree-4 vertices of G only have degree-2 neighbors and there exists a
vertex x where d(x) = 4 and x has a 2-path to a degree-3 vertex then

10 Branch on x

11 else
12 Let vertex x ∈ V be a vertex of maximum degree, secondarily maximizing the associated

average degree α(x)/β(x)
if the multiplier reduction applies then

13 Apply the multiplier reduction.

14 else if there exists a separator of size 2: {y, z}, with d(y) ≥ 3 and d(z) ≥ 3 whose removal
leaves G disconnected and either removes or leaves NG[x] in a component with constant
measure at most B then

15 Branch on y.

16 else
17 if ∆(G) = 3 and G has no (3,3,3) vertex then
18 return #3IS(G, (L, S,R), c)

19 else
20 Branch on x

Branching. We now outline the branching routine used to recursively solve smaller instances of
the problem. Suppose we have a graph G, a separation (L, S,R), and a cardinality function c. For a
vertex x we denote the following steps as branching on x.

1. Let:

• Gout = G \ {x}

• Gin = G \ (N(x) ∪ {x})

• cout = #IS(Gout, (L[Gout], S[Gout], R[Gout]), c)

• cin = #IS(Gin, (L[Gin], S[Gin], R[Gin]), c)

• c′out = cout(x)

• c′in = cin(x) ·
∏

v∈N(x) cout(v)

2. Return c′out · cout + c′in · cin

4 Running Time Analysis

This section describes the running time analysis for #IS and #3IS, conducted via compound measures.
Constraints are presented as branching vectors (δ1, δ2) which equates to the constraints 2−δ1 +2−δ2 ≤ 1.
We first describe some special vertex weights.

6

Algorithm: #3IS(G,(L, S,R), c) - #Independent Set algorithm for subcubic graphs with no
(3,3,3) vertex

Input : Graph G = (V,E), separation (L, S,R) of G, cardinality function c
Output : ind(G, c)

1 if S = ∅ then
2 Compute a balanced separation (L, S,R) with respect to the measure µ using Lemma 2.

3 if µr(L) > µr(R) then
4 Swap L and R

5 (L, S,R) := simplify(G, (L, S,R))
6 Let s ∈ S be a maximum degree vertex with maximum associated average degree
7 if the multiplier reduction applies then
8 Apply the multiplier reduction.

9 else if there exists a separator of size 2: {y, z}, with d(y) ≥ 3 and d(z) ≥ 3 whose removal leaves
G disconnected and either removes or leaves NG[s] in a component with constant measure at most
B then

10 Branch on y.

11 else if µr(R)− µr(L) ≤ 2B and s has neighbors of degree (2,2,2) then
12 return spider(s,G, (L, S,R), c)

13 else if µr(R)− µr(L) > 2B and s has two neighbors in L and one neighbor r in R, let r′ be the
first degree-3 vertex or vertex from S encountered when moving from s to the right along a 2-path
in G then

14 return #IS(G, (L ∪ P ∪ {s}, (S \ {s}) ∪ {r′}, R \ (P ∪ {r′})), c)

15 else if µr(R)− µr(L) > 2B and there exists r ∈ NΓ(s) ∩R with NΓ(r) ∩R = ∅ then
16 Let {r, r′} = NΓ(s) ∩R with NΓ(r) ∩R = ∅.
17 Branch on r′.

18 else
19 Branch on s.

4.1 Measures

Measure with no (3,3,3) vertex. When using the Separate, Measure and Conquer technique from
[20] the measure of a cubic graph instance G with no (3,3,3) vertices consists of additive components µs

and µr, the measure of vertices in the separator, and those in either L or R, respectively. Let S′ ⊆ S be
the set of all spider vertices, si and ri refer to the weight attributed to a separator vertex and a right
vertex, in R or L, respectively, of degree i. Left and right spider vertices have weight s′3. In a center
spider vertex pair s and s′, one of them has weight s′3 while the other takes on an ordinary weight of
s3. These structurally applied weights allows amortization of the spider vertex cases against non-spider
vertices. Define the measure µ8/3 as

µ8/3 = µs(S) + µr(R) + µo(L, S,R), (4)

where µs(S) = |S′| · s′3 +
∑

v∈S\S′ sd(v), µr(R) =
∑

v∈R rd(v), B = 6s3 and

µo(L, S,R) = max

{

0, B −
µr(R)− µr(L)

2

}

+ (1 +B) · log1+ǫ(µr(R) + µs(S)).

We also require that si ≥ si−1 and ri ≥ ri−1 for i ∈ {1, 2, 3}. The constant B is larger than the maximum
change in imbalance in each transformation in the analysis, except the separation transformation.

Lemma 3. For a balanced separation (L, S,R) of a graph G with average degree d = d(G), an upper
bound for the measure µ8/3 is:

µ8/3(d) ≤



















n
6 (d− 2)s′3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 2 ≤ d ≤ 28
11

n
4 (8 − 3d)s′3 +

n
12 (11d− 28)s3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 28
11 < d ≤ 8

3

7

Algorithm: simplify(G, (L, S,R)) - Applies simplification rules.
Input : Graph G = (V,E), separation (L, S,R) of G
Output : (L, S,R)

1 if there exists a vertex s ∈ S with no neighbor in L then
2 return simplify(L, S\{s}, R∪ {s})

3 else if there exists a vertex s ∈ S with no neighbor in R then
4 return simplify(L∪ {s}, S\{s}, R)

5 else if there exists a vertex s ∈ S with d(s) = 2 then
6 if (L, S,R) is balanced then
7 Let l ∈ (NΓ ∩ L) ∪ S. Let P be the 2-path for s and l.
8 return simplify(G, (L \ (P ∪ {l}), (S \ {s}) ∪ {l}, R ∪ P ∪ {s}))

9 else
10 Let r ∈ (NΓ ∩R) ∪ S. Let P be the 2-path for s and r.
11 return simplify(G, (L ∪ P ∪ {s}, (S \ {s}) ∪ {r}, R \ (P ∪ {r})))

12 else if there exists a vertex s ∈ S which does not have a vertex l ∈ NΓ(s) ∩ L such that
NΓ(l) ∩ L 6= ∅ then

13 For l ∈ (NΓ(s) ∩ L), let Al = (NΓ(l) ∩ S), let P(s,l) be the 2-path from s to l, and for a ∈ Al

let P(l,a) ⊂ V (G) be the 2-path from l to a.
14 Let B = (NΓ(s) ∩ S) and for b ∈ B let Qb ⊂ V (G) be the 2-path from s to b.

15 Let C =
(
⋃

b∈B Qb

)

∪ (NΓ(s) ∩ L) ∪
(

⋃

l∈NΓ(s)∩LAl ∪ P(s,l) ∪
(
⋃

a∈Al
P(l,a)

)

)

16 return simplify(G, (L \ C, S\({s} ∪ C), R ∪ {s} ∪ C))

17 else if there exists a vertex s ∈ S which does not have a vertex r ∈ NG(s) ∩R such that
NΓ(r) ∩R 6= ∅ then

18 For r ∈ (NΓ(s) ∩R), let Ar = (NΓ(r) ∩ S), let P(s,r) be the 2-path from s to r, and for a ∈ Ar

let P(r,a) ⊂ V (G) be the 2-path from r to a.
19 Let B = (NΓ(s) ∩ S) and for b ∈ B let Qb ⊂ V (G) be the 2-path from s to b.

20 Let C =
(
⋃

b∈B Qb

)

∪ (NΓ(s) ∩R) ∪
(

⋃

r∈NΓ(s)∩RAr ∪ P(s,l) ∪
(
⋃

a∈Ar
P(r,a)

)

)

21 return simplify(G, (L∪ {s} ∪ C, S\({s} ∪ C), R \ C))

22 else
23 return (G, (L, S,R))

which is maximised when d = 8
3 with the value

µ8/3 ≤
n

9
s3 +

1

2

(

5n

9
r3 +

n

3
r2

)

+ µo(L, S,R) + o(n)

if constraints r2
2 ≤ s′

3

11 + 5r3
22 + 5r2

22 ≤ s3
9 + 5r3

18 + r2
3 are satisfied.

General Measure. In order to analyze higher degree cases, we use a measure of the form

µi(G) =
∑

v∈G

rd(v) + µo(L, S,R) where ∆(G) = i

for each part of the compound measure. The term µo(L, S,R) is the same sub-linear term from the
Separate, Measure and Conquer analysis on cubic graphs which needs to be propagated into the higher
degree analyses.

4.2 Degree 3 Analysis

#IS can be solved in polynomial time when ∆(G) ≤ 2 [26]. However, stepping up to cubic graphs is
a much harder problem. Greenhill [21] proves that counting independent sets is actually a #P-hard
problem even for graphs with maximum degree 3.

Lemma 4. Algorithm #IS applied to a graph G with ∆(G) ≤ 3 and no (3, 3, 3) vertex has running time
O(1.0963n).

8

Algorithm: spider(s,G, (L, S,R), c) - Handles vertex s with neighbor degree (2,2,2)
Input : Vertex s with neighbors of degree (2,2,2), Graph G = (V,E), separation (L, S,R) of

G, cardinality function c
Output : ind(G, c)

1 if |NG(s) ∩R| = 1 then
2 Let {r} = NΓ(s) ∩R and let Pr be the 2-path from s to r.
3 if r does not have neighbor degree (2,2,2) then
4 return #3IS(G, (L ∪ Pr, (S ∪ {r}) \ {s}, R \ (Pr ∪ {r})), c)

5 else if |NG(s) ∩ L| = 1 then
6 Let {l} = NΓ(s) ∩ L and let Pl be the 2-path from s to l.
7 if l does not have neighbor degree (2,2,2) then
8 return #3IS(G, (L \ (Pl ∪ {l}), (S ∪ {l}) \ {s}, R ∪ Pl), c)

9 else if |NΓ(s) ∩ SΓ| = 1 then
10 Let {s′} = NΓ(s) ∩ SΓ, {l} = NΓ(s) ∩ LΓ and {s, s1, s2} = NΓ(l).
11 for i ∈ {1, 2} do
12 if si ∈ S and |NG(si) ∩R| = 1 then
13 Let {ri} = NG(si) ∩R
14 (L, S,R) := (L ∪ {si}, (S ∪ {ri}) \ {si}, R \ {ri})

15 Branch on l.

16 else
17 Branch on s.

Proof sketch. We present a sketch of the proof, emphasizing the tight constraints generated from
#3IS, simplify and spider. A complete analysis will be deferred until the appendix. As suggested in
[20], each case will provide constraints that the weights described above will need to satisfy.

Some trivial constraints we must satisfy are r0 = r1 = s0 = s1 = 0 since these vertices can easily be
eliminated and require no branching rules. Our algorithm considers skeleton graph vertices, and several
rules drag entire 2-paths from one separation to another, requiring r2 = 0. In simplify, line 8 implies
the constraint s2 + s′3 + 1

2 (r2 − r3) ≤ 0, enabling us to move a degree-3 vertex into the separator by
dragging out a degree-2 vertex.

From #3IS, line 2 imposes the constraint 1
6s

′
3+

5
12r3 ≤ r3. If a (2,2,3) vertex s is chosen to branch on in

line 19 as shown in Figure 2(a), then we get the constraint
(

s3 +∆s3 +
1
2 (2∆r3)− 3δ, s3 + 2∆s3 +

1
2 (r3 + 2∆r3)− 4δ

)

.

The last tight constraint is from spider line 17, displayed in Figure 3(a), giving the constraint
(

s′3 +
3
2∆r3, s

′
3 +

3
2∆r3

)

.
While the cases in Figure 2(b) and Figure 3(b) are not tight, they are of interest since these cases

branch on vertices located outside the separator and it is guaranteed that s is removed from the separator
after branching.

s

S RL

(a) Balanced branching on s

r

S RL S RL

(b) Imbalanced branching on r

s

S RL

(c) Imbalanced branching on s

Figure 2: Worst case configurations for non-spider vertex branching in #3IS

Weights and Results. The combination of all constraints obtained in this way, minimizing the
measure results in the measure of µ8/3 = 0.13262 ·n, and that the running time is O(2µ8/3) ⊆ O(20.13262n)
results in an upper bound of O(1.0963n). The specific weights are summarized below.

r0 = r1 = r2 = 0, r3 = 0.2 + o(n), s0 = s1 = 0, s2 = 0.6, s3 = 0.6838, s′3 = 0.7

9

s
l

S RL

(a) Balanced branching on l

s

S RL

(b) Balanced branching on s

Figure 3: Worst case configurations for spider vertex branching in spider

Lemma 5. Algorithm #IS applied to a graph G with d(G) ≤ 3 has running time O(1.1389n) and uses
polynomial space.

The algorithm #IS uses subroutine #3IS, which we analyze the measure and the weights for. We
equate the Separate, Measure and Conquer weights with weights of the measure µ3, based on the com-
pound analysis from Wahlström [29]. As Wahlström’s analysis only contains weights w′

3 and w′
2, for

vertices of degree 3 and degree 2 respectively, the measure is

µ3(G) = ((d− 2)w′
3 + (3− d)w′

2)n+ µo(L, S,R)

where d = d(G) is the average degree of a cubic graph, and µo(L, S,R) is the sub-linear term left over
from the average degree 8/3 analysis.

In the case of a graph G with no (3,3,3) vertex, in order for Lemma 1 to apply, the values of w1 and

w2 must satisfy inequalities r2
2 ≤ w2,

s′
3

11 +
5r3
22 + 5r2

22 ≤ 6w3

11 + 5w2

11 ,
s3
9 + 5r3

18 + r2
3 ≤ 2w3

3 + w2

3 , induced
when d = 2, 2811 , and

8
3 for µ8/3 respectively. This results in the weights w3 = 0.1973 and w2 = 0.0033

when G has no (3,3,3) vertex.
We also let w′

3 ≥ 0 and w′
2 ≥ 0 be the weights associated with vertices of degree 3 and degree 2 respec-

tively, for a subcubic graph G. Using the analysis by compound measures with µ3(G) =
∑

i∈{2,3} w
′
i ·ni,

the following constraint µ8/3(G) = µ3(G) when d(G) = 8/3 is required for a valid compound measure.
This can be rewritten as 2w3+w2 = 2w′

3+w′
2. Branching on a (3,3,3) vertex, the only type of degree-3

vertex that will be branching in #IS, gives a branching vector of (4w′
3 − 3w′

2, 8w
′
3 − 4w′

2). Setting the
weights w′

3 = 0.1876 and w′
2 = 0.0228 satisfies the system of constraints described above and by using

the measure µ3(G), results in a running time of O∗(1.1389n).

Lemma 6. For a graph G with maximum degree 4, #IS can be solved in time O∗(1.2070n).

Theorem 1. #IS can be solved in time O∗(1.2356n) and polynomial space.

If we plug in a simple pathwidth-based subroutine [15] for graphs of maximum degree 3, we obtain
the following exponential-space result.

Theorem 2. #IS can be solved in time O∗(1.2330n).

Acknowledgements We thank MagnusWahlström for clarifying an issue of the case analysis in [29]
and an anonymous reviewer for useful comments on an earlier version of the paper. Serge Gaspers is the
recipient of an Australian Research Council (ARC) Future Fellowship (FT140100048) and acknowledges
support under the ARC’s Discovery Projects funding scheme (DP150101134).

10

A Additional details and proofs

Lemma 2. Let B ∈ R. Let µ be a measure for graph problems such that for every graph G = (V,E),
every R ⊆ V , and every v ∈ V , we have that |µ(R∪{v})−µ(R)| ≤ B. Assume that µ(R), the restriction
of µ to R, can be computed in polynomial time. If there is an algorithm computing a path decomposition
of width at most k of a graph G in polynomial time, then there is a polynomial time algorithm computing
a separation (L, S,R) of G with |S| ≤ k and |µ(L)− µ(R)| ≤ B.

Proof. The proof is basically the same as for the separation computation from [20], but we repeat it
here for completeness. First, compute a path decomposition of width k in polynomial time. We view a
path decomposition as a sequence of bags (B1, . . . , Bb) which are subsets of vertices such that for each
edge of G, there is a bag containing both endpoints, and for each vertex of G, the bags containing this
vertex form a non-empty consecutive subsequence. The width of a path decomposition is the maximum
bag size minus one. We may assume that every two consecutive bags Bi, Bi+1 differ by exactly one
vertex, otherwise we insert between Bi and Bi+1 a sequence of bags where the vertices from Bi \ Bi+1

are removed one by one followed by a sequence of bags where the vertices of Bi+1 \ Bi are added one
by one; this is the standard way to transform a path decomposition into a nice path decomposition
of the same width where the number of bags is polynomial in the number of vertices [5]. Note that

each bag is a separator and a bag Bi defines the separation (Li, Bi, Ri) with Li = (
⋃i−1

j=1 Bj) \ Bi and
Ri = V \ (Li ∪Bi). Since the first of these separations has L1 = ∅ and the last one has Rb = ∅, at least
one of these separations has |µr(Li)−µr(Ri)| ≤ B. Finding such a bag can clearly be done in polynomial
time.

Lemma 3. For a balanced separation (L, S,R) of a graph G with average degree d = d(G), an upper
bound for the measure µ8/3 is:

µ8/3(d) ≤



















n
6 (d− 2)s′3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 2 ≤ d ≤ 28
11

n
4 (8 − 3d)s′3 +

n
12 (11d− 28)s3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 28
11 < d ≤ 8

3

which is maximised when d = 8
3 with the value

µ8/3 ≤
n

9
s3 +

1

2

(

5n

9
r3 +

n

3
r2

)

+ µo(L, S,R) + o(n)

if constraints r2
2 ≤ s′

3

11 + 5r3
22 + 5r2

22 ≤ s3
9 + 5r3

18 + r2
3 are satisfied.

Proof. Let d = d(G) be the average degree of G. For an appropriate upper bound of µ8/3 we first consider
the upper bound on the number of separator vertices, also giving us an upper bound on the number of
spider vertices:

#Spiders ≤ |S| ≤
n3

6
+ o(n3) =

n(d− 2)

6
+ o(n) (5)

where n3 = n(d− 2) is the number of degree-3 vertices in G, since a subcubic graph with n3 vertices of
degree 3 has pathwidth at most n3

6 + o(n3) [13]
As we have no vertex with neighbors of (3,3,3), every degree-3 vertex is incident to an edge incident

to a degree-2 vertex. However, each spider vertex has need 4 more edges incident to degree-2 vertices.
As the number of edges incident to degree-2 vertices is 2n2 where n2 = n(3−d) is the number of degree-2
vertices in G, and there are at least n3 of those edges taken up to be incident to a degree-3 vertex, then
an upper bound on the number of spiders is:

#Spiders ≤
2n2 − n3

4
= n

(

2−
3

4
d

)

(6)

Since both upper bounds are valid for all 2 ≤ d ≤ 8/3 then a more accurate upper bound can be
found by taking the minimum of Equation 5 and 6. This results in:

#Spiders ≤

{

n
6 (d− 2) + o(n) if 2 ≤ d ≤ 28

11

n
(

2− 3
4d

)

if 28
11 < d ≤ 8

3

11

As |S| ≤ n
6 (d− 2) for all 2 ≤ d ≤ 8

3 , with the weight for spider vertices s3 being greater than regular
non-spider degree-3 vertices in the separator, then an upper bound for µ8/3 would have as many spider

vertices in S as possible for a given average degree d. For 2 ≤ d ≤ 28
11 it is possible to have all vertices in

S be spider vertices, so this gives the greatest value of µ8/3. However, from
28
11 < d ≤ 8

3 we use Equation
5 to upper bound |S| and also place in S as many spider vertices with weight s′3 as Equation 6 allows,
with the rest of the vertices in S being of weight s3.

µ8/3 ≤



















n
6 (d− 2)s′3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 2 ≤ d ≤ 28
11

n
4 (8− 3d)s′3 +

n
12 (11d− 28)s3 +

1
2

(

5n
6 (d− 2)r3 + n(3− d)r2

)

+µo(L, S,R) + o(n) if 28
11 < d ≤ 8

3

For maximum value, let f1(d) =
n
6 (d − 2)s′3 +

1
2 (

5n
6 (d − 2)r3 + n(3 − d)r2) and f2(d) =

n
4 (8 − 3d)s′3 +

n
12 (11d − 28)s3 +

1
2 (

5n
6 (d − 2)r3 + n(3 − d)r2). We notice that f1 and f2 are both linear functions in d

and f1(
28
11) = f2(

28
11) meaning that the endpoints: f1(2), f2

(

28
11

)

, f2
(

8
3

)

are the only points of interest.

For the measure to not increase on lower degrees, we require that f1(2) ≤ f2
(

28
11

)

≤ f2
(

8
3

)

which results
in the constraints

r2
2

≤
s′3
11

+
5r3
22

+
5r2
22

≤
s3
9

+
5r3
18

+
r2
3

and the maximum value achieved by f2 when average degree d = 8
3 :

µ8/3 ≤ f2

(

8

3

)

+ µo(L, S,R) + o(n) =
n

9
s3 +

1

2

(

5n

9
r3 +

n

3
r2

)

+ µo(L, S,R) + o(n)

Lemma 4. Algorithm #IS applied to a graph G with ∆(G) ≤ 3 and no (3, 3, 3) vertex has running time
O(1.0963n).

Proof. We will analyze the running time with respect to the measure µ8/3 described above. As
suggested in [20] we will provide constraints that these weights need to satisfy, and the provided values
minimize the measure. The measure µ8/3 can be viewed in two regimes; a balanced separation, where

µr(R) − µr(L) ≤ 2B resulting in µ8/3 = µs(S) +
1
2 (µr(R) − µr(L)) + µo(L, S,R) and an imbalanced

separation, where µr(R)− µr(L) > 2B resulting in µ8/3 = µs(S) + µr(R) + µo(L, S,R). To characterize
decreases in vertex degrees, let ∆si = si − si−1 and ∆ri = ri − ri−1. Trivial constraints are

r0 = r1 = 0 s0 = s1 = 0.

Our algorithm handles 2-paths as if they were single edges. Therefore we constrain that r2 = 0.

Constraints from #IS Simplification rules in lines 2 to 8 in #IS take polynomial time. If we are
given a graph G with ∆(G) ≤ 3 and no (3, 3, 3) vertex and the lazy 2-separator rule in line 15 did not
apply, then we enter the subroutine #3IS.

Constraints from simplify The simplification rules in simplify either reduce the separator size
by removing a vertex or the rule drags degree-2 vertices in S away making S consist only of degree-3
vertices. For vertex dragging to R in line 2 of simplify, the most constraining instances are the balanced
ones:

−sd + rd ≤ 0 where d ∈ {2, 3} and − s′3 + r3 ≤ 0 .

However, for vertex dragging to L in 2, the imbalanced instances are most constraining

−sd + 1/2 · rd ≤ 0 where d ∈ {2, 3} and − s′3 + 1/2 · r3 ≤ 0

but this is no more constraining than line 2.
Line 8 drags to R the degree-2 separator vertex s and a 2-path, ending in a vertex l which is either

in S or has degree 3, which itself is dragged into S. This most constraining in the balanced case

−s2 + s′3 +
1

2
· (r2 − r3) ≤ 0;

12

In line 11 the most constraining case is

−s2 + s′3 − r3 ≤ 0 .

The operations in line 16 drag neighbors and associated 2-paths from L into R, also removing s ∈ S.
Since r2 = 0 we can simplify the most constraining case, which is imbalanced, to: −s3 + 2r3 ≤ 0. Line
21 is most constraining in the balanced case, which induces the constraint −s3 ≤ 0.

Claim 1. After simplify has been applied to a graph G and it’s separation (L, S,R), for s ∈ S there
exists r ∈ NΓ(s)∩R such that NΓ(r)∩R 6= ∅, and also there exists l ∈ NΓ(s)∩L such that NΓ(l)∩L 6= ∅

Proof. If there is a vertex s that does not satisfy the claim, then line 16 or 21 would trigger and remove
s from S.

Constraints from spider The first two conditions of lines 4 and 8 in spider aim to drag into the
separator a (2,2,3) or (2,3,3) vertex in order to branch more efficiently on. In the worst case there is no
change in measure since s is replaced by r in the separator. Since the separation (L, S,R) is balanced,
moving Pr and r or Pl and l also does not change the measure as L and R contribute equally to µ8/3.

In line 14, s is a center spider vertex with attributed weight s′3. We branch on l ∈ L, which is a
skeleton neighbor of s. The for loop drags vertices which are skeleton neighbors of l with no change in
measure so that when l is branched on, it obtains a decrease in measure of at least 3

2r3 by it’s neighbors.
However, we choose l to branch on because on both subproblems, branching on l causes the removal of
s from the separator as it no longer has neighbors in L. This results in the branching constraint:

(

s′3 +
1

2
(r3 + 2∆r3), s

′
3 +

1

2
(r3 + 2∆r3)

)

.

Line 17 finds a valid left or right spider vertex and branches on it, resulting in the constraints

(

s′3 +
3

2
∆r3, s

′
3 +

3

2
∆r3

)

.

Constraints from #3IS - Computing Separator. Much like in [20], computing a new separator
in line 2 of #3IS imposes the constraint

s′3/6 + 5/12 · r3 < r3, or s′3 < 7/2 · r3.

In line 5 the algorithm simplifies the graph G and it’s separation (L, S,R) through a call to simplify,
which itself imposes new constraints.

The reduction rule in line 14 is the same as the constraints for line 11 in simplify. We now deal with
branching on lazy-2 separators and regular branching, in both imbalanced and balanced cases, separately.
As decreasing a degree-3 vertex to a degree-2 vertex may result in the introduction of a spider vertex s′3
from s3, let δ = s′3 − s3 be the increase in measure from a spider vertex creation, offset by either a ∆s3
or 1

2∆r3 decrease in measure.

Constraints from #3IS - Balanced Lazy 2-Separator Branching Suppose the instance is
balanced and #3IS selects a vertex s ∈ S but s has a lazy 2-separator {y, z} which line 10 of #3IS

branches on instead of s. As the degree-3 vertices y, z and s are all removed in the branches of this
problem, as well as the fact that due to Claim 1 for L and R there will be another degree-3 vertex that
will be removed, we obtain the branching vector

(

s3 +
1

2
(2r3 + 2∆r3)− 2δ, s3 +

1

2
(2r3 + 2∆r3)− 2δ

)

.

The worst case contains measure increases of 2δ since the two decreases of 1
2∆r3 could create a spider

vertex, and there are at least 2 of them. We could have more δ decreases, but this only occurs when
we have a 1

2∆r3 decrease, or ∆s3 decrease in the worst case. But since δ ≤ ∆s3 ≤ 1
2∆r3 the tightest

constraint occurs at the smallest number of δ possible.

13

Constraints from #3IS - Imbalanced Lazy 2-Separator Branching Once again, we have
vertices s ∈ S and a lazy 2-separator {y, z}, but the instance is imbalanced. First assume either 1 or
more of {y, z} is in R. In this case, we disconnect s, a y or z, as well as some other vertex r ∈ R due to
Claim 1. At worst this results in the branching vector (s3 + 2r3, s3 + 2r3)

In the case where {y, z} ∈ L also divert to Claim 1 which guarantees that there is a skeleton neighbor
r ∈ NΓ(s) ∩R, which itself has a neighbor r′ ∈ NΓ(r) ∩ R. These two combined with s are removed in
both branches, otherwise s cannot be removed and {y, z} is not a lazy-2 separator. This also results in
the branching vector (s3 + 2r3, s3 + 2r3)

Constraints from #3IS - Balanced Branching: neighbor in separator Consider the balanced
branching case where we branch on s ∈ S and s has a neighbor s′ ∈ S. Let u ∈ R and v ∈ L denote the
two other neighbors. In the worst case, u and v are both degree-2 vertices, meaning in both branches
we only reduce a vertex of weight r3 to r2, but never delete one. Since s′ reduces in degree in the first
branch and is removed in the second branch, we get the following branching vector

(

s3 +∆s3 +
1

2
(2∆r3)− 3δ, 2s3 +

1

2
(2∆r3)− 2δ

)

.

Constraints from #3IS - Balanced Branching: no neighbor in separator. Next consider the
balanced branching case where the algorithm branches on a non-spider vertex s ∈ S with no neighbors
in the separator S. Let u, u′ ∈ R and v ∈ L denote its neighbors. Since s is a non-spider vertex then s
is either a (2,2,3) or (2,3,3) vertex.

We first consider s as a (2,2,3) vertex. In the worst case, the single degree-3 vertex of weight r3
2

would be in R or L since a weight of s3 > r3, and in practice it is much larger. Of the two remaining
neighbors, they are the start of a 2-path to another degree-3 vertex. Now both of these cannot be in S
so we will have a decrease of at least ∆r3

2 , leaving a decrease of ∆s3 for the last neighbor.

In the second case, we also get a decrease of ∆s3 +
∆r3
2 from the degree-3 neighbor of s. This is due

to Claim 1 forcing at least 1 of the neighbors to be in R. This results in a branching vector of

(

s3 +∆s3 +
1

2
(2∆r3)− 3δ, s3 + 2∆s3 +

1

2
(r3 + 2∆r3)− 4δ

)

.

Now if s is a (2,3,3) vertex, we get 2 degree 3 neighbors of s. In the worst case, the degree 2 neighbor
of s is the start of a 2-path to another vertex in S.

(

s3 +∆s3 +
1

2
(2∆r3)− 3δ, s3 + 3∆s3 +

1

2
(2r3 + 2∆r3)− 5δ

)

.

Constraints from #3IS - Imbalanced Branching: neighbor in separator. In the imbalanced
instances of G the measure µ8/3 simplifies to µ8/3 = µs(S) + µr(R) + µo(L, S,R). Suppose we choose
s ∈ S to branch on and s has a neighbor s′ ∈ S. By Claim 1, s has a skeleton neighbor r ∈ NΓ(s) ∩ R.
Now in the worst case, r is only a skeleton neighbor, and the actual neighbor r′ ∈ NG(s)∩R is of degree
2. By considering the removal, or reduction of degree, of s, s′ and r′ then we get the following worst
case constraint

(s3 +∆s3 + r3 − 3δ, 2s3 + r3 + 5δ) .

The first branch has a 3δ term since we get at most 1 decrease for each neighbor. The 5δ term comes
from the fact that the left neighbor l ∈ NG(s) ∩ L does not contribute any weight to µ8/3 meaning it
could be degree 3. Now s′ is also of degree 3, so in the second case where we remove s′ and l, these
two could create 4 spider vertices. The last possible increase comes from r being reduced to a degree-2
vertex.

Constraints from #3IS - Imbalanced Branching: no neighbors in separator. There are two
branching rules to consider in this case. First first branching occurs in line 17 where instead of branching
on s ∈ S we branch on one of its skeleton neighbors in R. The other case occurs when we branch on s
as normal in line 19.

In line 17, we are given the case where s has 1 skeleton neighbor in R. This means that we don’t get a
beneficial branching by branching on s. However, in a similar method to line 15 of spider, if we branch

14

on r ∈ NΓ(s)∩R such that NΓ(r)∩R 6= ∅, then in both branches, we are able to remove s entirely from
the separator due to the simplification rules in simplify. We get the following worst case constraint

(r3 + s3 +∆r3 +∆s3 − 3δ, r3 + s3 +∆r3 +∆s3 − 3δ) .

Otherwise, we progress to line 19, which guarantees that we have 2 skeleton neighbors of s in R. This
results in the following constraint

(s3 + 2∆r3 − 3δ, s3 + 2∆r3 − 4δ) .

Weights and Results. The combination of all constraints obtained in this way, minimizing the
measure results in the measure of µ8/3 = 0.13262 ·n, and that the running time is O(2µ8/3) ⊆ O(20.13262n)
results in an upper bound of O(1.0963n). The specific weights are summarized below.

r0 = r1 = r2 = 0, r3 = 0.2 + o(n), s0 = s1 = 0, s2 = 0.6, s3 = 0.6838, s′3 = 0.7

A.1 Degree-4 Analysis

For a graph with maximum degree 4, analysis is done with a measure of

µ4 =
∑

i≤4

wi · ni + 1

(

G has only degree-4 and degree-2 vertices and
no degree-4 vertex has a degree-4 neighbor

)

ψ + µo(L, S,R)

where wi are weights attributed to vertices of degree i, ni are the number of vertices with degree i and ψ
is a potential. We can ignore lower weights since due to simplification rules we have for vertices of with
degree 0 or 1.

Potentials in Degree-4 Analysis. Potentials are used for branching on a degree-4 vertex v with
only degree-2 neighbors. In case (a), we have that all 2-paths starting from v, have endpoints of degree
4. Case (b) has at least one 2-path from v that ends up in a degree-3 vertex.

Degrees of Neighbors Highest Average Degree Branching
(2,2,2,2) (a) 3 τ(5w4 − 4w3 + 4w2 − ψ, 5w4 − 4w3 + 4w2 − ψ)
(2,2,2,2) (b) 3 τ(4w4 − 2w3 + 3w2 + ψ, 4w4 − 2w3 + 3w2 + ψ)
(2,2,2,3) 3 τ(4w4 − 2w3 + 2w1, 4w4 − 2w3 + 3w2)
(2,2,2,4) 3 τ(5w4 − 4w3 + 3w2, 6w4 − 4w3 + 3w2)
(2,2,3,3) 3 τ(3w4, 5w4 − 2w3 + 2w2)
(2,2,3,4) 3 τ(4w4 − 2w3 + w2, 5w4 − 2w3 + 2w2)
(2,2,4,4) 3 τ(5w4 − 4w3 + 2w2, 7w4 − 4w3 + 2w2)
(2,3,3,3) 16/5 = 3.2 τ(2w4 + 2w3 − 2w2, 4w4 + w2)
(2,3,3,4) 42/13 ≈ 3.23 τ(3w4 − w2, 6w4 − 2w3 + w2)
(2,3,4,4) 36/11 ≈ 3.27 τ(4w4 − 2w3, 6w4 − 2w3 + w2)
(2,4,4,4) 10/3 ≈ 3.33 τ(5w4 − 4w3 + w2, 8w4 − 4w3 + w2)
(3,3,3,3) 24/7 ≈ 3.43 τ(w4 + 4w3 − 4w2, 5w4)
(3,3,3,4) 7/2 = 3.5 τ(2w4 + 2w3 − 3w2, 5w4)
(3,3,4,4) 18/5 = 3.6 τ(3w4 − 2w2, 7w4 − 2w3)
(3,4,4,4) 15/4 = 3.75 τ(4w4 − 2w3 − w2, 7w4 − 2w3)
(4,4,4,4) 4 τ(5w4 − 4w3, 9w4 − 4w3)

Figure 4: Possible cases when branching on a degree-4 vertex

Lemma 6. For a graph G with maximum degree 4, #IS can be solved in time O∗(1.2070n).

Proof. The degree-4 analysis uses pivot points 3, 3.2, 3.5, 3.75 and 4, shown as different rows of Figure 5.
Pivot points generate multiple compound measures with weights and constraints for each. By including
constraints generated from the table of branching factors in Figure 4, we gain satisfying weights for µ4,
shown in Figure 5. This results in a running time upper bound of O(2µ4n) ⊆ O(20.2713n) ⊆ O(1.2070n)
in the worst case for degree-4 graphs.

15

Average Degree w2 w3 w4 Time
2-3 0.0227913 0.1875202 0.3295266 O(1.13880n)
3-3.2 0.0659881 0.1875202 0.2863298 O(1.15451n)
3.2-3.5 0.0795475 0.1897802 0.2772902 O(1.17571n)
3.5-3.75 0.0911988 0.1936639 0.2734064 O(1.19207n)
3.74-4 0.1057321 0.1998925 0.2713302 O(1.2070n)

Figure 5: Component measures
∑

iwi · ni for maximum degree 4

A.2 Degree-5+ Analysis

The following two theorems show for degree-5+ graphs the generalized procedure for constructing branch-
ing vectors for v and all its possible combinations of degrees of neighbors.

Lemma 7. Suppose a graph G is 3-connected. Let v ∈ V (G) be a vertex to be branched on in #IS

with d(v) = {5, 6}. Let out(v) be the number of outgoing edges of type (u, u′) such that u ∈ N(v) and
u′ /∈ N(v) ∪ {v}. Then

out(v) =







































3 If d(v) = 5 and
∑

u∈N(v) d(u) = 0 mod 2 or

d(v) = 6 and
∑

u∈N(v) d(u) = 1 mod 2

4 If d(v) = 5 and
∑

u∈N(v) d(u) = 1 mod 2 or

d(v) = 6 and
∑

u∈N(v) d(u) = 0 mod 2

5 If neighbors of v have degree (2, 2, 2, 2, 2) or (2, 2, 2, 2, 2, 3)

6 If neighbors of v have degree (2, 2, 2, 2, 2, 2).

Proof. Let out(v) represent the minimum number of outgoing edges xy from N(v) with x ∈ N(v) and
y /∈ N(v). We suppose we have a 3-connected graph with all simplification rules applied. This means
that there are multiplier reduction does not apply, and there are no lazy 2-separators. If out(v) = 0 then
we have an instance of constant size, which can be solved in constant time. If out(v) = 1 we can apply
the multiplier reduction, which is a contradiction. Similarly, if out(v) = 2 we have a lazy 2-separator
which is also a contradiction. Hence out(v) ≥ 3.

Suppose d(v) = 5 and v has neighbors with degrees (2, 2, 2, 2, 2). Any edge adjacent to two neighbors
of v meansG can be reduced by multiplier reduction by branching on v, so out(v) = 5 Similarly, if d(v) = 6
and v has neighbors (2, 2, 2, 2, 2, 2), then out(v) = 6.

Supppose d(v) = 6 and v has neighbors (2, 2, 2, 2, 2, 3). There are 7 edges adjacent to N(v) but
not v. Suppose u ∈ N(v) and d(u) = 3. If out(v) < 5 then at least 3 of these 7 edges must connect
two vertices in N(v), but at most two of them are adjacent to u. Thus there exists one edge {a, b} with
d(a) = d(b) = 2. But this means multiplier reduction can be applied, hence out(v) = 5.

Suppose d(v) = 5 and
∑

u∈N(v) d(u) = 1 mod 2. We showed there are at least 3 outgoing edges from

N(v). There are also 5 edges adjacent to N(v) and v which gives a total of at least 8 edges that are
adjacent to N(v). Since having adjacent neighbors does not change the fact that

∑

u∈N(v) d(u) is odd,

out(v) must be even.
If

∑

u∈N(v) d(u) is odd, then since any edge adjacent to two neighbors of v contributes a value of 2

to the sum, then
∑

u∈N(v) d(u) = 1 mod 2 implies out(v) = 4. A similar parity argument is used for

d(v) = 6, except with the parity swapped around.

Lemma 8. Let deg2(v) denote the number of degree-2 vertices in N(v). Then v has a branching vector
of



wd(v) +
∑

u∈N(v)

wd(u) + out(v) ·∆wd(v), wd(v) +
∑

u∈N(v)

∆wd(u) + deg2(v) ·∆wd(v)



 . (7)

Proof. The left hand side of the branching factor considers removing a vertex v and it’s neighbors. The
right hand side considers removing a just vertex v. The reduction in measure on the graph G follows from
reduction rules, the measure µ =

∑

v∈F wd(v) + µo(L, S,R) and the definition of out(v) and deg2(v).

Theorem 1. #IS can be solved in time O∗(1.2356n) and polynomial space.

16

Proof. If d(G) ≥ 7 we can perform a quick analysis in terms of n, and the branching number is at worst
τ(1, 8) < 1.2321. So we only need to compute µ6(G) with compound measures using Equation 7, with
d(G) ≤ 6 in order to find the worst case running time for #IS.

Average Degree w2 w3 w4 w5 w6 Time
4-6 0.1146078 0.2017931 0.2713406 0.2977566 0.3051140 O(1.2356n)

Figure 6: Weights and running time for µ6(G)

References

[1] Ola Angelsmark and Johan Thapper. Partitioning based algorithms for some colouring problems. In
Recent Advances in Constraints, Joint ERCIM/CoLogNET International Workshop on Constraint
Solving and Constraint Logic Programming (CSCLP 2005), volume 3978 of Lecture Notes in Com-
puter Science, pages 44–58. Springer, 2005.

[2] Andreas Björklund and Thore Husfeldt. Inclusion–exclusion algorithms for counting set partitions.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2006), pages 575–582. IEEE Computer Society, 2006.

[3] Andreas Björklund and Thore Husfeldt. Exact algorithms for exact satisfiability and number of
perfect matchings. Algorithmica, 52(2):226–249, 2008.

[4] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion.
SIAM Journal on Computing, 39(2):546–563, 2009.

[5] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[6] Hans L. Bodlaender and Dieter Kratsch. An exact algorithm for graph coloring with polynomial
memory. Technical Report UU-CS-2006-015, Department of Information and Computing Sciences,
Utrecht University, 2006.

[7] Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph colour-
ing. Operations Research Letters, 32(6):547–556, 2004.

[8] Nicos Christofides. An algorithm for the chromatic number of a graph. The Computer Journal,
14(1):38–39, 1971.

[9] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. Counting models for 2SAT and 3SAT
formulae. Theoretical Computer Science, 332(1-3):265–291, 2005.

[10] David Eppstein. Small maximal independent sets and faster exact graph coloring. In Proceedings
of the 7th International Workshop on Algorithms and Data Structures (WADS 2001), volume 2125
of Lecture Notes in Computer Science, pages 462–470. Springer, 2001.

[11] David Eppstein. Small maximal independent sets and faster exact graph coloring. Journal of Graph
Algorithms and Applications, 7(2):131–140, 2003.

[12] Tomás Feder and Rajeev Motwani. Worst-case time bounds for coloring and satisfiability problems.
Journal of Algorithms, 45(2):192–201, 2002.

[13] Fedor V Fomin, Serge Gaspers, Saket Saurabh, and Alexey A Stepanov. On two techniques of
combining branching and treewidth. Algorithmica, 54(2):181–207, 2009.

[14] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the
analysis of exact algorithms. Journal of the ACM, 56(5), 2009.

[15] Fedor V Fomin and Kjartan Høie. Pathwidth of cubic graphs and exact algorithms. Information
Processing Letters, 97(5):191–196, 2006.

17

[16] Fedor V. Fomin and Dieter Kratsch. Exact exponential algorithms. Springer Science & Business
Media, 2010.

[17] Martin Fürer and Shiva Prasad Kasiviswanathan. Algorithms for counting 2-Sat solutions and
colorings with applications. In proceedings of the 3rd International Conference on Algorithmic
Aspects in Information and Management (AAIM 2007), volume 4508 of Lecture Notes in Computer
Science, pages 47–57. Springer, 2007.

[18] Serge Gaspers. Exponential Time Algorithms. VDM Verlag, 2010.

[19] Serge Gaspers and Gregory B. Sorkin. A universally fastest algorithm for Max 2-Sat, Max 2-CSP,
and everything in between. Journal of Computer and System Sciences, 78(1):305–335, 2012.

[20] Serge Gaspers and Gregory B. Sorkin. Separate, measure and conquer: Faster polynomial-space
algorithms for Max 2-CSP and counting dominating sets. In Proceedings of the 42nd International
Colloquium on Automata, Languages, and Programming (ICALP 2015), volume 9134 of Lecture
Notes in Computer Science, pages 567–579. Springer, 2015.

[21] Catherine Greenhill. The complexity of counting colourings and independent sets in sparse graphs
and hypergraphs. Computational Complexity, 9(1):52–72, 2000.

[22] Yoichi Iwata. A faster algorithm for dominating set analyzed by the potential method. In Proceedings
of the 6th International Symposium on Parameterized and Exact Computation (IPEC 2011), volume
7112 of Lecture Notes in Computer Science, pages 41–54. Springer, 2011.

[23] Konstanty Junosza-Szaniawski and Michal Tuczynski. Counting independent sets via divide measure
and conquer method. Technical Report abs/1503.08323, arXiv CoRR, 2015.

[24] Mikko Koivisto. An O∗(2n) algorithm for graph coloring and other partitioning problems via
inclusion–exclusion. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2006), pages 583–590. IEEE Computer Society, 2006.

[25] Eugene L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66–67, 1976.

[26] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302, 1996.

[27] Alexander D Scott and Gregory B Sorkin. Polynomial constraint satisfaction problems, graph
bisection, and the ising partition function. ACM Transactions on Algorithms (TALG), 5(4):45,
2009.

[28] Magnus Wahlström. Exact algorithms for finding minimum transversals in rank-3 hypergraphs.
Journal of Algorithms, 51(2):107–121, 2004.

[29] Magnus Wahlström. A tighter bound for counting max-weight solutions to 2SAT instances. In
Proceedings of the 3rd International Workshop on Parameterized and Exact Computation (IWPEC
2008), volume 5018 of Lecture Notes in Computer Science, pages 202–213. Springer, 2008.

[30] Gerhard J. Woeginger. Open problems around exact algorithms. Discrete Applied Mathematics,
156(3):397–405, 2008.

18

