Skip to main content

Molecular Dynamics Simulation of Membrane Free Energy Profiles Using Accurate Force Field for Ionic Liquids

  • Chapter
  • First Online:
  • 1024 Accesses

Abstract

Ionic liquids are highly relevant for industrial applications as they stand out due to their special chemical and physical features, e.g. low vapor pressure, low melting point or extraordinary solution properties. The goal of this work is to study the capability of the three ionic liquids [C2MIM][NTf2], [C12MIM][NTf2] and [C2MIM][EtSO4] to diffuse through a POPC membrane (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). To achieve this, we used molecular simulation techniques, which on the one hand give insight into specific domains of the membrane and on the other hand compute partition coefficients and free energy profiles of solutes in lipid membranes, which cannot be measured by labor experiments. To be as accurate as possible we parameterized a new united atom force field for the ionic liquid of type 1-alkyl-3-methylimidazoliumethylsulfate [C n MIM][EtSO4] with n = 1,2,4,6,8. Like the other IL force field for [C n MIM][NTf2] (see Köddermann et al., ChemPhysChem 14, 3368–3374, 2013) used in this work, the new one was derived to reproduce experimental densities and self-diffusion coefficients. The new force field reproduces the experimental data extremely well. Using this force field, the influences of cation and anion exchanges as well as the variation of the chain length on the free energy could be analyzed. We performed umbrella-sampling to characterize the free energy profile of one ion pair, accompanied by a second one, in solution, at the membrane interface, and inside the membrane. In the outlook we present our intention to parameterize force fields in a systematic and user-friendly way. We will use the combination of two optimization toolkits, developed at SCAI: The global optimization toolkit CoSMoS and the local optimization techniques implemented in the software package GROW.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.P. Armstrong, C. Hurst, R.G. Jones, et al., Vaporization of ionic liquids. Phys. Chem. Chem. Phys. 9, 982–990 (2007)

    Article  Google Scholar 

  2. B.H. Besler, K.M. Merz Jr., P.A. Kollman, Atomic charges derived from semiempirical methods. J. Comput. Chem. 11, 431–439 (1990)

    Article  Google Scholar 

  3. P. Bjelkmar, P. Larsson, M. A. Cuendet, B. Hess, E. Lindahl, Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 6, 459–466 (2010)

    Article  Google Scholar 

  4. M.B. Boggara, R. Krishnamoorti, Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study. Biophys. J. 98, 586–595 (2010)

    Article  Google Scholar 

  5. D.A. Case, V. Babin, J.T. Berryman, et al., AMBER 14 (University of California, San Francisco, 2014)

    Google Scholar 

  6. B. Chen, J.J. Potoff, J.I. Siepmann, Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J. Phys. Chem. B 105, 3093–3104 (2001)

    Google Scholar 

  7. W.D. Cornell, P. Cieplak, C.I. Bayly, et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  8. S. Deublein, B. Eckl, J. Stoll, et al., ms2: a molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182, 2350–2367 (2011)

    Google Scholar 

  9. B. Eckl, J. Vrabec, H. Hasse, On the application of force fields for predicting a wide variety of properties: Ethylene oxide as an example. Fluid Phase Equilib. 274, 16–26 (2008)

    Article  Google Scholar 

  10. S. Endo, B.I. Escher, K.-U. Goss, Capacities of membrane lipids to accumulate neutral organic chemicals. Environ. Sci. Technol. 45, 5912–5921 (2011)

    Article  Google Scholar 

  11. B.I. Escher, R.P. Schwarzenbach, Partitioning of substituted phenols in liposome-water, biomembrane-water, and octanol-water systems. Environ. Sci. Technol. 30, 260–270 (1996)

    Article  Google Scholar 

  12. U. Essmann, L. Perera, M.L. Berkowitz, et al., A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995)

    Article  Google Scholar 

  13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03 Revision C.02 (Gaussian, Inc. Wallingford, CT, 2004)

    Google Scholar 

  14. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  Google Scholar 

  15. W.G. Hoover, Canonical dynamics: equilibrium phase space distributions. Phys. Rev. A 31, 1695–1697 (1985)

    Article  Google Scholar 

  16. H.W. Horn, W.C. Swope, J.W. Pitera, et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004)

    Article  Google Scholar 

  17. J.S. Hub, B.L. de Groot, D. van der Spoel, g_wham – a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J. Chem. Theory Comput. 6, 3713–3720 (2010)

    Google Scholar 

  18. M. Hülsmann, D. Reith, SpaGrOW – a derivative-free optimization scheme for intermolecular force field parameters based on sparse grid methods. Entropy 15, 3640–3687 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hülsmann, J. Vrabec, A. Maaß, D. Reith, Assessment of numerical optimization algorithms for the development of new molecular models. Comput. Phys. Commun. 18, 887–905 (2010)

    Article  MATH  Google Scholar 

  20. M. Hülsmann, T. Köddermann, J. Vrabec, D. Reith, Grow: a gradient-based optimisation workflow for the automated development of molecular models. Comput. Phys. Commun. 181, 499–513 (2010)

    Article  MATH  Google Scholar 

  21. M. Hülsmann, T.J. Müller, T. Köddermann, D. Reith, Automated force field optimisation of small molecules using a gradient-based workflow package. Mol. Simul. 36, 1182–1196 (2011)

    Article  Google Scholar 

  22. M. Hülsmann, S. Kopp, M. Huber, D. Reith, Utilization of efficient gradient and hessian computations in the force field optimization process of molecular simulations. Comput. Sci. Discovery 6, 15005 (2013)

    Article  Google Scholar 

  23. M. Hülsmann, K.N. Kirschner, A. Krämer, et al., Optimizing molecular models through force-field parameterization via the efficient combination of modular program packages, in Foundations of Molecular Modeling and Simulation: Select Papers from FOMMS 2015, ed. by R.Q. Snurr, C.S. Adjiman, D.A. Kofke (Springer, Singapore, 2016), pp. 53–77

    Google Scholar 

  24. J.P.M. Jämbeck, A.P. Lyubartsev, Exploring the free energy landscape of solutes embedded in lipid bilayers. J. Phys. Chem. Lett. 4, 1781–1787 (2013)

    Article  Google Scholar 

  25. S. Jo, T. Kim, W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2, 880 (2007)

    Article  Google Scholar 

  26. S. Jo, J.B. Lim, J.B. Klauda, W. Im, CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009)

    Article  Google Scholar 

  27. M.T.O. Jonker, S.A. van der Heijden, Bioconcentration factor hydrophobicity cutoff: an artificial phenomenon reconstructed. Environ. Sci. Technol. 41, 7363–7369 (2007)

    Article  Google Scholar 

  28. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  Google Scholar 

  29. K.N. Kirschner, A.B. Yongye, S.M. Tschampel, et al., GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 29, 622–655 (2008)

    Article  Google Scholar 

  30. K.N. Kirschner, D. Reith, O. Jato, A. Hinkenjann, Visualizing potential energy curves and conformations on ultra high-resolution display walls. J. Mol. Graph. Model. 62, 174–180 (2015)

    Article  Google Scholar 

  31. A. Klamt, U. Huniar, S. Spycher, J. Keldenich, COSMOmic: a mechanistic approach to the calculation of membrane-water partition coefficients and internal distributions within membranes and micelles. J. Phys. Chem. B 112, 12148–12157 (2008)

    Article  Google Scholar 

  32. J.B. Klauda, R.M. Venable, J.A. Freites, et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010)

    Article  Google Scholar 

  33. T. Köddermann, D. Paschek, R. Ludwig, Molecular dynamics simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics. ChemPhysChem 8, 2464–2470 (2007)

    Article  Google Scholar 

  34. T. Köddermann, D. Reith, R. Ludwig, Force field comparison on various model approaches – how to design the best model for the ionic liquid family [cnmim][ntf2]. ChemPhysChem 14, 3368–3374 (2013)

    Article  Google Scholar 

  35. A. Krämer, M. Hülsmann, T. Köddermann, D. Reith, Automated parameterization of intermolecular pair potentials using global optimization techniques. Comput. Phys. Commun. 185, 3228–3239 (2014)

    Article  MATH  Google Scholar 

  36. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)

    Article  Google Scholar 

  37. J.N.C. Lopes, M.F.C. Gomes, A.A.H. Padua, Nonpolar, polar, and associating solutes in ionic liquids. J. Phys. Chem. B 110, 16816–16818 (2006)

    Article  Google Scholar 

  38. J.N.C. Lopes, A.A.H. Padua, K. Shimizu, Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. J. Phys. Chem. B 112, 5039–5046 (2008)

    Article  Google Scholar 

  39. A. Menjoge, J. Dixon, J.F. Brennecke, E.J. Maginn, S. Vasenkov, Influence of water on diffusion in imidazolium-based ionic liquids: a pulsed field gradient NMR study. J. Phys. Chem. B 113, 6353–6359 (2009)

    Article  Google Scholar 

  40. S. Nosé, A molecular dynamics method for simulating in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  41. S. Nosé, M.L. Klein, Constant pressure molecular dynamics for molecular systems. Mol. Phys. 50, 1055–1076 (1983)

    Article  Google Scholar 

  42. M. Paloncyova, R. DeVane, B. Murcha, K. Berka, M. Otyepka, Amphiphilic drug-like molecules accumulate in a membrane below the head group region. J. Phys. Chem. B 118, 1030–1039 (2014)

    Article  Google Scholar 

  43. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7180 (1981)

    Article  Google Scholar 

  44. G.H. Peters, C. Wang, N. Cruys-Bagger, et al., Binding of serotonin to lipid membranes. J. Am. Chem. Soc. 135, 2164–2171 (2013)

    Article  Google Scholar 

  45. T.J. Piggot, A. Pineiro, S. Khalid, Molecular dynamics simulations of phosphatidylcholine membranes: a comparative force field study. J. Chem. Theory Comput. 8, 4593–4609 (2012)

    Article  Google Scholar 

  46. S. Pronk, S. Pall, R. Schulz, et al., Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29, 845–854 (2013)

    Google Scholar 

  47. D. Reith, K.N. Kirschner, A modern workflow for force-field development – bridging quantum mechanics and atomistic computational models. Comput. Phys. Commun. 182, 2184–2191 (2011)

    Article  Google Scholar 

  48. H. Rodriguez, J.F. Brennecke, Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. J. Chem. Eng. Data 51, 2145–2155 (2006)

    Article  Google Scholar 

  49. B. Roux, The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91, 275–282 (1995)

    Article  Google Scholar 

  50. U.C. Singh, P.A. Kollman, An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984)

    Article  Google Scholar 

  51. E. Terama, O.H.S. Ollila, E. Salonen, et al., Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. J. Phys. Chem. B 112, 4131–4139 (2008)

    Article  Google Scholar 

  52. J. Tian, A. Sethi, B. Swanson, B. Goldstein, S. Gnanakaran, Taste of sugar at the membrane: thermodynamics and kinetics of the interaction of a disaccharide with lipid bilayers. J. Biophys. 104, 622–632 (2013)

    Article  Google Scholar 

  53. G.M. Torrie, J.P. Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem. Phys. Lett. 28, 578–581 (1974)

    Article  Google Scholar 

  54. G. Torrie, J. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977)

    Article  Google Scholar 

  55. G. van Meer, D.R. Voelker, G.W. Feigenson, Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008)

    Article  Google Scholar 

  56. I. Vorobyov, W.D. Bennett, D.P. Tieleman, T.W. Allen, S. Noskov, The role of atomic polarization in the thermodynamics of chloroform partitioning to lipid bilayers. J. Chem. Theory Comput. 8, 618–628 (2012)

    Article  Google Scholar 

  57. A. Wandschneider, J.K. Lehmann, A. Heintz, Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol, J. Chem. Eng. Data 53, 596–599 (2008)

    Article  Google Scholar 

  58. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Stefan Grundei and the Klüber Lubrication KG for continued interest and the German Federal Ministry for Education and Research (BMBF) for financial support through the SchmiRMal grant No. 03X4009G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Reith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Köddermann, T., Schenk, M.R., Hülsmann, M., Krämer, A., Kirschner, K.N., Reith, D. (2017). Molecular Dynamics Simulation of Membrane Free Energy Profiles Using Accurate Force Field for Ionic Liquids. In: Griebel, M., Schüller, A., Schweitzer, M. (eds) Scientific Computing and Algorithms in Industrial Simulations. Springer, Cham. https://doi.org/10.1007/978-3-319-62458-7_14

Download citation

Publish with us

Policies and ethics