Skip to main content

Classification of Cocaine Dependents from fMRI Data Using Cluster-Based Stratification and Deep Learning

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

Cocaine dependence continues to devastate millions of human lives. According to the 2013 National Survey on Drug Use and Health, approximately 1.5 million Americans are currently addicted to cocaine. It is important to understand how cocaine addicts and non-addicted individuals differ in the functional organization of the brain. This work advances the identification of cocaine dependence based on fMRI classification and innovates by employing deep learning methods. Deep learning has proved its utility in machine learning community, mainly in computational vision and voice recognition. Recently, studies have successfully applied it to fMRI data for brain decoding and classification of pathologies, such as schizophrenia and Alzheimer’s disease. These fMRI data were relatively large, and the use of deep learning in small data sets still remains a challenge. In this study, we fill this gap by (i) using Deep Belief Networks and Deep Neural Network to classify cocaine dependents from fMRI, and (ii) presenting a novel stratification method for robust training and evaluation of a relatively small data set. Our results show that deep learning outperforms traditional techniques in most cases, and present a great potential for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://medium.com/@ShaliniAnanda1.

References

  1. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge (2008)

    Google Scholar 

  3. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  4. Friston, K.J.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier/Academic Press, Amsterdam/Boston (2007)

    Book  Google Scholar 

  5. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1995)

    Article  Google Scholar 

  6. Fritzke, B., et al.: A growing neural gas network learns topologies. Adv. Neural Inf. Process. Syst. 7, 625–632 (1995)

    Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Aistats, vol. 9, pp. 249–256 (2010)

    Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  9. Haxby, J.V., Connolly, A.C., Guntupalli, J.S.: Decoding neural representational spaces using multivariate pattern analysis. Annu. Rev. Neurosci. 37, 435–456 (2014)

    Article  Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science (New York, N.Y.) 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Honorio, J.: Classification on brain functional magnetic resonance imaging: dimensionality, sample size, subject variability and noise. In: Chen, C. (ed.) Frontiers of Medical Imaging, pp. 266–290. World Scientific Publishing Company Pte Limited, Singapore (2014)

    Google Scholar 

  13. Ide, J., Shenoy, P., Yu, A., Li, C.: Bayesian prediction and evaluation in the anterior cingulate cortex. J. Neurosci. 33(5), 2039–2047 (2013)

    Article  Google Scholar 

  14. Jones, N.: Computer science: the learning machines. Nature 505, 146–148 (2014)

    Article  Google Scholar 

  15. Koyamada, S., Shikauchi, Y., Nakae, K., Koyama, M., Ishii, S.: Deep learning of fMRI big data: a novel approach to subject-transfer decoding. arXiv preprint arXiv:1502.00093 (2015)

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Li, C.S.R., Huang, C., Constable, R.T., Sinha, R.: Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J. Neurosci. 26(1), 186–192 (2006)

    Article  Google Scholar 

  18. Luo, X., Zhang, S., Hu, S., Bednarski, S.R., Erdman, E., Farr, O.M., Hong, K.I., Sinha, R., Mazure, C.M., shan, R., Li, C.: Error processing and gender-shared and -specific neural predictors of relapse in cocaine dependence. Brain 136(4), 1231–1244 (2013)

    Article  Google Scholar 

  19. Markoff, J.: Scientists See Promise in Deep-Learning Programs. New York Times, Manhattan (2012)

    Google Scholar 

  20. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2017). http://dx.doi.org/10.1016/j.tics.2006.07.005

    Article  Google Scholar 

  21. de Oliveira, F.A., Nobre, C.N., Zárate, L.E.: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index-case study of PETR4, Petrobras, Brazil. Expert Syst. Appl. 40(18), 7596–7606 (2013)

    Article  Google Scholar 

  22. Pahlavan, R., Omid, M., Akram, A.: Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37(1), 171–176 (2012)

    Article  Google Scholar 

  23. Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J.A., Calhoun, V.D.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8(August), 1–11 (2014)

    Google Scholar 

  24. Roebroeck, A., Formisano, E., Goebel, R.: Mapping directed influence over the brain using granger causality and fMRI. Neuroimage 25(1), 230–242 (2005)

    Article  Google Scholar 

  25. Smith, S.M., Nichols, T.E., Vidaurre, D., Winkler, A.M., Behrens, T.E.J., Glasser, M.F., Ugurbil, K., Barch, D.M., Van Essen, D.C., Miller, K.L.: A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18(11), 1565–1567 (2015)

    Article  Google Scholar 

  26. Tomasi, D., Volkow, N.D., Wang, R., Carrillo, J.H., Maloney, T., Alia-Klein, N., Woicik, P.A., Telang, F., Goldstein, R.Z.: Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers. PLoS ONE 5(5), 1–10 (2010)

    Article  Google Scholar 

  27. Zhang, S., Hu, S., Bednarski, S.R., Erdman, E., Li, C.S.: Error-related functional connectivity of the thalamus in cocaine dependence. Neuroimage Clin. 4, 585–592 (2014)

    Article  Google Scholar 

Download references

Acnowledgement

The authors would like to thank CAPES, CNPq (458777/2014-5), FAPESP (2016/02870-0, 2016/16291-2) and NIH (grant R01DA023248) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos G. Quiles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Santos, J.S., Savii, R.M., Ide, J.S., Li, CS.R., Quiles, M.G., Basgalupp, M.P. (2017). Classification of Cocaine Dependents from fMRI Data Using Cluster-Based Stratification and Deep Learning. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10404. Springer, Cham. https://doi.org/10.1007/978-3-319-62392-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62392-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62391-7

  • Online ISBN: 978-3-319-62392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics