Skip to main content

Combinatorial and Geometrical Origins of Regge Symmetries: Their Manifestations from Spin-Networks to Classical Mechanisms, and Beyond

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2017 (ICCSA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10408))

Included in the following conference series:

Abstract

Tullio Regge discovered new symmetries in 1958, hidden in formulas for calculations of the coupling and recoupling coefficients of quantum angular momentum theory, as developed principally by Wigner and Racah: the only known (limited) application appeared computational. Ten years later, in a paper with Ponzano, Regge provided a semiclassical interpretation showing relevance to the basic geometry of quadrilaterals and tetrahedra, and opening also a promising road to quantum gravity, still currently being explored. New facets are here indicated, continuing a sequence of papers in this Lecture Notes series and elsewhere. We emphasize how an integrated combinatorial and geometrical interpretation is emerging, and also examples from the quantum mechanics of atoms and molecules are briefly documented. Attention is dedicated to the recently pointed out connection between the quantum mechanics of spin recouplings and the Grashof analysis of four-bar linkages, with perspective implications at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regge, T.: Symmetry properties of Clebsch- Gordan’s coefficients. Nuov. Cimento 10, 544–545 (1958)

    Article  MATH  Google Scholar 

  2. Regge, T.: Symmetry properties of Racah’s coefficients. Nuov. Cimento 11, 116–117 (1959)

    Article  Google Scholar 

  3. Racah, G.: Theory of complex spectra. II. Phys. Rev. 62, 438–462 (1942)

    Article  Google Scholar 

  4. Biedenharn, L.C., Dam, V.H.: Quantum Theory of Angular Momentum. Academic Press, New York (1965)

    Google Scholar 

  5. Bargmann, V.: On the representations of the rotation group. Rev. Mod. Phys. 34, 829–845 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bincer, A.M.: Interpretation of the symmetry of the Clebsch- Gordan coefficients discovered by Regge. J. Math. Phys. 11, 1835–1844 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch et al., F. (ed.) Spectroscopic and Group Theoretical Methods in Physics, pp. 1–58. North-Holland, Amsterdam (1968)

    Google Scholar 

  8. Wigner, E.P.: Group Theory: And its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  9. Varshalovich, D., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Book  Google Scholar 

  10. Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues, 1st edn. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  11. Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable (Scientific Computation). Springer, Heidelberg (1991)

    Book  MATH  Google Scholar 

  12. Aquilanti, V., Cavalli, S., De Fazio, D.: Angular and hyperangular momentum coupling coefficients as hahn polynomials. J. Phys. Chem. 99(42), 15694–15698 (1995)

    Article  Google Scholar 

  13. Aquilanti, V., Haggard, H.M., Littlejohn, R.G., Yu, L.: Semiclassical analysis of Wigner \(3j\)-symbol. J. Phys. A 40(21), 5637–5674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schulten, K., Gordon, R.: Exact recursive evaluation of 3j- and 6j-coefficients for quantum mechanical coupling of angular momenta. J. Math. Phys. 16, 1961–1970 (1975)

    Article  MathSciNet  Google Scholar 

  15. Bitencourt, A.C.P., Ragni, M., Littlejohn, R.G., Anderson, R., Aquilanti, V.: The screen representation of vector coupling coefficients or Wigner 3j symbols: exact computation and illustration of the asymptotic behavior. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 468–481. Springer, Cham (2014). doi:10.1007/978-3-319-09144-0_32

    Google Scholar 

  16. Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12(12), 2438–2453 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Neville, D.E.: Volume operator for spin networks with planar or cylindrical symmetry. Phys. Rev. D 73(12), 124004 (2006)

    Article  Google Scholar 

  18. Aquilanti, V., Capecchi, G.: Harmonic analysis and discrete polynomials from semiclassical angular momentum theory to the hyperquantization algorithm. Theor. Chem. Acc. 104, 183–188 (2000)

    Article  Google Scholar 

  19. Aquilanti, V., Coletti, C.: \(3nj\)-symbols and harmonic superposition coefficients: an icosahedral abacus. Chem. Phys. Lett. 344, 601–611 (2001)

    Article  Google Scholar 

  20. Lévy-Leblond, J.M., Lévy-Nahas, M.: Symmetrical coupling of three angular momenta. J. Math. Phys. 6(9), 1372–1380 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevangee, N., Littlejohn, R., Yu, L.: Semiclassical mechanics of the Wigner \(6j\)-symbol. [math-ph], J. Phys. A 45(065209) (2012). arXiv:1009.2811v2

  22. Neville, D.E.: A technique for solving recurrence relations approximately and its application to the 3-J and 6-J symbols. J. Math. Phys. 12, 2438–2453 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Anderson, R.W., Aquilanti, V., Bitencourt, A.C.P., Marinelli, D., Ragni, M.: The screen representation of spin networks: 2D recurrence, eigenvalue equation for 6j symbols, geometric interpretation and Hamiltonian dynamics. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 46–59. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39643-4_4

    Chapter  Google Scholar 

  24. Ragni, M., Littlejohn, R.G., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W.: The screen representation of spin networks: images of 6j symbols and semiclassical features. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7972, pp. 60–72. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39643-4_5

    Chapter  Google Scholar 

  25. Bitencourt, A.C.P., Marzuoli, A., Ragni, M., Anderson, R.W., Aquilanti, V.: Exact and asymptotic computations of elementary spin networks: classification of the quantum–classical boundaries. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 723–737. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31125-3_54

    Chapter  Google Scholar 

  26. Schulten, K., Gordon, R.: Semiclassical approximations to 3j- and 6j-coefficients for quantum-mechanical coupling of angular momenta. J. Math. Phys. 16, 1971–1988 (1975)

    Article  MathSciNet  Google Scholar 

  27. Mohanty, Y.: The Regge symmetry is a scissors congruence in hyperbolic space. Algebr. Geom. Topol. 3, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roberts, J.: Classical 6j-symbols and the tetrahedron. Geom. Topol. 3, 21–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Aquilanti, V., Marinelli, D., Marzuoli, A.: Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials. [math-ph]. J. Phys. A: Math. Theor. 46, 175303 (2013). arXiv:1301.1949v2

  30. Littlejohn, R., Yu, L.: Uniform semiclassical approximation for the Wigner \(6j\) symbol in terms of rotation matrices. J. Phys. Chem. A 113, 14904–14922 (2009)

    Article  Google Scholar 

  31. Ragni, M., Bitencourt, A.P.C., da S. Ferreira, C., Aquilanti, V., Anderson, R., Littlejohn, R.: Exact computation and asymptotic approximation of \(6j\) symbols. illustration of their semiclassical limits. Int. J. Quantum Chem. 110, 731–742 (2010)

    Google Scholar 

  32. De Fazio, D., Cavalli, S., Aquilanti, V.: Orthogonal polynomials of a discrete variable as expansion basis sets in quantum mechanics. the hyperquantization algorithm. Int. J. Quantum Chem. 93, 91–111 (2003)

    Article  Google Scholar 

  33. Anderson, R.W., Aquilanti, V., Marzuoli, A.: 3nj morphogenesis and semiclassical disentangling. J. Phys. Chem. A 113(52), 15106–15117 (2009)

    Article  Google Scholar 

  34. Anderson, R., Aquilanti, V., da S. Ferreira, C.: Exact computation and large angular momentum asymptotics of \(3nj\) symbols: semiclassical disentangling of spin-networks. J. Chem. Phys. 129(161101), 5 pages (2008)

    Google Scholar 

  35. Aquilanti, V., Cavalli, S., De Fazio, D.: Hyperquantization algorithm. I. Theory for triatomic systems. J. Chem. Phys. 109(10), 3792–3804 (1998)

    Article  Google Scholar 

  36. Marinelli, D., Marzuoli, A., Aquilanti, V., Anderson, R.W., Bitencourt, A.C.P., Ragni, M.: Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 508–521. Springer, Cham (2014). doi:10.1007/978-3-319-09144-0_35

    Google Scholar 

  37. Aquilanti, V., Bitencourt, A.C.P., da S. Ferreira, C., Marzuoli, A., Ragni, M.: Combinatorics of angular momentum recoupling theory: spin networks, their asymptotics and applications. Theor. Chem. Acc. 123, 237–247 (2009)

    Google Scholar 

  38. Ragni, M., Bitencourt, A.C.P., Aquilanti, V., Anderson, R.W., Littlejohn, R.G.: Exact computation and asymptotic approximations of \(6j\) symbols: Illustration of their semiclassical limits. Int. J. Quantum Chem. 110(3), 731–742 (2010)

    Article  Google Scholar 

  39. Dörrie, H.: 100 Great Problems of Elementary Mathematics: Their History and Solution. Dover Publications, Inc., New York (1965)

    Google Scholar 

  40. Khimshiashvili, G., Siersma, D.: Cross- ratios of quadrilateral linkages. J. Singul. 13, 159–168 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Khimshiashvili, G.: Complex geometry of polygonal linkages. J. Math. Sci. 189, 132–149 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Biedenharn, L.C., Lohe, M.A.: Quantum group symmetry and q- Tensor algebras. World Scientific, Singapore (1995)

    Book  MATH  Google Scholar 

  43. Bonatsos, D., Daskaloyannis, C.: Quantum groups and their applications in nuclear physics. Progress Part. Nucl. Phys. 43, 537–618 (1999)

    Article  Google Scholar 

  44. Mizoguchi, S., Tada, T.: Three- dimensional gravity from the Turaev-Viro invariant. Phys. Rev. Lett. 68, 1795–1798 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6\(j\)- symbols. Topology 31, 865–903 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Izmestiev, I.: Deformation of quadrilaterals and addition on elliptic curves, pp. 1–39 (2015). arXiv:1501.07157v1

  47. Taylor, Y.U., Woodward, C.T.: 6\(j\) symbols for \(U_q( {sl}_2)\) non-euclidean tetrahedra. Sel. Math. New Ser. 11, 539–571 (2005)

    Article  MathSciNet  Google Scholar 

  48. Murakami, J.: Volume formulas for a spherical tetrahedron. Proc. Americ. Math. Soc. 140, 3289–3295 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Taylor, Y.U., Woodward, C.T.: Spherical tetrahedra and invariants of 3-manifolds, pp. 1–18 (2004). arXiv:math/0406228v2

  50. Bianchi, E., Modesto, L.: The perturbative Regge- calculus regime of loop quantum gravity. Nucl. Phys. B 796, 581–621 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Williams, R.M.: 6\(j\)- symbols and discrete quantum gravity. Nucl. Phys. B (Proc. Suppl.) 88, 124–131 (2000)

    Google Scholar 

  52. Aquilanti, V., Marzuoli, A.: Desargues spin networks and their Regge regularized geometric realization (to be published)

    Google Scholar 

  53. Anderson, R.W., Aquilanti, V.: Spherical and hyperbolic spin networks: the \(q\)-extensions of Wigner-Racah 6\(j\) coefficients and general orthogonal discrete basis sets in applied quantum mechanics. In: Gervasi, O., et al. (eds.) ICCSA 2017, Part V. LNCS, vol. 10408, pp. 338–353. Springer, Cham (2017)

    Google Scholar 

  54. Aquilanti, V., Caglioti, C., Lombardi, A., Maciel, G.S., Palazzetti, F.: Screens for displaying chirality changing mechanisms of a series of peroxides and persulfides from conformational structures computed by quantum chemistry. In: Gervasi, O., et al. (eds.) ICCSA 2017, Part V. LNCS, vol. 10408, pp. 354–368. Springer, Cham (2017)

    Google Scholar 

  55. Anderson, R.: Discrete orthogonal transformations corresponding to the discrete polynomials of the askey scheme. In: Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 490–507. Springer, Cham (2014). doi:10.1007/978-3-319-09144-0_34

    Google Scholar 

  56. Santos, R.F., Bitencourt, A.C.P., Ragni, M., Prudente, F.V., Coletti, C., Marzuoli, A., Aquilanti, V.: Couplings and recouplings of four angular momenta: alternative \(9j\) symbols and spin addition diagrams. J. Mol. Model. (2017). doi:10.1007/s00894-017-3320-1

  57. Arruda, M.S., Santos, R.F., Marinelli, D., Aquilanti, V.: Spin-coupling diagrams and incidence geometry: a note on combinatorial and quantum-computational aspects. In: Gervasi, O., Murgante, B., Misra, S., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O., Stankova, E., Wang, S. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 431–442. Springer, Cham (2016). doi:10.1007/978-3-319-42085-1_33

    Chapter  Google Scholar 

  58. Carter, J.S., Daniel, E.F., Saito, M.: The Classical and Quantum 6\(j\)- Symbols. Princeton University Press, New Jersey (1995)

    Google Scholar 

  59. Biedenharn, L.C., Louck, J.D.: Angular momentum in quantum physics. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 8. Addison-Wesley Publ. Co., Reading (1981)

    Google Scholar 

  60. Calderini, D., Cavalli, S., Coletti, C., Grossi, G., Aquilanti, V.: Hydrogenoid orbitals revisited: from slater orbitals to coulomb sturmians. J. Chem. Sci. 124, 187 (2012)

    Article  Google Scholar 

  61. Coletti, C., Calderini, D., Aquilanti, V.: \(d\)-dimensional kepler - coulomb sturmians and hyperspherical harmonics as complete orthonormal atomic and molecular orbitals. Adv. Quantum Chem. 67, 73 (2013)

    Article  Google Scholar 

  62. Aquilanti, V., Cavalli, S., Coletti, C., De Fazio, D., Grossi, G.: Hyperangular momentum: applications to atomic and molecular science. In: Tsipis, C.A., Popov, V.S., Herschbach, D.R., Avery, J.S. (eds.) New Methods in Quantum Theory, pp. 233–250. Kluwer (1996)

    Google Scholar 

  63. Aquilanti, V., Cavalli, S., Coletti, C., Grossi, G.: Alternative Sturmian bases and momentum space orbitals: an application to the hydrogen molecular ion. Chem. Phys. 209, 405–419 (1996)

    Article  Google Scholar 

  64. Aquilanti, V., Cavalli, S., Coletti, C.: The d-dimensional hydrogen atom: hyperspherical harmonics as momentum space orbitals and alternative Sturmian basis sets. Chem. Phys. 214, 1–13 (1997)

    Article  Google Scholar 

  65. Aquilanti, V., Cavalli, S., Coletti, C., Domenico, D.D., Grossi, G.: Hyperspherical harmonics as Sturmian orbitals in momentum space: a systematic approach to the few-body Coulomb problem. Int. Rev. Phys. Chem. 20, 673–709 (2001)

    Article  Google Scholar 

  66. Aquilanti, V., Cavalli, S., Coletti, C.: Angular and hyperangular momentum recoupling, harmonic superposition and racah polynomials: a recursive algorithm. Chem. Phys. Lett. 344, 587–600 (2001)

    Article  Google Scholar 

  67. Aquilanti, V., Caligiana, A., Cavalli, S.: Hydrogenic elliptic orbitals, coulomb sturmian sets. Recoupling coefficients among alternative bases. Int. J. Quant. Chem. 92, 99–117 (2003)

    Google Scholar 

  68. Aquilanti, V., Caligiana, A., Cavalli, S., Coletti, C. Hydrogenic orbitals in momentum space and hyperspherical harmonics. Elliptic sturmian basis sets. Int. J. Quant. Chem. 92, 212–228 (2003)

    Google Scholar 

  69. Aquilanti, V., Cavalli, S., Coletti, C.: Hyperspherical symmetry of hydrogenic orbitals and recoupling coefficients among alternative bases. Phys. Rev. Lett. 80, 3209–3212 (1998)

    Article  Google Scholar 

  70. Pauling, L.: The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 53, 1367–1400 (1931)

    Article  MATH  Google Scholar 

  71. Marinelli, D.: Single and collective dynamics of discretized geometries (PhD thesis), University of Pavia, Italy (2013), ISBN: 978–88-95767-73-4

    Google Scholar 

  72. Kil’dyushov, M.S.: Hyperspherical functions of tree type in the N-body problem sov. J. Nucl. Phys. 15, 113 (1972)

    Google Scholar 

  73. Aquilanti, V., Grossi, G.: Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisions. J. Chem. Phys. 73, 1165–1172 (1980)

    Article  Google Scholar 

  74. Aquilanti, V., Cavalli, S., Grossi, G.: Hund’s cases for rotating diatomic molecules and for atomic collisions: angular momentum coupling schemes and orbital alignment. Z Phys. D. 36, 215–219 (1996)

    Article  Google Scholar 

  75. Aquilanti, V., Cavalli, S., Grossi, G.: Discrete analogs of spherical harmonics and their use in quantum mechanics: the hyperquantization algorithm. Theor. Chim. Acta 79, 283–296 (1991)

    Article  Google Scholar 

  76. Aquilanti, V., Cavalli, S.: Discrete analogs of hyperspherical harmonics and their use for the quantum mechanical three body problem. In: Ciofi degli Atti, C., Pace, E., Salmé, G., Simula S. (eds.) Few-Body Problems in Physics. Few-Body Systems, vol. 6, pp. 573–580. Springer, Vienna (1992)

    Google Scholar 

  77. Fock, V.: Zur Theorie des Wasserstoffatoms. Z. Phys. 98, 145–154 (1935)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Robenilson Ferreira is grateful to Brazilian CAPES for a sandwich doctoral (PDSE88881.134388/2016-01) fellowship to the Perugia University. Manuela Arruda is grateful to Brazilian CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for a post doctoral fellowship to the Perugia University. Vincenzo Aquilanti and Frederico Vasconcellos Prudente thank Brazilian CAPES for a Special Visiting Professorship at the Bahia Federal University (PVE 027/2013) and the Italian MIUR for Grant SIR 2014 (RBSI14U3VF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Coletti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aquilanti, V., Arruda, M.S., Coletti, C., Littlejohn, R., Santos, R.F. (2017). Combinatorial and Geometrical Origins of Regge Symmetries: Their Manifestations from Spin-Networks to Classical Mechanisms, and Beyond. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2017. ICCSA 2017. Lecture Notes in Computer Science(), vol 10408. Springer, Cham. https://doi.org/10.1007/978-3-319-62404-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62404-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62403-7

  • Online ISBN: 978-3-319-62404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics