Skip to main content

Solving Manufacturing Cell Design Problems Using the Black Hole Algorithm

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10061))

Abstract

In this paper we solve the Manufacturing Cell Design Problem. This problem considers the grouping of different machines into sets or cells with the objective of minimizing the movement of material. To solve this problem we use the Black Hole algorithm, a modern population-based metaheuristic that is inspired by the phenomenon of the same name. At each iteration of the search, the best candidate solution is selected to be the black hole and other candidate solutions, known as stars, are attracted by the black hole. If one of these stars get too close to the black hole it disappears, generating a new random star (solution). Our approach has been tested by using a well-known set of benchmark instances, reaching optimal values in all of them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aljaber, N., Baek, W., Chen, C.-L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)

    Google Scholar 

  2. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Google Scholar 

  3. Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Comput. Oper. Res. 33(8), 2219–2245 (2006)

    Google Scholar 

  4. Durán, O., Rodriguez, N., Consalter, L.A.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Google Scholar 

  5. Gupta, Y., Gupta, M., Kumar, A., Sundaram, C.: A genetic algorithm-based approach to cell composition and layout design problems. Int. J. Prod. Res. 34(2), 447–482 (1996)

    Google Scholar 

  6. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    Google Scholar 

  7. James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

    Google Scholar 

  8. Kusiak, A., Chow, W.S.: Efficient solving of the group technology problem. J. Manuf. Syst. 6(2), 117–124 (1987)

    Google Scholar 

  9. Lozano, S., Adenso-Diaz, B., Eguia, I., Onieva, L., et al.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 509–516 (1999)

    Google Scholar 

  10. Nsakanda, A.L., Diaby, M., Price, W.L.: Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. Eur. J. Oper. Res. 171(3), 1051–1070 (2006)

    Google Scholar 

  11. Oliva-Lopez, E., Purcheck, G.F.: Load balancing for group technology planning and control. Int. J. Mach. Tool Des. Res. 19(4), 259–274 (1979)

    Google Scholar 

  12. Purcheck, G.F.K.: A linear-programming method for the combinatorial grouping of an incomplete power set. J. Cybern. 5(4), 51–76 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ruffini, R., Wheeler, J.A.: Introducing the black hole. Phys. Today 24(1), 30 (1971)

    Article  Google Scholar 

  14. Sankaran, S., Rodin, E.Y.: Multiple objective decision making approach to cell formation: a goal programming model. Math. Comput. Model. 13(9), 71–81 (1990)

    Google Scholar 

  15. Shafer, S.M., Rogers, D.F.: A goal programming approach to the cell formation problem. J. Oper. Manag. 10(1), 28–43 (1991)

    Google Scholar 

  16. Soto, R., Kjellerstrand, H., Orlando, D., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)

    Google Scholar 

  17. Venugopal, V., Narendran, T.T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)

    Google Scholar 

  18. Wu, T.-H., Chang, C.-C., Chung, S.-H.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)

    Google Scholar 

Download references

Acknowledgements

Ricardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1160455, Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1171243, Victor Reyes is supported by Grant INF-PUCV and Ignacio Araya is supported by Grant CONICYT/FONDECYT/REGULAR/1160224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Soto, R., Crawford, B., Fernandez, N., Reyes, V., Niklander, S., Araya, I. (2017). Solving Manufacturing Cell Design Problems Using the Black Hole Algorithm. In: Sidorov, G., Herrera-Alcántara, O. (eds) Advances in Computational Intelligence. MICAI 2016. Lecture Notes in Computer Science(), vol 10061. Springer, Cham. https://doi.org/10.1007/978-3-319-62434-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62434-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62433-4

  • Online ISBN: 978-3-319-62434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics