Skip to main content

Optimal Local Routing Strategies for Community Structured Time Varying Communication Networks

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10392))

Included in the following conference series:

  • 1425 Accesses

Abstract

In time varying data communication networks (TVCN), traffic congestion, system utility maximization and network performance enhancement are the prominent issues. All these issues can be resolved either by optimizing the network structure or by selecting efficient routing approaches. In this paper, we focus on the design of a time varying network model and propose an algorithm to find efficient user route in this network. Centrality plays a very important role in finding congestion free routes. Indeed, the more a node is central, the more it can be congested by the flow coming from or going to its neighborhood. For that reason, classically, routes are chosen such that the sum of centrality of the nodes coming in user’s route is minimum. In this paper, we show that closeness centrality outperforms betweenness centrality in the case of community structured time varying networks. Furthermore, Kelly’s optimization formulation for a rate allocation problem is used in order to compute optimal rates of distinct users at different time instants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272(1), 173–187 (1999)

    Article  Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  4. Du, W.B., Wu, Z.X., Cai, K.Q.: Effective usage of shortest paths promotes transportation efficiency on scale-free networks. Phys. A 392(17), 3505–3512 (2013)

    Article  MathSciNet  Google Scholar 

  5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  6. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)

    Article  MathSciNet  Google Scholar 

  7. Jiang, Z.Y., Liang, M.G.: Incremental routing strategy on scale-free networks. Phys. A 392(8), 1894–1901 (2013)

    Article  MathSciNet  Google Scholar 

  8. Kelly, F.P., et al.: Mathematical modelling of the internet. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited-2001 and Beyond 1, pp. 685–702. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Kumari, S., Singh, A.: Modeling of data communication networks using dynamic complex networks and its performance studies. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) Complex Networks & Their Applications V. SCI, vol. 693, pp. 29–40. Springer, Cham (2017). doi:10.1007/978-3-319-50901-3_3

    Google Scholar 

  10. Kumari, S., Singh, A., Ranjan, P.: Towards a framework for rate control on dynamic communication networks. In: Proceedings of the International Conference on Internet of Things and Cloud Computing, p. 12. ACM (2016)

    Google Scholar 

  11. La, R.J., Anantharam, V.: Utility-based rate control in the internet for elastic traffic. IEEE/ACM Trans. Netw. 10(2), 272–286 (2002)

    Article  Google Scholar 

  12. Lee, M.J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.W.: Qube: a quick algorithm for updating betweenness centrality. In: Proceedings of the 21st International Conference on World Wide Web, pp. 351–360. ACM (2012)

    Google Scholar 

  13. Lin, B., Chen, B., Gao, Y., Chi, K.T., Dong, C., Miao, L., Wang, B.: Advanced algorithms for local routing strategy on complex networks. PLoS ONE 11(7), e0156756 (2016)

    Article  Google Scholar 

  14. Mo, J., Walrand, J.: Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. (ToN) 8(5), 556–567 (2000)

    Article  Google Scholar 

  15. Newman, M.: Complex systems: a survey. arXiv preprint arXiv:1112.1440 (2011)

  16. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104(18), 7332–7336 (2007)

    Article  Google Scholar 

  17. Tadić, B.: Dynamics of directed graphs: the world-wide web. Phys. A 293(1), 273–284 (2001)

    MATH  Google Scholar 

  18. Wehmuth, K., Ziviani, A., Fleury, E.: A unifying model for representing time-varying graphs. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 36678 2015, pp. 1–10. IEEE (2015)

    Google Scholar 

  19. Zhao, L., Lai, Y.C., Park, K., Ye, N.: Onset of traffic congestion in complex networks. Phys. Rev. E 71(2), 026125 (2005)

    Article  Google Scholar 

  20. Zhou, M., Yang, J.H., Liu, H.B., Wu, J.P.: Modeling the complex internet topology. J. Softw. 20(1), 109–123 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kumari, S., Singh, A., Cherifi, H. (2017). Optimal Local Routing Strategies for Community Structured Time Varying Communication Networks. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62389-4_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62388-7

  • Online ISBN: 978-3-319-62389-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics