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Abstract. Radiotherapy is one of the treatments availablecéorcer patients,
aiming to irradiate the tumor while preserving li@alstructures. The planning
of a treatment is a lengthy trial and error procedwhere treatment parameters
are iteratively changed and the delivered dosealisutated to see whether it
complies with the desired medical prescriptionthiis paper, a procedure based
on fuzzy inference systems (FIS) for automatedtineat planning is devel-
oped, allowing the calculation of high quality traent plans without requiring
human intervention. The procedure is structuretivim different phases, incor-
porating the automatic selection of the best setqufidistant beam irradiation
directions by an enumeration procedure. The deeelapethod is extensively
tested using ten head-and-neck cancer cases.

Keywords: Fuzzy Inference Systems, Radiotherapy Planning, IMBRtimi-
zation, Decision Problem

1 I ntroduction

Radiation therapy is, along with surgery and chém@tpy, one of the main treat-
ments for cancer patients. Radiation has the chiyabf damaging and Kkilling cells.
The main objective is to be able to kill all cancetls (that have more difficulties
recovering from radiation), and at the same timaresms most as possible healthy
cells. The treatment is usually performed applhanignear accelerator, mounted on a
gantry that can rotate along a central axis pdrall¢he couch where the patient lays
immobilized. The rotation of the couch along witte trotation of the gantry allows
radiation to be delivered from almost any direct{angle) around the tumor. Never-
theless, most of the times, it is the equidistalanar angle configuration that is
considered (only angles that lay in the plane tdtion of the gantry are considered).
There are different radiotherapy treatment moaeitBD-conformal, Intensity Modu-
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lated Radiation Therapy (IMRT), Arc-Therapy, fosiance. In this work, our focus is
on IMRT treatments, although the developed methagloican also be extended to
other radiotherapy modalities. In IMRT it is podsibto modulate the radiation inten-
sity due to the use of a multileaf collimator, tlimtcomposed of pairs of individual
leaves, moving independently and blocking the tamhiabeam. This allows not only
the conformal shaping of the treatment beams tduhmr shape, but also the possi-
bility of achieving radiation intensity maps: eaeldiation beam can be interpreted as
a set of individual beamlets. Before a radiotherapgtment can be delivered, CT-
scans are taken allowing a 3D discretization ofpaent into voxels, and a delinea-
tion of all important structures (Planning Targeilnes —PTV- and healthy organs
that are meant to be spared known as Organs at-R@KR). A radiation dose pre-
scription defines minimum dose coverage constrdiotsthe PTVs and maximum
allowed radiation doses to OARS. Having as inpat3D discretization of the patient
and the desired prescription, the treatment plamvikértry to generate a treatment
plan. The treatment planning procedure uses sodtéteat simulates the treatment and
calculates the radiation dose that is being depdsit each voxel (Treatment Plan-
ning System — TPS). The planner needs to defipgori the radiation beam angles
and a set of parameters that are TPS dependensréutsually weights and lower
and/or upper bounds. With these parameters fixted TPS will run an optimization
procedure (IMRT Fluence Map Optimization — FMO)tthall generate the optimal
radiation intensity associated with each beamtanhfeach of the angles to be used in
the treatment (fluence maps), so that the doseighia¢ing deposited in each voxel
(measured in Gy) is calculated. The commonly usatidand-error treatment planning
procedure is a lengthy and cumbersome processigtdtdm several hours to several
days for each patient. The quality of the treatn@anh is highly dependent on the
planner, and it is not possible to know whetherertone and effort will be rewarded
with a better quality treatment plan. Automating tlheatment planning procedure
will constitute an important breakthrough in thiga Probably the best known and
general developed approach so faiQgcle [1] and other related works [2, 3]. In this
paper, we present an approach where the trial-eod-procedure is replaced by an
automated procedure that optimizes fluence mapssing FIS. The way in which the
planner drives the TPS aiming at calculating bgitens is based on his own reason-
ing and it is not possible to describe this prodesa rigorous mathematical form.
Moreover, two different planners will most probablgve different reasoning. Never-
theless, it is possible to think of some simplesuhat will certainly be followed. If,
for instance, structurA is an OAR and it is receiving a higher dose thduwatws de-
sired, then the importance of this structure inEMO should be increased. This kind
of simple rules can be defined for each structme@an be the basis of an automated
procedure that guides the search process towardscaptable treatment plan.

Fuzzy logic has been applied before to radiotheg@pyning. Li and Yin [4] apply
fuzzy logic to determine the best prescription tfee normal tissue. Yan et al [5, 6]
apply a fuzzy inference system (FIS) composed gifiteiules that changes thepri-

ori defined weights assigned to each structure. Thikwgofurther extended in [7] by
a neuro-fuzzy inference system that uses a trameedlal network to determine the
parameters of the fuzzy inference system. Our ampras different from the cited



works since it mimics the planner’s trial-and-ergsocedure, and the implicit rules
that the planner uses, in an automated way andratitcally changing all the parame-
ters available and not only weights. Furthermdra,feasible treatment plan is found,
the algorithm will try to automatically improve thplan by increasing PTV coverage
and/or achieving better organ sparing. If a feasgian is not found, then it will cal-
culate a plan that complies as much as possible thé medical prescription. The
present approach builds on the work of Dias €i8l.adapting it so that it accommo-
dates the choice of the best equidistant beam aygglenetry, without increasing the
planner’s workload. Furthermore, extensive compaal tests were performed to
assess the effect of using different parametetisdrfuzzy inference system. The pro-
posed methodology is applied to ten retrospectivedpted head-and-neck cancer
cases at the Portuguese Oncology Institute of C@niPOCFG). In Section 2, the
IMRT treatment planning procedure is explainedséation 3, the FMO is detailed.
The algorithm is described in section 4. In secBpnomputational results are shown,
and discussed in section 6.

2 IMRT Treatment Planning

The aim of IMRT treatment planning is to achieveeatment plan that satisfies all
dosimetry treatment constraints. The dosimetry taimgs can take a variety of
forms, depending on whether they relate to OAR BY PConsidering OAR, for in-
stance, there are generally constraints that lingtmaximum or mean dose that the
OAR can receive. The constraints to consider vappehd on the organs’ functionali-
ty. OARs can be classified as being serial or pelratgans. For serial organs even if
only a small percentage of the organ is over-iatati then the whole organ’s func-
tionality is jeopardized (spinal cord, for instapck is thus necessary to guarantee
that the maximum dose received anywhere withinotfgen is upper bounded. Other
organs can still perform their function even ifraadl percentage of the organ is dam-
aged (lung, for instance). In this case, a dosamel condition has to be preserved
and can be expressed, for instance, by guarantd@nghe mean dose received is not
above a given threshold. Regarding PTV, the megicascription defines a desired
dose and also dose-volume constraints. As an exarophsider a patient that has
different PTV structures that can be clusterediia groups: PTVs where the desired
dose is 70Gy (PTV70) and PTVs where the desired d059.4Gy (PTV59). Consid-
er also that structures belonging to PTV70 aredmsitructures belonging to PTV59.
For each of the PTV structures, a constraint catdte that at least 95% of the PTV
volume (Dgyg,,) receives at least 95% of the prescribed dose.PAdfs, maximum

doses should not be exceeded. No PTV voxel shedgive, for instance, more than
107% of the prescribed dose (.., ). If PTV70 is inside PTV59, then it is not possi-

ble to consider that no voxel in PTV59 will receivere than 63.6Gy since we aim at
achieving 70Gy for PTV70. In this case, the peragatof voxels in PTV59 that are

allowed to receive more than the maximum desirezkeds limited. Table 1 presents
an example of such dosimetry constraints. Accorttingable 1, a treatment plan will

be considered in accordance with the medical pipggam if and only if:



— There is no voxel belonging to the spinal cord réng more than 45Gy;

— There is no voxel belonging to the brainstem rdngivnore than 54Gy;

— The mean dose in the parotids does not exceed 26Gy;

— 95% of the voxels in PT) are receiving at least 66.5Gy;

— No voxel belonging to PT receives more than 74.9Gy;

— 95% of the voxels in PT3{ are receiving at least 56.4Gy;

— The percentage of voxels in PdMhat are allowed to receive more than 107% of
the prescribed dose are limited to the percentdd@Td;, volume inside PTY,
plus a 10% margin.

In the planning of every single treatment, the tjoas that need to be answered
are: s this medical prescription attainable? If it is, what is the treatment plan that
complies with all the constraints? If it is not, how can we comply as much as possible
with the medical prescription?

Tablel. Prescribed doses for the structures considercdMO

Structure Type of constraint Limit

Spinal cord Maximum dose Lower than 45 Gy

Brainstem Maximum dose Lower than 54 Gy

Left parotid Mean dose Lower than 26 Gy

Right parotid Mean dose Lower than 26 Gy

PTVro D50z Greater than 66.5 Gy

PTVz, Maximum dose Lower than 74.9 Gy

PTVss Dgs04 Greater than 56.4 Gy

PTVeo Vi 0704 Lower than Percentage of P volume inside PTY5 plus

a 10% margin
Body Maximum dose Lower than 80 Gy

The objective of a treatment planning procedut@us to reach a solution that sat-
isfies all the inequalities defined by the doseuwaé constraints. It is not an optimiza-
tion problem that needs to be solved, in the s#mseno objective function needs to
be defined. It is rather a feasibility problem e sense that what the planner really
needs is to find a feasible solution. One of th@adilties encountered with this feasi-
bility problem is the fact that the dose-volume stoaints that have to be considered
are not simple to represent in tractable mathemlgpiogramming models. To tackle
this problem we will consider a procedure thatately solves an unconstrained
optimization problem with parameters being chargadmatically.

3 Fluence Map Optimization

The therapeutic radiation dose is delivered throagdet of radiation beams usually
determineda priori. Each beam can be interpreted as being discretizedset of
beamlets. It is then necessary to determine trengity of each of these beamlets,
defining the fluence map (FMO problem). FMO hasrbeeainly tackled by con-
strained optimization models such that an objediinetion is optimized subject to a



set of dose requirements [9-14]. The objective fiomcusually considers a weighted
sum of deviations from prescribed doses (underdosePTVs and overdose for
OARS). It is possible to find examples of lineardats [15], mixed integer linear
models [16], nonlinear models [17, 18], multiobjeetmodels [19] and parallel pro-
gramming approaches [20, 21]. In this paper, a Mbased convex penalty non-linear
model for FMO is used. The objective function cdess the minimization of the sum
of the penalties associated with each voxel, catedl as the squareffdirence be-

tween the amount of dose received by the voxel argiven upper and/or lower
bound. There are only linear nonnegativity constsabn the intensity (fluence) val-
ues. Considering that beam angles have alreadyfbeeh letV represent the number
of voxels,N the number of beamlets abdthe dose matrix, such tha@; represents

the contribution of beamlgtto the total dose deposited in voxelhe total dose re-

N
ceived by voxel can be calculated ag D;w, with w, representing the intensity of
j=1

beamletj. Let U, be the upper bound associated with vaxel the lower bound
associated with voxel A and J the penalty weights of underdose and overdose of

voxel i, respectively. The FMO model can be defined adoviad, where
(+). =max{ 0} :

f(w):MinWii[Ai[g —JZN;DHWJIJ [JZN;DUWJ —uiﬂ 1)

stw, 20,j=1..N ()

Although this formulation allows unique weights amgique upper/lower bounds for
each voxel, in the current approach weights arigesd by structure only. Consider-

ing a given structureS we can thus defings As, Ug and Lg such that

A =As,0i0S, A =4,,010S, U, =Ug,0i0Sandl, =Lg,0i0S. This nonlinear
formulation implies that a very small amount of @¢en from the established
bounds may be accepted, but larger deviations eceedsingly tolerated. We have
chosen to work with this model for two main reasd@$ the fact that it is an uncon-
strained problem guarantees that it will alwaygbssible to find an admissible solu-
tion for the optimization problem (although it magt be feasible for the original
treatment planning problem); (2) it is a convexhpeon that can be solved by known
optimization algorithms. The main disadvantagehid model consists in the difficul-
ty of predicting the impact that changes in the elgéirameters (namely weights and
bounds) will have in the optimal solution calcutatélthough this FMO model was
chosen, the developed methodology could be extetmetbal with different FMO
models. It should be stressed that the value oblipective function has absolutely no
clinical meaning whatsoever. The quality of theusioh is not assessed by looking at
the FMO objective function value but rather by loakat the dosimetry values. This
means that the FMO objective function should berprieted as nothing more than a



technical tool that guides the optimization aldaritto interesting regions of the solu-
tion space, where feasible solution of the treatmpéanning problem can be found. If
a planner were to work with such a FMO through & Tie would be asked to define
a priori all the model's parameters: weights and upperlewdr bounds. Looking at
the objective function (1), and considering a gicerrent solutionv, how would the
planner change the model's parameters to obtagttarbsolution? Let’'s imagine that
for a given OARS the maximum allowed dose in the current solut®mat being
respected. Then, in order for the optimization athm to produce a solution that
sparesS more than it is being spared, two things can beedeither one increases the

upper weight associated Wi&(js) or one changes (decreases) the corresponding

N 2
upper bound (). Both options will increasellilz D,w, —Ui] for all voxels
i=1 N
i 0S that fail to respect the prescribed dose. Althoiigh easy enough to see the
direction into which the model’s parameters shdaddchanged in order to reach solu-
tions that are more in accordance with the desinedical prescription, there is not a
straightforward way of automatically determining thest change in the parameters.
It is expected that larger deviations between tbsirdetry results and the desired
doses should correspond to more pronounced changbke parameters. The main
idea in the developed methodology is to drive it@igtive procedure by resorting to
FIS, that will mimic the reasoning of the humannpler.

4  Automated FM O by Fuzzy Inference Systems

The proposed methodology will automatically chatige FMO model’'s parameters
in each iteration, by considering the deviationsmMeen the current and the desired
dosimetry results. These changes will drive the FMigdrithm to search more prom-
ising regions of the searchable surface, untilan glomplying as much as possible
with the desired prescription is attained.

4.1 Initialization

The initial FMO model's parameters are defined iy dosimetry constraints. OARS,
for instance, will only have upper bounds and wit have any lower bounds. Upper
bounds are equal to the maximum dose or to the mhese allowed, depending on the
type of OAR. Regarding PTVs, both upper and loweurinls are defined. Upper
bounds are usually considered as being equal tméxémum allowed dose (107% of
the prescribed dose, for instance). Lower boundsegual to the minimum required
dose. Regarding the weights to assign to eachtsteycevery structure begins by
having a weight equal to 1. The only exceptionhis tule is when PTVs are inside
other PTVs. Actually, the inner PTVs are subjectomtradicting constraints, since
each voxel will belong to more than one structimehis case, and if the inner PTV is
much smaller than the outer PTV, it is better teegan increased weight to the inner
PTV. It should be pointed out that these weight$lve automatically updated by the



algorithm, so the initial weights will not have @npact in the quality of the final
outcome (they can, however, have an impact indted tomputational time, and this
initialization will simply give the algorithm a bet starting point). Weight initializa-
tion different than 1 could also be thought for@pkcases of very tiny OARs that are
in close proximity to other OARs or PTVs (the ca$erystalline lens, for instance),
or for OARs that the planner knows that will be exgplly difficult to spare. It should
be stressed that all weights could be initialized t the algorithm will update these
weights if necessary, at the cost of increased ctatipnal time.

4.2  Fuzzy Inference Systems

At each iteration, the FMO is optimized and dosmmeesults are calculated. For
each structure, the algorithm will check whetheg ttefined constraints are being
satisfied or not, and changes the model paraméteraccordance. Upper/lower
bounds are updated first, and weights are only gécuif updating bounds proves not
to be sufficient to attain the desired goals. Atjuahanging bounds will potentially
affect a greater number of voxels, therefore theafig associated with the structure
will be greater than changing only weights. Whely aveights are changed there will
be a smaller number of voxels contributing to thgeoctive function value. For a giv-
en structures, if there is a deviation equal tbbetween the desired dosimetry metric
and the current one, the corresponding boushgdsand L are changed according to
very simple common sense rulesdifs large then increase (decreask) (Ug) by a
large amount; ifd is medium then increase (decreaske) (U ) by amedium amount;
if dissmall then increase (decrease) (U 4 ) by asmall amount. As it is not possible
to define in a crisp way the notion laf ge, medium or small, these linguistic concepts
are represented through the use of fuzzy sets EhisRused to determine how much
U, and Ly should be changed. These concepts are represestating to triangular
and trapezoidal membership functions, wheie measured as a percentage in rela-
tion to the desired value and the change in thenthasl also measured in percentage.
Linguistic concepts related to the current deviatioe defined in equations (3) to (5),
and are also depicted in Fig. 1 (consideraxd). Equations (6) to (8) define the
membership functions representing the linguisticoepts associated with the change
in the bounds (depicted in Fig. 3, for10). A Mamdani type implication rule was
considered [22]. This means that the Mamdani imafilie operator (min operator) is
applied between the resulting antecedent memberfshigtion and the consequent
membership function for all three fuzzy rules. Tdefuzzification technique is the

1(z) oz
I 1(z)oz
where ,u(z) represents the function that results from theyuaference system.

Centroid Defuzzification Technique (center of gtgyi calculated a
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Fig. 1. Percentage of Deviation Membership Fig. 2. Percentage of Change in the Bound
Functions Membership functions

The chosen membership functions result in an alyoribehaviour that will
change the bounds in a continuous and smooth Waljtférent thresholds are con-
sidered (different values farandb), more or less accentuated changes in bounds will
be achieved that could lead to either similar tesinl less computational time or dif-
ficulties in achieving convergence towards a fdassiblution. In many situations, it is
possible to achieve admissible treatment planshHayging upper and lower bounds
only. However, in more complicated cases, it wiloabe necessary to change struc-
tures’ weights, namely when an upper bound is riegchery low values, or when a



lower bound is increasing towards very large valleshis case, the algorithm will
change the corresponding structure’s weights, edsorting to a set of fuzzy rules,

and following the same reasoning as before. Weialatsare changed whenevek,
reaches less thdfo of its initial value. Weightsi; are changed whenevéy, reach-

es more tham times its original value. Whenever the weights @pdated, the upper
and lower bounds take their initial values. If werease (decrease) thevalue (1

value) for updating As (Ag), then the weights will be updated more often. The

weights are changed by using fuzzy rules similath® ones already described: the
current deviation is characterized as besmgll, medium or large according to (3)-
(5). The change in the weights is given as a nohginange determined by the mem-
bership functions depicted in equations (9)-(1Brafeterc can be used to change
the behaviour of the FIS regarding the magnitudehaihges in the weights.

Lxsc 0,x<(c-2)
c—-X m -2)< x< +
_Je-x 9 (c-2)<xs(c+2)
Hoy st (X) 5 c<xs(c+2) (9) U e (X) = , +§)_ (10)
0.x2(C+2) %,(c+z)%<x<(c+ 5)

0,x=(c+5)

0,x<(c+2)
x-(c+2)
2

Hoy 1o (X) = J(c+2)<x< (ct+4) (12)

1,x>(c+4)

4.3 Thewhole procedure

After initialization, the algorithm will run for @redetermined number of iterations
(Nmax) or until a plan complying with all the desiredsitaetry results is reached. At
each iteration, the bounds and weights are chamged,cordance with the deviations
between the current and the desired solution, la@adMO is solved again. Nmax is
reached without an admissible treatment plan bé&dugd, then the algorithm will
choose to relax some of the dosimetry constraingg)g to look for a plan that will
not comply completely with the desired specificaipbut that will comply as much
as possible. The way the algorithm relaxes thendgisy constraints is guided by the
planner’s preferences. The planner can choose, therexisting constraints, which of
them he is more willing to relax. He can also assigpriority to each of these con-
straints, so that the highest the priority, thes lesdlaxed the constraint will be. The
relaxation of a given constraint is considered algw@ating an admissibility slack for
that constraint, such that if the deviation betwdendesired and the current dosime-
try value is within that slack the constraint issimlered as being satisfied. The value
of this slack is calculated as a percentage vayuesing a FIS that takes as input the
priority of the corresponding structure (the hightiee priority the lowest the slack).



The set of rules that are considered are as folldwise priority ishigh then the slack
is small; if the priority islow then the slack ikrge; if the priority ismedium then the
slack ismedium. Linguistic conceptéigh, low, medium, small, large are defined in a
similar manner as similar concepts already desdrilifethe algorithm was able to
comply with all the defined constraints before féag the maximum number of it-
erations, then it will try to improve even furthbe treatment plan. This means that a
new feasibility problem is considered, with constisthat are harder to satisfy. This
can be done in two phases, also considering thenet& preferences. If the planner
thinks it is important to try to obtain a better\P€overage, then he can signalize the
PTVs as being structures to improve. The algorithithbe more demanding regard-
ing PTV coverage than initially defined. The pdiattthe algorithm takes in attempt-
ing to increase PTV coverage can be configuredhbyplanner. As an example: the
PTV constraint of having 95% of the volume receaivat least 95% of the prescribed
dose is changed to 96% of the volume receiving @%he prescribed dose, and so
on, as long as it is possible to improve PTV cogeraVhen the algorithm is no long-
er capable of improving PTV coverage, it considbesbest admissible plan found so
far, fixes the desired PTV coverage as being efgualhat was achieved, and tries to
improve OARs in the second phase of the algoritimthis second phase, the OARS’
constraints are more demanding regarding theimaitbmaximum or mean doses (the
desired values will be decreased). The decreagdeigheonsidered is given, once
again, by a FIS that looks at how far the currergedreceived by an OAR is from the
admissibility tolerance dose. If the dose receibgdhe OAR is very close to its up-
per admissible limit, then the algorithm will no¢ wery demanding. If the OAR is
satisfying its constraint by a large amount, thes algorithm will be more demand-
ing. Whenever the desired value is changed, a stacknsidered so that the algo-
rithm has some flexibility in the search for bettefutions (nevertheless guaranteeing
that the initial desired values are always attgin8thcks are calculated through a FIS
system, similar to the one described above. Theeghare is repeated until it is not
possible to find an admissible solution or a maximmumber of iterations is reached.
The algorithm will test different sets of equidistdoeam angles, trying to find out
the best set of angles. At the present momengréifft beam angle sets are considered
one at a time, in sequential executions of theralyn. However, only the first phase
of the algorithm is run for every set of angled&considered. OAR improvement is
run for the set of angles that achieved better dV¥erage only. Actually, when the
OAR constraints are being satisfied, the prefetredtment plan is usually the one
that better irradiates the PTVs. The whole procedsidescribed next.

1. Choose a set of radiation beam angleprove~0; IT 0.

2. Initialize all the model’s parameteiis;- 0.

3. Solve the FMO with the current parametérs;it +1; 1T~ IT +1.

4. Do the dosimetry calculationadmissible —true.

5. For each structurg

(a) If there is a deviation between the current dosiynetetrics and the desired

ones, change the upper/lower bounds associatedSmatitording to the FIS.
Admissible —false.



(b) If the upper/lower bound has reached a predetednineeshold, then change
the corresponding weight according to the FIS. Ra#leupper and lower
bounds to their initial values.

6.1f Not Admissible go to 7, else

(a) If improve then change the desired dosimetry constraints diacted OARS,
trying to spare these OARs more. Go to 3.

(b) Else go to 10.

7. If it<Nmax then go to 3, else go to 8.

8. If improve then stop. HT=Maxlter then go to 11, else go to 9.

9. Relax some of the defined constraints accordingheo planner’s preferences.
it—0. Goto 3.

10. Improve the current PTV coverage, by being more ateting regarding the do-
simetry constraint<zo to 2.

11.If every set of angles was already considered, fteto 12. Else, select a differ-
ent set of angles and go to 2.

12.If improve then stop, elsemprove — 1 and go to 13.

13. Consider the beam angle solution that resultedeiteb PTV coverage. Starting
from the best solution found so far, improve the R3Asparing by being more
demanding with the defined dosimetry constraintssielected structurest— 0.
Goto 2.

5 Computational Results

This algorithm was applied to ten head-and-neclceanases identified as cases
where proper PTV coverage and OAR sparing wascdiffito obtain in clinical prac-
tice. The OARs considered were the spinal cordpthénstem and the parotid glands.
There are two or more PTVs with different presadiltmses. The desired dosimetry
constraints are the ones depicted in Table 1.imcal practice, most of the times,
these cases are treated with 5 up to 11 beam amglddgs paper 9 beam angles plans
are considered. It is also common to choose th&stant solution starting at angle
0°. In these computational experiments, every esfaiot beam angle solution was
tried, considering a 5° discretization. Tests wsegformed on an Intel Core i7 CPU
2.8 GHz computer with 4GB RAM and Windows 7. CERR.3 version [23] and
MATLAB 7.4.0 (R2007a) were used. The dose was cdegpusing CERR’s pencil
beam algorithm (QIB), with corrections for heternggies. For each of the ten head-
and-neck cases, the sample rate used for Body 2vas@for the remaining structures
was 4 (meaning that each set of 32 Body voxels ceasidered as one voxel in the
optimization procedure and, for all other strucgurene out of 4 voxels was used in
the optimization procedure). To address the comvenx-linear formulation of the
FMO problem we used a trust-region-reflective alhoni (fmincon) of MATLAB
7.4.0 (R2007a) Optimization Toolbox. FIS were inmpénted resorting to the Fuzzy
Sets Toolbox. The termination criteria for the aitjon are as follows: for each of the
beam angles’ set, the algorithm will stop afterite@ations without being able to find
an admissible solutionNfnax=20), or if 200 iterations in total are reachédak-



Iter=200). The weights are being initialized as followsthe inner PTV volume is
less than 5% of the outer PTV volume, then the katedd the inner PTV will be equal
to 50; if the volume is greater than 5% but lesstbr equal to 10%, then the weight
will be equal to 10; in all other cases, it will gual to 5. The choice of these weights
can be seen as arbitrary, and it is indeed. Thesghts are as good as any others that
represent the same idea: the smaller the inneriRT®ation with the outer PTV, the
greater the weight we should assign to it. Therétlym was run considering different
values for the parameteasb, c, | andu to assess whether the algorithm is or is not
very sensible to these parameters. Simultaneowesiyedsing and increasing will
make the update of lower and upper bounds morenagaied. Increasingand de-
creasingu will make the weights be updated more often, amdeiasingc will make
the updates steeper. Eight different configuratiomse tested. Table 2 shows the
number of iterations needed to reach a first fédaditeatment plan. The minimum
number of iterations for each case is shown in iggudt can be seen that it is possi-
ble to achieve a feasible treatment for all comtiomes tested except for one case and
one configuration. The algorithm presents the etquebehavior: for higher values of
a and lower values db it takes longer to reach feasibility. Howevermiay present
problems converging if it tries to adjust too qu§ckrhe update of weights has little
influence in the algorithm’s behavior. To analyzamputational time and treatment
plan quality, we fixed the parametersas5, b=10, I=30%, u=1.5 andc=5. Table 3
shows the computational time in minutes that thgo@ihm took to find the first
treatment plan complying with all the dosimetry staints, and also the total compu-
tational time (comprising the OAR improvement phésethe best equidistant beam
angle set chosen). It is possible to see that ldparithm reaches a first admissible
treatment plan in a very short period of time. Tdtal computational time is compat-
ible with clinical practice. The equidistant sobrtistarting from 0° was the best equi-
distant angle solution for only 3 out of the 10e=asT his reinforces the idea that beam
angle optimization is of the utmost importance.

Table 2. Number of iterations until the first feasible sidn is found

1=15%, u=2, c=3 1=30%, u=15, c=5
Casss 1 2 3 4 5 6 7 8 W 1 2 3 4 5 6 7 @& 10
a=10, b=5 16 23 11 14 36 23 12 20 12 3p 28 11 14 36 23 12 20 12 30
a=5, b=10 [110[4 [4160d[4 7 [74 69 |[7 10 [4 [4 1510 [4 7 [1 |d
a=3, b=12 68 [6 [4 5 14 44 5[5 14 35 | 23[d [4 5013 19 5[5 15 39

a=3, b=15 186 [4 5 15 40 5[5 17 - | 18[f [4 5 27 37 5 5 26 45

Table 3. Computational time in minutes

Time (minutes) 1 2 3 4 5 6 7 8 9 10

First admissible solution 12 25 8 7 15 21 8 9 4 25
Total computational time 539 717 618 155 95 236 363105 358 407

For all cases, it was possible to find treatmeanglcomplying with the desired
PTV coverage. Fig. 3 and Fig. 4 depict the doseived for at least 95% of the PTV



volume, for each one of the cases. An admissilde phould attain at least 95% of
the desired dose, meaning that all points in tretstshould be above the horizontal
line which is indeed guaranteed. For all patiehts have several different PTV70
and/or PTV59 structures, a weighted average consgléhe number of voxels in
each structure was calculated, so that a singléeugould be shown in the chart, for
ease in the presentation of results. It is, howeawgportant to stress that the dosime-
try constraints are fulfilled for all individual BT structures. For OARs, it is im-
portant to guarantee that maximum admissible dasesiot exceeded. The algorithm
produced plans that guarantee all the dosimetrgtcaints for all OARs (Fig. 5 to
Fig. 8). The depicted lines represent the maximaimissible value, so all values
should be under these lines. This is exactly whagppening in all cases.

6 Discussion and Conclusions

A methodology based on FIS that is able to attdimiasible IMRT treatment plans in
an automated way is described. The inputs to tperihm are the patient’s CT-scans
with information regarding all the structures ofeirest and the desired dosimetry
constraints. The algorithm will iteratively solvé® problems, changing in an auto-
mated way the model’s parameters, and driving gtenization process into interest-
ing regions of the searchable surface. As the pmietotally automated, it is possi-
ble to repeat the process for different sets ofrbaagles, increasing the probability
of reaching high quality plans. The main advantafjthe proposed methodology is
the fact that it releases the human planner frdong period of trial-and-error itera-
tions. It has shown to be capable of producing lajghlity plans, complying with all
the desired dosimetry constraints. In clinical pca; it is very difficult to obtain
plans in which all structures have their correspogdonstraints satisfied through the
trial and error procedure. One very interestinguia of this algorithm is that it is
capable of dealing with dose-volume restrictiore thre usually considered as being
very difficult to include in FMO problems, namelet constraints guaranteeing that at
most a given volume of the structure receives ntioa@ a given dose. Some authors
have developed models using dose-volume histogi@msti@ints [24-26], but these
constraints have the drawback of creating a norwveorfeasibility space, with many
local minima. It can also be useful to considerntean-tail-dose rather than conven-
tional dose-volume constraints [27] (mean doseatbEea hottest or coldest specified
fractional volume). The algorithm is able to deaitg well with this kind of con-
straints. It has also been shown that the algot&hmahavior is not very sensitive to
changes in the FIS parameters. In this paper a siemple equidistant beam angle
optimization is proposed, by enumerating the pdéssiuidistant solutions and find-
ing the best treatment plan for each of them. Feurttevelopments will consider em-
bedding FIS into beam angle optimization algoritH2&-33] in order to further con-
tribute to automated treatment planning. The pitesemethodology lends itself natu-
rally to parallel implementations, which will hetpackle the computational burden.
We think that using FIS for radiotherapy treatmglanning will prove to be an inter-
esting research direction with important applicagiand expected impacts.
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