Skip to main content

The Use of Geomorphological Descriptors and Landsat-8 Spectral Indices Data for Flood Areas Evaluation: A Case Study of Lato River Basin

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Abstract

In the last few years, the scientific community has dedicated a strong effort for the rapid identification and mapping of flood risk. Last generation models have often taken advantage (even without of in-situ measurements) of the distributed information provided from remotely sensed data. In this work is proposed a multidisciplinary approach to reproduce maps of flooded areas. The method compared spectral descriptors to estimate the areas at risk of flooding in the Lato river basin (Puglia region - Southern Italy) using the ground effects caused by flood events. The inundated areas, obtained with a 2D hydraulic model, were used as reference for Landsat-8 spectral indices. The selection of the most appropriate spectral index was achieved using the binary classifiers test. Lastly, the adopted procedure provided also the calibration of different geomorphological descriptors for a rapid identification of areas at risk of flooding by using Digital Elevation Models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marks, K., Bates, P., et al.: Integration of high-resolution topographic data with floodplain flow models. Hydrol. Process. 14(11–12), 2109–2122 (2000)

    Article  Google Scholar 

  2. Horritt, M., Bates, P.: Evaluation of 1d and 2d numerical models for predicting river flood inundation. J. Hydrol. 268(1), 87–99 (2002)

    Article  Google Scholar 

  3. Werner, M., Hunter, N., Bates, P.: Identifiability of distributed floodplain roughness values in flood extent estimation. J. Hydrol. 314(1), 139–157 (2005)

    Article  Google Scholar 

  4. De Wrachien, D., Mambretti, S.: Mathematical models for flood hazard assessment. Int. J. Saf. Secur. Eng. 1(4), 353–362 (2011)

    Article  Google Scholar 

  5. Iacobellis, V., Castorani, A., Di Santo, A.R., Gioia, A.: Rationale for flood prediction in karst endorheic areas. J. Arid Environ. 112, 98–108 (2015)

    Article  Google Scholar 

  6. Blöschl, G., Sivapalan, M.: Process controls on regional flood frequency: coefficient of variation and basin scale. Water Resour. Res. 33(12), 2967–2980 (1997)

    Article  Google Scholar 

  7. Merz, R., Blöschl, G.: Flood frequency hydrology: 1. temporal, spatial, and causal expansion of information. Water Resour. Res. 44(8), W08432 (2008)

    Google Scholar 

  8. Iacobellis, V., Gioia, A., Manfreda, S., Fiorentino, M.: Flood quantiles estimation based on theoretically derived distributions: regional analysis in southern italy. Nat. Hazards Earth Syst. Sci. 11(3), 673–695 (2011)

    Article  Google Scholar 

  9. Fiorentino, M., Gioia, A., Iacobellis, V., Manfreda, S.: Regional analysis of runoff thresholds behaviour in southern italy based on theoretically derived distributions. Adv. Geosci. 26, 139–144 (2011)

    Article  Google Scholar 

  10. Gioia, A., Manfreda, S., Iacobellis, V., Fiorentino, M.: Performance of a theoretical model for the description of water balance and runoff dynamics in southern italy. J. Hydrol. Eng. 19(6), 1113–1123 (2013)

    Article  Google Scholar 

  11. Gallant, J.C., Dowling, T.I.: A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 39(12), 1347–1360 (2003)

    Article  Google Scholar 

  12. Nardi, F., Vivoni, E.R., Grimaldi, S.: Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 42(9), W09409 (2006)

    Article  Google Scholar 

  13. Dodov, B., Foufoula-Georgiou, E.: Floodplain morphometry extraction from a high-resolution digital elevation model: a simple algorithm for regional analysis studies. IEEE Geosci. Remote Sens. Lett. 3(3), 410–413 (2006)

    Article  Google Scholar 

  14. Degiorgis, M., Gnecco, G., Gorni, S., Roth, G., Sanguineti, M., Taramasso, A.C.: Classifiers for the detection of flood-prone areas using remote sensed elevation data. J. Hydrol. 470, 302–315 (2012)

    Article  Google Scholar 

  15. De Risi, R., Jalayer, F., De Paola, F., Giugni, M.: Probabilistic delineation of flood-prone areas based on a digital elevation model and the extent of historical flooding: the case of ouagadougou. Bol. Geol. Min. 125(3), 329–340 (2014)

    Google Scholar 

  16. Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, A.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1d and 2d hydraulic models. Nat. Hazards 79(2), 735–754 (2015)

    Article  Google Scholar 

  17. Samela, C., Manfreda, S., Paola, F.D., Giugni, M., Sole, A., Fiorentino, M.: Dem-based approaches for the delineation of flood-prone areas in an ungauged basin in Africa. J. Hydrol. Eng. 21(2), 1–10 (2015)

    Google Scholar 

  18. Bates, P., Horritt, M., Smith, C., Mason, D.: Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol. Process. 11(14), 1777–1795 (1997)

    Article  Google Scholar 

  19. Horritt, M., Mason, D., Luckman, A.: Flood boundary delineation from synthetic aperture radar imagery using a statistical active contour model. Int. J. Remote Sens. 22(13), 2489–2507 (2001)

    Article  Google Scholar 

  20. Mattia, F., Satalino, G., Balenzano, A., D’Urso, G., Capodici, F., Iacobellis, V., Milella, P., Gioia, A., Rinaldi, M., Ruggieri, S., et al.: Time series of cosmo-skymed data for landcover classification and surface parameter retrieval over agricultural sites. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp. 6511–6514. IEEE (2012)

    Google Scholar 

  21. Balenzano, A., Satalino, G., Belmonte, A., D’Urso, G., Capodici, F., Iacobellis, V., Gioia, A., Rinaldi, M., Ruggieri, S., Mattia, F.: On the use of multi-temporal series of cosmo-skymed data for landcover classification and surface parameter retrieval over agricultural sites. In: Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, pp. 142–145. IEEE (2011)

    Google Scholar 

  22. Iacobellis, V., Gioia, A., Milella, P., Satalino, G., Balenzano, A., Mattia, F.: Inter-comparison of hydrological model simulations with time series of sar-derived soil moisture maps. Eur. J. Remote Sens. 46(1), 739–757 (2013)

    Article  Google Scholar 

  23. Balenzano, A., Satalino, G., Iacobellis, V., Gioia, A., Manfreda, S., Rinaldi, M., De Vita, P., Miglietta, F., Toscano, P., Annicchiarico, G., et al.: A ground network for sar-derived soil moisture product calibration, validation and exploitation in southern italy. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, pp. 3382–3385. IEEE (2014)

    Google Scholar 

  24. Tarantino, E., Novelli, A., Laterza, M., Gioia, A.: Testing high spatial resolution worldview-2 imagery for retrieving the leaf area index. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 9535 (2015)

    Google Scholar 

  25. Trombetta, A., Iacobellis, V., Tarantino, E., Gentile, F.: Calibration of the aquacrop model for winter wheat using modis lai images. Agric. Water Manag. 164, 304–316 (2016)

    Article  Google Scholar 

  26. Aquilino, M., Novelli, A., Tarantino, E., Iacobellis, V., Gentile, F.: Evaluating the potential of geoeye data in retrieving lai at watershed scale. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 9239 (2014)

    Google Scholar 

  27. Olang, L.O., Kundu, P., Bauer, T., Fürst, J.: Analysis of spatio-temporal land cover changes for hydrological impact assessment within the nyando river basin of Kenya. Environ. Monit. Assess. 179(1), 389–401 (2011)

    Article  Google Scholar 

  28. Pattison, I., Lane, S.N.: The link between land-use management and fluvial flood risk: a chaotic conception? Prog. Phys. Geogr. 36(1), 72–92 (2012)

    Article  Google Scholar 

  29. Balacco, G., Figorito, B., Tarantino, E., Gioia, A., Iacobellis, V.: Space-time lai variability in Northern Puglia (Italy) from spot vgt data. Environ. Monit. Assess. 187(7), 434 (2015)

    Article  Google Scholar 

  30. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F.: Land use change impact on flooding areas: the case study of Cervaro basin (Italy). Sustainability 8(10), 996 (2016)

    Article  Google Scholar 

  31. Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., Piccinni, F.: Improving the ANN classification accuracy of landsat data through spectral indices and linear transformations (PCA and TCT) aimed at LU/LC monitoring of a river basin. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 420–432. Springer, Cham (2016). doi:10.1007/978-3-319-42108-7_32

    Chapter  Google Scholar 

  32. Novelli, A., Tarantino, E., Fratino, U., Iacobellis, V., Romano, G., Gentile, F.: A data fusion algorithm based on the kalman filter to estimate leaf area index evolution in durum wheat by using field measurements and modis surface reflectance data. Remote Sens. Lett. 7(5), 476–484 (2016)

    Article  Google Scholar 

  33. Samela, C., Troy, T.J., Manfreda, S.: Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 102, 13–28 (2017)

    Article  Google Scholar 

  34. O’brien, J., Julien, P., Fullerton, W.: Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 119(2), 244–261 (1993)

    Article  Google Scholar 

  35. Mockus, V.: National Engineering Handbook Section 4, Hydrology. NTIS (1972)

    Google Scholar 

  36. Roy, D.P., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., Johnson, D., Kennedy, R., et al.: Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014)

    Article  Google Scholar 

  37. Tarantino, E.: Monitoring spatial and temporal distribution of sea surface temperature with tir sensor data. Italian J. Remote Sens. 44(1), 97–107 (2012)

    Article  Google Scholar 

  38. Mandanici, E., Franci, F., Bitelli, G., Agapiou, A., Alexakis, D., Hadjimitsis, D.: Comparison between empirical and physically based models of atmospheric correction. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 9535 (2015)

    Google Scholar 

  39. Maurer, T.: How to pan-sharpen images using the gram-schmidt pan-sharpen method-a recipe. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL–1/W1, 239–244 (2013)

    Article  Google Scholar 

  40. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley, New York (2014)

    Google Scholar 

  41. Guerschman, J.P., Van Dijk, A., McVicar, T.R., Van Niel, T.G., Li, L., Liu, Y., Peña-Arancibia, J.: Water balance estimates from satellite observations over the murray-darling basin. Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields project (2008)

    Google Scholar 

  42. Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the modis vegetation indices. Remote Sens. Environ. 83(1), 195–213 (2002)

    Article  Google Scholar 

  43. Ceccato, P., Gobron, N., Flasse, S., Pinty, B., Tarantola, S.: Designing a spectral index to estimate vegetation water content from remote sensing data: part 1: theoretical approach. Remote Sens. Environ. 82(2), 188–197 (2002)

    Article  Google Scholar 

  44. Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R.: Automated water extraction index: a new technique for surface water mapping using landsat imagery. Remote Sens. Environ. 140, 23–35 (2014)

    Article  Google Scholar 

  45. Manfreda, S., Di Leo, M., Sole, A.: Detection of flood-prone areas using digital elevation models. J. Hydrol. Eng. 16(10), 781–790 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gioia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Totaro, V., Gioia, A., Novelli, A., Caradonna, G. (2017). The Use of Geomorphological Descriptors and Landsat-8 Spectral Indices Data for Flood Areas Evaluation: A Case Study of Lato River Basin. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10407. Springer, Cham. https://doi.org/10.1007/978-3-319-62401-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62401-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62400-6

  • Online ISBN: 978-3-319-62401-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics