Skip to main content

Two-Variable First Order Logic with Counting Quantifiers: Complexity Results

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10396))

Abstract

Etessami et al. [5] showed that satisfiability of two-variable first order logic \(\mathrm {FO}^2\)[<] on word models is Nexptime-complete. We extend this upper bound to the slightly stronger logic \(\mathrm {FO}^2\)[\(<,succ ,\equiv \)], which allows checking whether a word position is congruent to r modulo q, for some divisor q and remainder r. If we allow the more powerful modulo counting quantifiers of Straubing, Thérien et al. [22] (we call this two-variable fragment FOmod \(^2\)[\(<,succ \)]), satisfiability becomes Expspace-complete. A more general counting quantifier, FOunC\(^2\)[\(<,succ \)], makes the logic undecidable.

Affiliated to Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within \(NC^1\). J. Comp. Syst. Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl. Math. 6, 66–92 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identification. Combinatorica 12(4), 389–410 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. van Emde Boas, P.: The convenience of tilings. In: Sorbi, A. (ed.) Complexity, Logic and Recursion Theory, pp. 331–363. CRC Press (1997)

    Google Scholar 

  5. Etessami, K., Vardi, M.Y., Wilke, T.: First-order logic with two variables and unary temporal logic. Inf. Comput. 179(2), 279–295 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grädel, E., Otto, M., Rosen, E.: Undecidability results on two-variable logics. Arch. Math. Log. 38, 213–354 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Krebs, A.: Typed semigroups, majority logic, and threshold circuits. Ph.D. thesis, Universität Tübingen (2008)

    Google Scholar 

  8. Krebs, A., Lodaya, K., Pandya, P., Straubing, H.: Two-variable logic with a between relation. In: Proceeding of 31st LICS (2016)

    Google Scholar 

  9. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive complexity approach to LOGCFL. J. Comp. Syst. Sci. 62(4), 629–652 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lodaya, K., Sreejith, A.V.: LTL can be more succinct. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 245–258. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4_19

    Chapter  Google Scholar 

  11. Manuel, A., Sreejith, A.: Two-variable logic over countable linear orderings. In: 41st MFCS, Kraków, pp. 66:1–66:13 (2016)

    Google Scholar 

  12. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, New Jersy (1967)

    MATH  Google Scholar 

  13. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In: 12th LICS, Warsaw, pp. 318–327. IEEE (1997)

    Google Scholar 

  14. Paris, J., Wilkie, A.: Counting \(\Delta _0\) sets. Fundam. Math. 127, 67–76 (1986)

    MATH  Google Scholar 

  15. Robinson, R.M.: Restricted set-theoretical definitions in arithmetic. Proc. Am. Math. Soc. 9, 238–242 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schwentick, T., Thérien, D., Vollmer, H.: Partially-ordered two-way automata: A new characterization of DA. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 239–250. Springer, Heidelberg (2002). doi:10.1007/3-540-46011-X_20

    Chapter  Google Scholar 

  18. Sreejith, A.V.: Expressive completeness for LTL with modulo counting and group quantifiers. Electr. Notes Theor. Comput. Sci. 278, 201–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sreejith, A.V.: Regular quantifiers in logics. Ph.D. thesis, HBNI (2013)

    Google Scholar 

  20. Straubing, H., Tesson, P., Thérien, D.: Weakly iterated block products and applications to logic and complexity. Int. J. Alg. Comput. 20(2), 319–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Straubing, H., Thérien, D.: Regular languages defined by generalized first-order formulas with a bounded number of bound variables. Theor. Comput. Syst. 36(1), 29–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Straubing, H., Thérien, D., Thomas, W.: Regular languages defined with generalized quantifiers. Inf. Comput. 118(3), 389–301 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Tesson, P., Thérien, D.: Logic meets algebra: the case of regular languages. Log. Meth. Comp. Sci. 3(1), 1–26 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25(3), 360–376 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Language Theory, vol. III, pp. 389–455. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  26. Weis, P., Immerman, N.: Structure theorem and strict alternation hierarchy for FO2 on words. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 343–357. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74915-8_27

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank four DLT referees and the DLT program committee for their suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sreejith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lodaya, K., Sreejith, A.V. (2017). Two-Variable First Order Logic with Counting Quantifiers: Complexity Results. In: Charlier, É., Leroy, J., Rigo, M. (eds) Developments in Language Theory. DLT 2017. Lecture Notes in Computer Science(), vol 10396. Springer, Cham. https://doi.org/10.1007/978-3-319-62809-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62809-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62808-0

  • Online ISBN: 978-3-319-62809-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics