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Abstract. Radiotherapy is one of the treatments available for cancer patients, 
aiming to irradiate the tumor while preserving healthy structures. The planning 
of a treatment is a lengthy trial and error procedure, where treatment parameters 
are iteratively changed and the delivered dose is calculated to see whether it 
complies with the desired medical prescription. In this paper, a procedure based 
on fuzzy inference systems (FIS) for automated treatment planning is devel-
oped, allowing the calculation of high quality treatment plans without requiring 
human intervention. The procedure is structured in two different phases, incor-
porating the automatic selection of the best set of equidistant beam irradiation 
directions by an enumeration procedure. The developed method is extensively 
tested using ten head-and-neck cancer cases.  
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1 Introduction 

Radiation therapy is, along with surgery and chemotherapy, one of the main treat-
ments for cancer patients. Radiation has the capability of damaging and killing cells. 
The main objective is to be able to kill all cancer cells (that have more difficulties 
recovering from radiation), and at the same time spare as most as possible healthy 
cells. The treatment is usually performed applying a linear accelerator, mounted on a 
gantry that can rotate along a central axis parallel to the couch where the patient lays 
immobilized. The rotation of the couch along with the rotation of the gantry allows 
radiation to be delivered from almost any direction (angle) around the tumor. Never-
theless, most of the times, it is the equidistant coplanar angle configuration that is 
considered (only angles that lay in the plane of rotation of the gantry are considered). 
There are different radiotherapy treatment modalities: 3D-conformal, Intensity Modu-



lated Radiation Therapy (IMRT), Arc-Therapy, for instance. In this work, our focus is 
on IMRT treatments, although the developed methodology can also be extended to 
other radiotherapy modalities. In IMRT it is possible to modulate the radiation inten-
sity due to the use of a multileaf collimator, that is composed of pairs of individual 
leaves, moving independently and blocking the radiation beam. This allows not only 
the conformal shaping of the treatment beams to the tumor shape, but also the possi-
bility of achieving radiation intensity maps: each radiation beam can be interpreted as 
a set of individual beamlets. Before a radiotherapy treatment can be delivered, CT-
scans are taken allowing a 3D discretization of the patient into voxels, and a delinea-
tion of all important structures (Planning Target Volumes –PTV– and healthy organs 
that are meant to be spared known as Organs at Risk – OAR). A radiation dose pre-
scription defines minimum dose coverage constraints for the PTVs and maximum 
allowed radiation doses to OARS. Having as input the 3D discretization of the patient 
and the desired prescription, the treatment planner will try to generate a treatment 
plan. The treatment planning procedure uses software that simulates the treatment and 
calculates the radiation dose that is being deposited in each voxel (Treatment Plan-
ning System – TPS). The planner needs to define a priori the radiation beam angles 
and a set of parameters that are TPS dependent, but are usually weights and lower 
and/or upper bounds. With these parameters fixed, the TPS will run an optimization 
procedure (IMRT Fluence Map Optimization – FMO) that will generate the optimal 
radiation intensity associated with each beamlet from each of the angles to be used in 
the treatment (fluence maps), so that the dose that is being deposited in each voxel 
(measured in Gy) is calculated. The commonly used trial-and-error treatment planning 
procedure is a lengthy and cumbersome process, taking from several hours to several 
days for each patient. The quality of the treatment plan is highly dependent on the 
planner, and it is not possible to know whether more time and effort will be rewarded 
with a better quality treatment plan. Automating the treatment planning procedure 
will constitute an important breakthrough in this area. Probably the best known and 
general developed approach so far is iCycle [1] and other related works [2, 3]. In this 
paper, we present an approach where the trial-and-error procedure is replaced by an 
automated procedure that optimizes fluence maps by using FIS. The way in which the 
planner drives the TPS aiming at calculating better plans is based on his own reason-
ing and it is not possible to describe this process in a rigorous mathematical form. 
Moreover, two different planners will most probably have different reasoning. Never-
theless, it is possible to think of some simple rules that will certainly be followed. If, 
for instance, structure A is an OAR and it is receiving a higher dose than what is de-
sired, then the importance of this structure in the FMO should be increased. This kind 
of simple rules can be defined for each structure and can be the basis of an automated 
procedure that guides the search process towards an acceptable treatment plan.  
Fuzzy logic has been applied before to radiotherapy planning. Li and Yin [4] apply 
fuzzy logic to determine the best prescription for the normal tissue. Yan et al [5, 6] 
apply a fuzzy inference system (FIS) composed of eight rules that changes the a pri-
ori defined weights assigned to each structure. This work is further extended in [7] by 
a neuro-fuzzy inference system that uses a trained neural network to determine the 
parameters of the fuzzy inference system. Our approach is different from the cited 



works since it mimics the planner’s trial-and-error procedure, and the implicit rules 
that the planner uses, in an automated way and automatically changing all the parame-
ters available and not only weights. Furthermore, if a feasible treatment plan is found, 
the algorithm will try to automatically improve this plan by increasing PTV coverage 
and/or achieving better organ sparing. If a feasible plan is not found, then it will cal-
culate a plan that complies as much as possible with the medical prescription. The 
present approach builds on the work of Dias et al. [8], adapting it so that it accommo-
dates the choice of the best equidistant beam angle geometry, without increasing the 
planner’s workload. Furthermore, extensive computational tests were performed to 
assess the effect of using different parameters in the fuzzy inference system. The pro-
posed methodology is applied to ten retrospectively treated head-and-neck cancer 
cases at the Portuguese Oncology Institute of Coimbra (IPOCFG). In Section 2, the 
IMRT treatment planning procedure is explained. In section 3, the FMO is detailed. 
The algorithm is described in section 4. In section 5, computational results are shown, 
and discussed in section 6. 

2 IMRT Treatment Planning 

The aim of IMRT treatment planning is to achieve a treatment plan that satisfies all 
dosimetry treatment constraints. The dosimetry constraints can take a variety of 
forms, depending on whether they relate to OAR or PTV. Considering OAR, for in-
stance, there are generally constraints that limit the maximum or mean dose that the 
OAR can receive. The constraints to consider will depend on the organs’ functionali-
ty. OARs can be classified as being serial or parallel organs. For serial organs even if 
only a small percentage of the organ is over-irradiated then the whole organ’s func-
tionality is jeopardized (spinal cord, for instance). It is thus necessary to guarantee 
that the maximum dose received anywhere within the organ is upper bounded. Other 
organs can still perform their function even if a small percentage of the organ is dam-
aged (lung, for instance). In this case, a dose volume condition has to be preserved 
and can be expressed, for instance, by guaranteeing that the mean dose received is not 
above a given threshold. Regarding PTV, the medical prescription defines a desired 
dose and also dose-volume constraints. As an example, consider a patient that has 
different PTV structures that can be clustered in two groups: PTVs where the desired 
dose is 70Gy (PTV70) and PTVs where the desired dose is 59.4Gy (PTV59). Consid-
er also that structures belonging to PTV70 are inside structures belonging to PTV59. 
For each of the PTV structures, a constraint could state that at least 95% of the PTV 
volume ( 95%D ) receives at least 95% of the prescribed dose. For PTVs, maximum 

doses should not be exceeded. No PTV voxel should receive, for instance, more than 
107% of the prescribed dose (107%V ).  If PTV70 is inside PTV59, then it is not possi-

ble to consider that no voxel in PTV59 will receive more than 63.6Gy since we aim at 
achieving 70Gy for PTV70. In this case, the percentage of voxels in PTV59 that are 
allowed to receive more than the maximum desired dose is limited. Table 1 presents 
an example of such dosimetry constraints. According to Table 1, a treatment plan will 
be considered in accordance with the medical prescription if and only if: 



─ There is no voxel belonging to the spinal cord receiving more than 45Gy; 
─ There is no voxel belonging to the brainstem receiving more than 54Gy; 
─ The mean dose in the parotids does not exceed 26Gy; 
─ 95% of the voxels in PTV70 are receiving at least 66.5Gy; 
─ No voxel belonging to PTV70 receives more than 74.9Gy; 
─ 95% of the voxels in PTV59 are receiving at least 56.4Gy; 
─ The percentage of voxels in PTV59 that are allowed to receive more than 107% of 

the prescribed dose are limited to the percentage of PTV70 volume inside PTV59 
plus a 10% margin.  

In the planning of every single treatment, the questions that need to be answered 
are: Is this medical prescription attainable? If it is, what is the treatment plan that 
complies with all the constraints? If it is not, how can we comply as much as possible 
with the medical prescription?  

Table 1.   Prescribed doses for the structures considered for FMO 

Structure Type of constraint  Limit 
Spinal cord Maximum dose Lower than 45 Gy 
Brainstem Maximum dose Lower than 54 Gy 
Left parotid Mean dose Lower than 26 Gy 
Right parotid Mean dose Lower than 26 Gy 

PTV70 95%D  Greater than 66.5 Gy 

PTV70 Maximum dose Lower than 74.9 Gy 

PTV59 95%D  Greater than  56.4 Gy 

PTV59 107%V  Lower than 
Percentage of PTV70 volume inside PTV59 plus 
a 10% margin 

Body Maximum dose Lower than 80 Gy 

 
The objective of a treatment planning procedure is thus to reach a solution that sat-

isfies all the inequalities defined by the dose-volume constraints. It is not an optimiza-
tion problem that needs to be solved, in the sense that no objective function needs to 
be defined. It is rather a feasibility problem, in the sense that what the planner really 
needs is to find a feasible solution. One of the difficulties encountered with this feasi-
bility problem is the fact that the dose-volume constraints that have to be considered 
are not simple to represent in tractable mathematical programming models. To tackle 
this problem we will consider a procedure that iteratively solves an unconstrained 
optimization problem with parameters being changed automatically.  

3 Fluence Map Optimization 

The therapeutic radiation dose is delivered through a set of radiation beams usually 
determined a priori. Each beam can be interpreted as being discretized in a set of 
beamlets. It is then necessary to determine the intensity of each of these beamlets, 
defining the fluence map (FMO problem). FMO has been mainly tackled by con-
strained optimization models such that an objective function is optimized subject to a 



set of dose requirements [9-14]. The objective function usually considers a weighted 
sum of deviations from prescribed doses (underdose for PTVs and overdose for 
OARs). It is possible to find examples of linear models [15], mixed integer linear 
models [16], nonlinear models [17, 18], multiobjective models [19] and parallel pro-
gramming approaches [20, 21]. In this paper, a voxel-based convex penalty non-linear 
model for FMO is used. The objective function considers the minimization of the sum 
of the penalties associated with each voxel, calculated as the square difference be-
tween the amount of dose received by the voxel and a given upper and/or lower 
bound. There are only linear nonnegativity constraints on the intensity (fluence) val-
ues. Considering that beam angles have already been fixed, let V represent the number 
of voxels, N the number of beamlets and D the dose matrix, such that ijD  represents 

the contribution of beamlet j to the total dose deposited in voxel i. The total dose re-

ceived by voxel i can be calculated as 
1

N

ij j
j

D w
=
∑  with jw  representing the intensity of 

beamlet j. Let iU  be the upper bound associated with voxel i, iL the lower bound 

associated with voxel i, iλ and iλ  the penalty weights of underdose and overdose of 

voxel i, respectively. The FMO model can be defined as follows, where
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Although this formulation allows unique weights and unique upper/lower bounds for 
each voxel, in the current approach weights are assigned by structure only. Consider-

ing a given structure S we can thus define Sλ , Sλ , SU  and SL  such that

,Si i Sλ λ= ∀ ∈ , ,i S i Sλ λ= ∀ ∈ , ,i SU U i S= ∀ ∈ and ,i SL L i S= ∀ ∈ . This nonlinear 

formulation implies that a very small amount of deviation from the established 
bounds may be accepted, but larger deviations are decreasingly tolerated. We have 
chosen to work with this model for two main reasons: (1) the fact that it is an uncon-
strained problem guarantees that it will always be possible to find an admissible solu-
tion for the optimization problem (although it may not be feasible for the original 
treatment planning problem); (2) it is a convex problem that can be solved by known 
optimization algorithms. The main disadvantage of this model consists in the difficul-
ty of predicting the impact that changes in the model parameters (namely weights and 
bounds) will have in the optimal solution calculated. Although this FMO model was 
chosen, the developed methodology could be extended to deal with different FMO 
models. It should be stressed that the value of the objective function has absolutely no 
clinical meaning whatsoever. The quality of the solution is not assessed by looking at 
the FMO objective function value but rather by looking at the dosimetry values. This 
means that the FMO objective function should be interpreted as nothing more than a 



technical tool that guides the optimization algorithm to interesting regions of the solu-
tion space, where feasible solution of the treatment planning problem can be found. If 
a planner were to work with such a FMO through a TPS, he would be asked to define 
a priori all the model’s parameters: weights and upper and lower bounds. Looking at 
the objective function (1), and considering a given current solutionw , how would the 
planner change the model’s parameters to obtain a better solution? Let’s imagine that 
for a given OAR S the maximum allowed dose in the current solution is not being 
respected. Then, in order for the optimization algorithm to produce a solution that 
spares S more than it is being spared, two things can be done: either one increases the 

upper weight associated with S ( Sλ ) or one changes (decreases) the corresponding 

upper bound ( SU ). Both options will increase 
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∑  for all voxels

i S∈  that fail to respect the prescribed dose. Although it is easy enough to see the 
direction into which the model’s parameters should be changed in order to reach solu-
tions that are more in accordance with the desired medical prescription, there is not a 
straightforward way of automatically determining the best change in the parameters. 
It is expected that larger deviations between the dosimetry results and the desired 
doses should correspond to more pronounced changes in the parameters. The main 
idea in the developed methodology is to drive this iterative procedure by resorting to 
FIS, that will mimic the reasoning of the human planner. 

4 Automated FMO by Fuzzy Inference Systems 

The proposed methodology will automatically change the FMO model’s parameters 
in each iteration, by considering the deviations between the current and the desired 
dosimetry results. These changes will drive the FMO algorithm to search more prom-
ising regions of the searchable surface, until a plan complying as much as possible 
with the desired prescription is attained. 

4.1 Initialization 

The initial FMO model’s parameters are defined by the dosimetry constraints. OARs, 
for instance, will only have upper bounds and will not have any lower bounds. Upper 
bounds are equal to the maximum dose or to the mean dose allowed, depending on the 
type of OAR. Regarding PTVs, both upper and lower bounds are defined. Upper 
bounds are usually considered as being equal to the maximum allowed dose (107% of 
the prescribed dose, for instance). Lower bounds are equal to the minimum required 
dose. Regarding the weights to assign to each structure, every structure begins by 
having a weight equal to 1. The only exception to this rule is when PTVs are inside 
other PTVs. Actually, the inner PTVs are subject to contradicting constraints, since 
each voxel will belong to more than one structure. In this case, and if the inner PTV is 
much smaller than the outer PTV, it is better to give an increased weight to the inner 
PTV. It should be pointed out that these weights will be automatically updated by the 



algorithm, so the initial weights will not have an impact in the quality of the final 
outcome (they can, however, have an impact in the total computational time, and this 
initialization will simply give the algorithm a better starting point). Weight initializa-
tion different than 1 could also be thought for special cases of very tiny OARs that are 
in close proximity to other OARs or PTVs (the case of crystalline lens, for instance), 
or for OARs that the planner knows that will be especially difficult to spare. It should 
be stressed that all weights could be initialized to 1: the algorithm will update these 
weights if necessary, at the cost of increased computational time. 

4.2 Fuzzy Inference Systems 

At each iteration, the FMO is optimized and dosimetry results are calculated. For 
each structure, the algorithm will check whether the defined constraints are being 
satisfied or not, and changes the model parameters in accordance. Upper/lower 
bounds are updated first, and weights are only changed if updating bounds proves not 
to be sufficient to attain the desired goals. Actually, changing bounds will potentially 
affect a greater number of voxels, therefore the penalty associated with the structure 
will be greater than changing only weights. When only weights are changed there will 
be a smaller number of voxels contributing to the objective function value. For a giv-
en structure S, if there is a deviation equal to d between the desired dosimetry metric 
and the current one, the corresponding bounds SU  and SL  are changed according to 

very simple common sense rules: if d is large then increase (decrease) SL  ( SU ) by a 

large amount; if d is medium then increase (decrease) SL  ( SU ) by a medium amount; 

if d is small then increase (decrease) SL  ( SU ) by a small amount. As it is not possible 

to define in a crisp way the notion of large, medium or small, these linguistic concepts 
are represented through the use of fuzzy sets and FIS is used to determine how much 

SU  and SL  should be changed. These concepts are represented resorting to triangular 

and trapezoidal membership functions, where d is measured as a percentage in rela-
tion to the desired value and the change in the bound is also measured in percentage.  
Linguistic concepts related to the current deviation are defined in equations (3) to (5), 
and are also depicted in Fig. 1 (considering a=5). Equations (6) to (8) define the 
membership functions representing the linguistic concepts associated with the change 
in the bounds (depicted in Fig. 3, for b=10). A Mamdani type implication rule was 
considered [22]. This means that the Mamdani implication operator (min operator) is 
applied between the resulting antecedent membership function and the consequent 
membership function for all three fuzzy rules. The defuzzification technique is the 

Centroid Defuzzification Technique (center of gravity), calculated as
( )
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Fig. 1. Percentage of Deviation Membership 
Functions 

Fig. 2. Percentage of Change in the Bound 
Membership functions 

The chosen membership functions result in an algorithm behaviour that will 
change the bounds in a continuous and smooth way. If different thresholds are con-
sidered (different values for a and b), more or less accentuated changes in bounds will 
be achieved that could lead to either similar results in less computational time or dif-
ficulties in achieving convergence towards a feasible solution. In many situations, it is 
possible to achieve admissible treatment plans by changing upper and lower bounds 
only. However, in more complicated cases, it will also be necessary to change struc-
tures’ weights, namely when an upper bound is reaching very low values, or when a 



lower bound is increasing towards very large values. In this case, the algorithm will 
change the corresponding structure’s weights, also resorting to a set of fuzzy rules, 

and following the same reasoning as before. Weights Sλ  are changed whenever SU  

reaches less than l% of its initial value. Weights Sλ  are changed whenever SL  reach-

es more than u times its original value. Whenever the weights are updated, the upper 
and lower bounds take their initial values. If we increase (decrease) the l value (u 

value) for updating  Sλ  ( Sλ ), then the weights will be updated more often. The 

weights are changed by using fuzzy rules similar to the ones already described: the 
current deviation is characterized as being small, medium or large according to (3)-
(5). The change in the weights is given as a nominal change determined by the mem-
bership functions depicted in equations (9)-(11). Parameter c can be used to change 
the behaviour of the FIS regarding the magnitude of changes in the weights. 
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4.3 The whole procedure 

After initialization, the algorithm will run for a predetermined number of iterations 
(Nmax) or until a plan complying with all the desired dosimetry results is reached. At 
each iteration, the bounds and weights are changed, in accordance with the deviations 
between the current and the desired solution, and the FMO is solved again. If Nmax is 
reached without an admissible treatment plan being found, then the algorithm will 
choose to relax some of the dosimetry constraints, trying to look for a plan that will 
not comply completely with the desired specifications, but that will comply as much 
as possible. The way the algorithm relaxes the dosimetry constraints is guided by the 
planner’s preferences. The planner can choose, from the existing constraints, which of 
them he is more willing to relax. He can also assign a priority to each of these con-
straints, so that the highest the priority, the less relaxed the constraint will be. The 
relaxation of a given constraint is considered by calculating an admissibility slack for 
that constraint, such that if the deviation between the desired and the current dosime-
try value is within that slack the constraint is considered as being satisfied. The value 
of this slack is calculated as a percentage value by using a FIS that takes as input the 
priority of the corresponding structure (the higher the priority the lowest the slack). 



The set of rules that are considered are as follows: if the priority is high then the slack 
is small; if the priority is low then the slack is large; if the priority is medium then the 
slack is medium. Linguistic concepts high, low, medium, small, large are defined in a 
similar manner as similar concepts already described. If the algorithm was able to 
comply with all the defined constraints before reaching the maximum number of it-
erations, then it will try to improve even further the treatment plan. This means that a 
new feasibility problem is considered, with constraints that are harder to satisfy. This 
can be done in two phases, also considering the planner’s preferences. If the planner 
thinks it is important to try to obtain a better PTV coverage, then he can signalize the 
PTVs as being structures to improve. The algorithm will be more demanding regard-
ing PTV coverage than initially defined. The path that the algorithm takes in attempt-
ing to increase PTV coverage can be configured by the planner. As an example: the 
PTV constraint of having 95% of the volume receiving at least 95% of the prescribed 
dose is changed to 96% of the volume receiving 95% of the prescribed dose, and so 
on, as long as it is possible to improve PTV coverage. When the algorithm is no long-
er capable of improving PTV coverage, it considers the best admissible plan found so 
far, fixes the desired PTV coverage as being equal to what was achieved, and tries to 
improve OARs in the second phase of the algorithm. In this second phase, the OARs’ 
constraints are more demanding regarding their allowed maximum or mean doses (the 
desired values will be decreased). The decrease that is considered is given, once 
again, by a FIS that looks at how far the current dose received by an OAR is from the 
admissibility tolerance dose. If the dose received by the OAR is very close to its up-
per admissible limit, then the algorithm will not be very demanding. If the OAR is 
satisfying its constraint by a large amount, then the algorithm will be more demand-
ing. Whenever the desired value is changed, a slack is considered so that the algo-
rithm has some flexibility in the search for better solutions (nevertheless guaranteeing 
that the initial desired values are always attained). Slacks are calculated through a FIS 
system, similar to the one described above. The procedure is repeated until it is not 
possible to find an admissible solution or a maximum number of iterations is reached. 

The algorithm will test different sets of equidistant beam angles, trying to find out 
the best set of angles. At the present moment, different beam angle sets are considered 
one at a time, in sequential executions of the algorithm. However, only the first phase 
of the algorithm is run for every set of angles to be considered. OAR improvement is 
run for the set of angles that achieved better PTV coverage only. Actually, when the 
OAR constraints are being satisfied, the preferred treatment plan is usually the one 
that better irradiates the PTVs. The whole procedure is described next. 

1. Choose a set of radiation beam angles. improve←0; IT←0. 
2. Initialize all the model’s parameters; it←0.  
3. Solve the FMO with the current parameters; it←it +1; IT←IT +1. 
4. Do the dosimetry calculations. Admissible←true. 
5. For each structure S 

(a) If there is a deviation between the current dosimetry metrics and the desired 
ones, change the upper/lower bounds associated with S according to the FIS. 
Admissible←false. 



(b) If the upper/lower bound has reached a predetermined threshold, then change 
the corresponding weight according to the FIS. Reset all upper and lower 
bounds to their initial values. 

6. If  Not Admissible go to 7, else 
(a) If improve then change the desired dosimetry constraints for selected OARs, 

trying to spare these OARs more. Go to 3. 
(b) Else go to 10. 

7. If it≤Nmax then go to 3, else go to 8. 
8. If improve then stop. If IT=MaxIter then go to 11, else go to 9. 
9. Relax some of the defined constraints according to the planner’s preferences. 

it←0. Go to 3. 
10. Improve the current PTV coverage, by being more demanding regarding the do-

simetry constraints. Go to 2. 
11. If every set of angles was already considered, then go to 12. Else, select a differ-

ent set of angles and go to 2. 
12. If improve then stop, else improve ←1 and go to 13. 
13. Consider the beam angle solution that resulted in better PTV coverage. Starting 

from the best solution found so far, improve the OARs sparing by being more 
demanding with the defined dosimetry constraints for selected structures. it←0. 
Go to 2. 

5 Computational Results  

This algorithm was applied to ten head-and-neck cancer cases identified as cases 
where proper PTV coverage and OAR sparing was difficult to obtain in clinical prac-
tice. The OARs considered were the spinal cord, the brainstem and the parotid glands. 
There are two or more PTVs with different prescribed doses. The desired dosimetry 
constraints are the ones depicted in Table 1. In clinical practice, most of the times, 
these cases are treated with 5 up to 11 beam angles. In this paper 9 beam angles plans 
are considered. It is also common to choose the equidistant solution starting at angle 
0º. In these computational experiments, every equidistant beam angle solution was 
tried, considering a 5º discretization. Tests were performed on an Intel Core i7 CPU 
2.8 GHz computer with 4GB RAM and Windows 7. CERR 3.2.2 version [23] and 
MATLAB 7.4.0 (R2007a) were used. The dose was computed using CERR’s pencil 
beam algorithm (QIB), with corrections for heterogeneities. For each of the ten head-
and-neck cases, the sample rate used for Body was 32 and for the remaining structures 
was 4 (meaning that each set of 32 Body voxels was considered as one voxel in the 
optimization procedure and, for all other structures, one out of 4 voxels was used in 
the optimization procedure). To address the convex non-linear formulation of the 
FMO problem we used a trust-region-reflective algorithm (fmincon) of MATLAB 
7.4.0 (R2007a) Optimization Toolbox. FIS were implemented resorting to the Fuzzy 
Sets Toolbox. The termination criteria for the algorithm are as follows: for each of the 
beam angles’ set, the algorithm will stop after 20 iterations without being able to find 
an admissible solution (Nmax=20), or if 200 iterations in total are reached (Max-



Iter=200). The weights are being initialized as follows: if the inner PTV volume is 
less than 5% of the outer PTV volume, then the weight of the inner PTV will be equal 
to 50; if the volume is greater than 5% but less than or equal to 10%, then the weight 
will be equal to 10; in all other cases, it will be equal to 5. The choice of these weights 
can be seen as arbitrary, and it is indeed. These weights are as good as any others that 
represent the same idea: the smaller the inner PTV in relation with the outer PTV, the 
greater the weight we should assign to it. The algorithm was run considering different 
values for the parameters a, b, c, l and u to assess whether the algorithm is or is not 
very sensible to these parameters. Simultaneously decreasing a and increasing b will 
make the update of lower and upper bounds more accentuated. Increasing l and de-
creasing u will make the weights be updated more often, and increasing c will make 
the updates steeper. Eight different configurations were tested. Table 2 shows the 
number of iterations needed to reach a first feasible treatment plan. The minimum 
number of iterations for each case is shown in squares. It can be seen that it is possi-
ble to achieve a feasible treatment for all combinations tested except for one case and 
one configuration. The algorithm presents the expected behavior: for higher values of 
a and lower values of b it takes longer to reach feasibility. However, it may present 
problems converging if it tries to adjust too quickly. The update of weights has little 
influence in the algorithm’s behavior. To analyze computational time and treatment 
plan quality, we fixed the parameters to a=5, b=10, l=30%, u=1.5 and c=5. Table 3 
shows the computational time in minutes that the algorithm took to find the first 
treatment plan complying with all the dosimetry constraints, and also the total compu-
tational time (comprising the OAR improvement phase for the best equidistant beam 
angle set chosen). It is possible to see that the algorithm reaches a first admissible 
treatment plan in a very short period of time. The total computational time is compat-
ible with clinical practice. The equidistant solution starting from 0º was the best equi-
distant angle solution for only 3 out of the 10 cases. This reinforces the idea that beam 
angle optimization is of the utmost importance.  

Table 2. Number of iterations until the first feasible solution is found 

 l=15%, u=2, c=3 l=30%, u=1.5, c=5 

Cases   1     2     3     4     5     6     7     8     9   10 1     2     3     4     5     6     7     8     9   10 

a=10, b=5 16   23   11   14   36   23   12   20   12   30 16   23   11   14   36   23   12   20   12   30 

a=5, b=10  7   10     4     4   16   10    4    7     7    69  7   10     4     4   15   10     4    7     7   26 

a=3, b=12 68    6     4     5   14   44     5     5   14   35 23    6     4     5   13   19     5     5   15   39 

a=3, b=15 18    6     4     5   15   40     5     5   17   --- 18    6     4     5   27   37     5     5   26   45 

Table 3. Computational time in minutes 

Time (minutes) 1 2 3 4 5 6 7 8 9 10 
First admissible solution 12 25 8 7 15 21 8 9 4 25 

Total computational time 539 717 618 155 95 236 363 405 358 407 

 
For all cases, it was possible to find treatment plans complying with the desired 

PTV coverage. Fig. 3 and Fig. 4 depict the dose received for at least 95% of the PTV 



volume, for each one of the cases. An admissible plan should attain at least 95% of 
the desired dose, meaning that all points in the charts should be above the horizontal 
line which is indeed guaranteed. For all patients that have several different PTV70 
and/or PTV59 structures, a weighted average considering the number of voxels in 
each structure was calculated, so that a single number could be shown in the chart, for 
ease in the presentation of results. It is, however, important to stress that the dosime-
try constraints are fulfilled for all individual PTV structures. For OARs, it is im-
portant to guarantee that maximum admissible doses are not exceeded. The algorithm 
produced plans that guarantee all the dosimetry constraints for all OARs (Fig. 5 to 
Fig. 8). The depicted lines represent the maximum admissible value, so all values 
should be under these lines. This is exactly what is happening in all cases. 

6 Discussion and Conclusions 

A methodology based on FIS that is able to attain admissible IMRT treatment plans in 
an automated way is described. The inputs to the algorithm are the patient’s CT-scans 
with information regarding all the structures of interest and the desired dosimetry 
constraints. The algorithm will iteratively solve FMO problems, changing in an auto-
mated way the model’s parameters, and driving the optimization process into interest-
ing regions of the searchable surface. As the process is totally automated, it is possi-
ble to repeat the process for different sets of beam angles, increasing the probability 
of reaching high quality plans. The main advantage of the proposed methodology is 
the fact that it releases the human planner from a long period of trial-and-error itera-
tions. It has shown to be capable of producing high quality plans, complying with all 
the desired dosimetry constraints. In clinical practice, it is very difficult to obtain 
plans in which all structures have their corresponding constraints satisfied through the 
trial and error procedure. One very interesting feature of this algorithm is that it is 
capable of dealing with dose-volume restrictions that are usually considered as being 
very difficult to include in FMO problems, namely the constraints guaranteeing that at 
most a given volume of the structure receives more than a given dose. Some authors 
have developed models using dose-volume histogram constraints [24-26], but these 
constraints have the drawback of creating a non-convex feasibility space, with many 
local minima. It can also be useful to consider the mean-tail-dose rather than conven-
tional dose-volume constraints [27] (mean dose of either a hottest or coldest specified 
fractional volume). The algorithm is able to deal quite well with this kind of con-
straints. It has also been shown that the algorithm’s behavior is not very sensitive to 
changes in the FIS parameters. In this paper a very simple equidistant beam angle 
optimization is proposed, by enumerating the possible equidistant solutions and find-
ing the best treatment plan for each of them. Further developments will consider em-
bedding FIS into beam angle optimization algorithms [28-33] in order to further con-
tribute to automated treatment planning. The presented methodology lends itself natu-
rally to parallel implementations, which will help tackle the computational burden. 
We think that using FIS for radiotherapy treatment planning will prove to be an inter-
esting research direction with important applications and expected impacts. 



  

Fig. 3. Target irradiation metrics for PTVs Fig. 4. Target irradiation metrics for PTVs 

  

Fig. 5. Left Parotid Mean Dose Fig. 6. Right Parotid Mean Dose 

  

Fig. 7. Brainstem maximum dose Fig. 8. Spinal Cord Maximum Dose 
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