Skip to main content

Improving Human Motion Identification Using Motion Dependent Classification

  • Conference paper
  • First Online:
Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2016)

Abstract

In this article, we present a new methodology for human motion identification based on motion dependent binary classifiers that afterwards fuse their decisions to identify an Activity of Daily Living (ADL). Temporal and spectral features extracted from the sensor signals (accelerometer and gyroscope) and concatenated to a single feature vector are used to train motion dependent binary classification models. Each individual model is capable to recognize one motion versus all the others. Afterwards the decisions are combined by a fusion function using as weights the sensitivity values derived from the evaluation of each motion dependent classifier on the provided training set. The proposed methodology was evaluated using SVMs for the motion dependent classifiers and is compared against the common multiclass classification approach optimized using either feature selection or subject dependent classification. The classification accuracy of the proposed methodology reaches 99% offering competitive performance comparing to the other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morley, J.E., et al.: Frailty consensus: a call to action. J. Am. Med. Directors Assoc. 14, 392–397 (2013)

    Article  Google Scholar 

  2. Chen, X., Mao, G., Leng, S.X.: Frailty syndrome: an overview. Clin. Interv. Aging 9, 433–441 (2014)

    Google Scholar 

  3. Abellan van Kan, G., et al.: The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J. Nutr. Health Aging 12, 29–37 (2008)

    Article  Google Scholar 

  4. Mitnitski, A.B., Graham, J.E., Mogilner, A.J., Rockwood, K.: Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2, 1 (2002)

    Article  Google Scholar 

  5. Morley, J.E., Haren, M.T., Rolland, Y., Kim, M.J.: Frailty. Med. Clin. North Am. 90, 837–847 (2006)

    Article  Google Scholar 

  6. Seacw Project. http://cordis.europa.eu/project/rcn/191786_en.html

  7. Eldergames Project. http://cordis.europa.eu/project/rcn/80186_en.html

  8. Kinoptim Project. http://cordis.europa.eu/project/rcn/106678_en.html

  9. Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Richardson, M., Megalooikonomou, V.: Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients. Expert Syst. Appl. 42, 3227–3233 (2015)

    Article  Google Scholar 

  10. Doremi Project. http://cordis.europa.eu/project/rcn/110829_en.html

  11. Alfred Project. http://cordis.europa.eu/project/rcn/110629_en.html

  12. Home Sweet Home Project. http://cordis.europa.eu/project/rcn/191712_en.html

  13. Mobiserv Project. http://cordis.europa.eu/project/rcn/93537_en.html

  14. Fate Project. http://cordis.europa.eu/project/rcn/191694_en.html

  15. Jia, Y.: Diatetic and exercise therapy against diabetes mellitus. In: 2nd International Conference on Intelligent Networks and Intelligent Systems, pp. 693–696 (2009)

    Google Scholar 

  16. Khan, A., Lee, Y., Lee, S.Y., Kim, T.: Triaxial accel-erometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf Technol. Biomed. 14, 1166–1172 (2010)

    Article  Google Scholar 

  17. Mantyjarvi, J., Himberg, J., Seppanen, T.: Recognizing human motion with multiple acceleration sensors. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 747–752 (2001)

    Google Scholar 

  18. Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., Fukui, Y.: Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 188–196 (2002)

    Article  Google Scholar 

  19. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Frequent bit pattern mining over tri-axial accelerometer data streams for recognizing human activities and detecting fall. Procedia Comput. Sci. 19, 56–63 (2013)

    Article  Google Scholar 

  20. Bernecker, T., Graf, F., Kriegel, H., Moennig, C.: Activity recognition on 3D accelerometer data. Technical Report (2012)

    Google Scholar 

  21. Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf Technol. Biomed. 10, 156–167 (2006)

    Article  Google Scholar 

  22. Zhang, M., Sawchuk, A.: A feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks, pp. 92–98 (2011)

    Google Scholar 

  23. Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. Am. Assoc. Artif. Intell. 5, 1541–1546 (2005)

    Google Scholar 

  24. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 437–442 (2013)

    Google Scholar 

  25. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, Jorge L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35395-6_30

    Chapter  Google Scholar 

  26. Reyes-Ortiz, J.L., Ghio, A., Parra, X., Anguita, D., Cabestany, J., Catala, A.: Human activity and motion disorder recognition: towards smarter interactive cognitive environments. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 403–412 (2013)

    Google Scholar 

  27. FrailSafe project: http://frailsafe-project.eu/

  28. Pippa, E., Mporas, I., Megalooikonomou, V.: Feature selection evaluation for light human motion identification in frailty monitoring system. In: 2nd International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE) (2016)

    Google Scholar 

  29. Kononenko, I.: Estimating attributes: analysis and extension of RELIEF. Mach. Learn. 784, 171–182 (2005)

    Google Scholar 

  30. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of 9th International Conference on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  31. Dietterich, T.G.: Machine learning research: four current directions. Artif. Intell. Mag. 18, 97–136 (1997)

    Google Scholar 

  32. Sun, Y., Wu, D.: A RELIEF based feature extraction algorithm. In: Proceedings of SIAM International Conference on Data Mining, pp. 188–195 (2008)

    Google Scholar 

  33. Sun, Y., Li, J.: Iterative RELIEF for feature weighting. In: Proceedings of 21st International Conference on Machine Learning, pp. 913–920 (2006)

    Google Scholar 

  34. Kononenko, I., Simec, E., Robnik-Sikonja, M.: Overcoming the myopic of inductive learning algorithms with RELIEF-F. Appl. Intell. 7, 39–55 (1997)

    Article  Google Scholar 

  35. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13, 637–649 (2001)

    Article  MATH  Google Scholar 

  36. Platt, J.: Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods - Support Vector Learning, pp. 185–208 (1998)

    Google Scholar 

  37. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)

    Article  Google Scholar 

  38. Reiss, A., Hendeby, G., Stricker, D.: A competitive approach for human activity recognition on smartphones. In: European Symposium on Artificial Neural Networks. Computational Intelligence and Machine Learning, pp. 455–460 (2013)

    Google Scholar 

  39. Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 443–448 (2013)

    Google Scholar 

  40. Kastner, M., Strickert, M., Villmann, T.: A sparse kernelized matrix learning vector quantization model for human activity recognition. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 449–454 (2013)

    Google Scholar 

Download references

Acknowledgements

The research reported in the present paper was partially supported by the FrailSafe Project (H2020- PHC-21-2015-690140) “Sensing and predictive treatment of frailty and associated co-morbidities using advanced personalized models and advanced interventions”, co-funded by the European Commission under the Horizon 2020 research and innovation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Pippa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pippa, E., Mporas, I., Megalooikonomou, V. (2017). Improving Human Motion Identification Using Motion Dependent Classification. In: Röcker, C., O'Donoghue, J., Ziefle, M., Helfert, M., Molloy, W. (eds) Information and Communication Technologies for Ageing Well and e-Health. ICT4AWE 2016. Communications in Computer and Information Science, vol 736. Springer, Cham. https://doi.org/10.1007/978-3-319-62704-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62704-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62703-8

  • Online ISBN: 978-3-319-62704-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics