Skip to main content

Calculation of Chemical Equilibria in Multi-Phase: Multicomponent Systems

  • Chapter
  • First Online:
Book cover Scientific Computing and Algorithms in Industrial Simulations

Abstract

The paper describes methods for calculating chemical equilibria based on a constrained Gibbs free energy minimization. The methods allow the treatment of multicomponent systems with multiple phases, including gaseous phases, condensed phases, and stoichiometric phases. A special aspect is the detection and treatment of miscibility gaps. The underlying mathematical problem is described in detail together with the algorithmic approach for its solution. Results are presented for some test cases, including the computation of phase diagrams for ternary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.E. Balzhiser, M.R. Samuels, J.D. Eliassen, Chemical Engineering Thermodynamics. The Study of Energy, Entropy and Equilibrium (Prentice-Hall, Englewood Cliffs, 1972)

    Google Scholar 

  2. F.P. Boynton, Chemical equilibrium in multicomponent polyphase systems. J. Chem. Phys. 32, 1880–1881 (1960)

    Article  Google Scholar 

  3. S.-L. Chen, K.-C. Chou, Y.-A. Chang, On a new strategy for phase diagram calculation, CALPHAD 17, 237–250 (1993)

    Article  Google Scholar 

  4. A. Dinsdale, A. Watson, A. Kroupa, et al. COST Action 531, Lead-Free Solders: Atlas of Phase Diagrams for Lead-Free Soldering, COST – European Cooperation in Science and Technology (2008)

    Google Scholar 

  5. J.H. Dluzniewski, S.B. Adler, Calculation of complex reaction and/or phase equilibria problems. Inst. Chem. Eng. Symp. Ser. 4, 21–26 (1972)

    Google Scholar 

  6. M. Emelianenko, Z.-K. Liu, Q. Du, A new algorithm for the automation of phase diagram calculation. Comput. Mater. Sci. 35, 61–74 (2006)

    Article  Google Scholar 

  7. G. Eriksson, Thermodynamic studies of high temperature equilibria. Acta Chem. Scand. 25, 2651–2658 (1971)

    Article  Google Scholar 

  8. G. Eriksson, Quantitative equilibrium calculations in multiphase systems at high temperatures, with special reference to the roasting of chalcopyrite, Ph.D. thesis, University of Umeå, Sweden, 1975

    Google Scholar 

  9. G. Eriksson, K. Hack, S. Petersen, Chemapp—a programmable thermodynamic calculation interface, in Werkstoffwoche ’96, Symposium B: Simulation, Modellierung, Informationssysteme, ed. by J. Hirsch (DGM Informationsgesellschaft Verlag, 1997), pp. 47–51

    Google Scholar 

  10. G. Eriksson, E. Rosen, Thermodynamic studies of high temperature equilibria. Chem. Scr. 4, 193–194 (1973)

    Google Scholar 

  11. G. Eriksson, W.T. Thompson, A procedure to estimate equilibrium concentrations in multicomponent systems and related applications. CALPHAD 13, 389–400 (1980)

    Article  Google Scholar 

  12. P.J.F. Groenen, W.J. Heiser, The tunneling method for global optimization in multidimensional scaling. Pychometrika 61, 529–550 (1996)

    Article  MATH  Google Scholar 

  13. R. Hettich, P. Zencke, Numerische Methoden der Approximation und Semi-Infiniten Optimierung (Teubner, Stuttgart, 1982)

    Book  MATH  Google Scholar 

  14. B.R. Kubert, S.E. Stephanou, Extension to multiphase systems of the rand method for determining equilibrium compositions, in ed. by G.H. Bahn, E.E. Zukoski, Kinetics, Equilibria and Performance of High Temperature Systems (Buttherworth, London, 1960) pp. 166–170

    Google Scholar 

  15. J.N. Lalena, D.A. Cleary, M.W. Weiser, Principles of Inorganic Materials Design (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  16. A.V. Levy, S. Gomez, The tunneling method applied to global optimization, in Numerical Optimization, ed. by P.T. Boggs, R.H. Byrd, R.B. Schnabel (SIAM, Philadelphia, 1985), pp. 213–244

    Google Scholar 

  17. R. Lougee-Heimer, The common optimization interface for operations research. IBM J. Res. Dev. 47, 57–66 (2003)

    Article  Google Scholar 

  18. J.E. Morral, Two-dimensional phase fraction charts. Scr. Metall. 18, 407–410 (1984)

    Article  Google Scholar 

  19. MPI, Message Passing Interface. http://www.mcs.anl.gov/research/projects/mpi

  20. D.V. Nichita, S. Gomez, E. Luna, Multiphase equilibria calculation by direct minimization of gibbs free energy with a global optimization method. Comput. Chem. Eng. 26, 1703–1724 (2002)

    Article  Google Scholar 

  21. D.V. Nichita, S. Gomez, E. Luna, Phase stability analysis with cubic equations of state by using a global optimization method. Fluid Phase Equilib. 194–197, 411–437 (2002)

    Article  Google Scholar 

  22. J. Nocedal, S.J. Wright, Numerical Optimization (Springer, Berlin, 2006)

    MATH  Google Scholar 

  23. R.C. Oliver, S.E. Stephanou, R.W. Baier, Calculating free energy minimization. Chem. Eng. 69, 121–128 (1962)

    Google Scholar 

  24. OpenMP, Portable Shared Memory Parallel Programming. http://openmp.org

  25. S. Petersen, K. Hack, The thermochemistry library chemapp and its applications. Int. J. Mater. Res. 98, 935–945 (2007)

    Article  Google Scholar 

  26. W.B. White, S.M. Johnson, G.B. Danzig, Rand corporation: chemical equilibrium in complex mixtures. J. Chem. Phys. 28, 751–755 (1957)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support supplied by the German Federal Ministry for Education and Research (Bundesministerium für Bildung und Forschung, BMBF) within the support framework KMU-innovative grant No. 01IS11030B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Hülsmann .

Editor information

Editors and Affiliations

Appendix: The Gibbs Free Energy Function

Appendix: The Gibbs Free Energy Function

Each phase specific Gibbs free energy function G (i) is the sum of a reference part G ref (i), an ideal part G id (i), and an excess part G ex (i):

$$ \displaystyle\begin{array}{rcl} G^{(i)}(x^{(i)})&:=& G_{\mathrm{ ref}}^{(i)}(x^{(i)}) + G_{\mathrm{ id}}^{(i)}(x^{(i)}) + G_{\mathrm{ ex}}^{(i)}(x^{(i)}).{}\end{array}$$
(16)

The reference and the ideal part are given by:

$$\displaystyle\begin{array}{rcl} G_{\mathrm{ref}}^{(i)}(x^{(i)})&:=& \sum _{ k=1}^{K^{i} }G_{k}^{0,i}x_{ k}^{i},{}\end{array}$$
(17)
$$\displaystyle\begin{array}{rcl} G_{\mathrm{id}}^{(i)}(x^{(i)})&:=& RT\sum _{ k=1}^{K^{i} }x_{k}^{i}\ln x_{ k}^{i}.{}\end{array}$$
(18)

Here, R = 8.31451 J/(mol K) is the ideal gas constant and T the temperature in K. In the non-ideal part, binary interactions of phase constituents are described by the terms B i, ternary interactions by the terms T i and quaternary interactions by the terms Q i (for a phase i):

$$\displaystyle\begin{array}{rcl} G_{\mathrm{ex}}^{(i)}(x^{(i)})&:=& \sum _{ k_{1}<k_{2}}^{K^{i} }B^{i}(\{k_{ 1},k_{2}\},x^{(i)}) +\sum _{ k_{1}<k_{2}<k_{3}}^{K^{i} }T^{i}(\{k_{ 1},k_{2},k_{3}\},x^{(i)}) \\ & +& \sum _{k_{1}<k_{2}<k_{3}<k_{4}}^{K^{i} }Q^{i}(\{k_{ 1},k_{2},k_{3},k_{4}\},x^{(i)}), {}\end{array}$$
(19)

with

$$\displaystyle\begin{array}{rcl} B^{i}(\{k_{ 1},k_{2}\},x^{(i)})&:=& \prod _{ j=1}^{2}x_{ k_{j}}^{i}\sum _{ \nu =1}^{m^{i}(k_{ 1},k_{2})}L_{k_{ 1}k_{2}}^{\nu,i}\left (x_{ k_{1}}^{i} - x_{ k_{2}}^{i}\right )^{\nu -1},\ m^{i}(k_{ 1},k_{2}) \in \mathbb{N},{}\end{array}$$
(20)
$$\displaystyle\begin{array}{rcl} T^{i}(\{k_{ 1},k_{2},k_{3}\},x^{(i)})&:=& \prod _{ j=1}^{3}x_{ k_{j}}^{i}\left (\sum _{ j=1}^{3}L_{ k_{j}}^{i}x_{ k_{j}}^{i} + \frac{1} {3}\sum _{j=1}^{3}L_{ k_{j}}^{i}\left (1 -\sum _{ j=1}^{3}x_{ k_{j}}^{i}\right )\right ),{}\end{array}$$
(21)
$$\displaystyle\begin{array}{rcl} Q^{i}(\{k_{ 1},k_{2},k_{3},k_{4}\},x^{(i)})&:=& \prod _{ j=1}^{4}x_{ k_{j}}^{i}L_{ k_{1}k_{2}k_{3}k_{4}}^{i}.{}\end{array}$$
(22)

The binary excess part of the phase specific Gibbs function (20) is described here by the Redlich–Kister–Muggianu polynomials (RKMP), cf. [ 15 ]. Interactions of higher order could also be involved in the model but are neglected here.

If K i = 1 for some i ∈ {1, , n}, it holds:

$$\displaystyle{G^{(i)}(x^{(i)}) = G_{ 1}^{0,i},}$$

(Gibbs energy for a stoichiometric phase).

The coefficients G k 0,i,  i = 1, , n,  k = 1, , K i are given by:

$$\displaystyle\begin{array}{rcl} G_{k}^{0,i}(T)& =& A_{ k}^{i} + B_{ k}^{i}T + C_{ k}^{i}T\ln T + D_{ k}^{i}T^{2} + E_{ k}^{i}T^{3} + F_{ k}^{i}T^{-1} \\ & +& G_{k}^{i}T^{i_{G} } + H_{k}^{i}T^{i_{H} } + I_{k}^{i}T^{i_{I} } + J_{k}^{i}T^{i_{J} }, {}\end{array}$$
(23)

where \(A_{k}^{i},\ldots,M_{k}^{i};\ i_{G},\ldots,i_{M} \in \mathbb{R},\ i = 1,\ldots,n,\ k = 1,\ldots,K^{i}\) are coefficients taken from a material database [4]. The pressure dependence of the Gibbs energy can be involved by additional additive terms.

The RKMP coefficients \(L_{(k_{1},\ldots,k_{I})}^{i},\ i = 1,\ldots,n,\ k_{1},\ldots,k_{I} \in \{ 1,\ldots,K^{i}\},k_{1} <\ldots <k_{I}\), where I is the interaction order, are given by:

$$\displaystyle\begin{array}{rcl} L_{(k_{1},\ldots,k_{N})}^{i}(T,P)& =& (A_{ k}^{i})_{ L} + (B_{k}^{i})_{ L}T + (C_{k}^{i})_{ L}T\ln T + (D_{k}^{i})_{ L}T^{2}{}\end{array}$$
(24)
$$\displaystyle\begin{array}{rcl} & +& (E_{k}^{i})_{ L}T^{3} + (F_{ k}^{i})_{ L}T^{-1} + (G_{ k}^{i})_{ L}P + (H_{k}^{i})_{ L}P^{2},{}\end{array}$$
(25)

where the coefficients \((A_{k}^{i})_{L},\ldots,(H_{k}^{i})_{L} \in \mathbb{R},\ i = 1,\ldots,n,\ k = 1,\ldots,K^{i}\) were taken from a material database [4] as well. The pressure dependence can be involved by additional additive terms in this case as well.

Please note that the term lnP has to be added in the case of the presence of a gaseous phase g:

$$\displaystyle{ G^{(g)}(x^{(g)}) = G_{\mathrm{ ref}}^{(g)}(x^{(g)}) + G_{\mathrm{ id}}^{(g)}(x^{(g)}) + RT\ln P. }$$
(26)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hülsmann, M. et al. (2017). Calculation of Chemical Equilibria in Multi-Phase: Multicomponent Systems. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_1

Download citation

Publish with us

Policies and ethics