Skip to main content

Finite and Infinite Computations and a Classification of Two-Dimensional Cellular Automata Using Infinite Computations

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Included in the following conference series:

Abstract

This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [19,20,21,22,23]), to the development and classification of two-dimensional cellular automata. This application establishes, by the application of grossone, a new and more precise nonarchimedean metric on the space of definition for two-dimensional cellular automata, whereby the accuracy of computations is increased. Using this new metric, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of the cellular automaton map, can now be computed and hence a classification scheme developed based on this computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baetens, J.M., Gravner, J.: Stability of cellular automata trajectories revisited: branching walks and Lyapunov profiles. J. Nonlinear Sci. 26, 1329–1367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 4, 2nd edn. A. K. Peters, Wellesley (2004)

    MATH  Google Scholar 

  3. Calidonna, C.R., Naddeo, A., Trunfio, G.A., Di Gregorio, S.: From classical infinite space-time CA to a hybrid CA model for natural sciences modeling. Appl. Math. Comput. 218(16), 8137–8150 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  5. D’Alotto, L.: Cellular automata using infinite computations. Appl. Math. Comput. 218(16), 8077–8082 (2012)

    MathSciNet  MATH  Google Scholar 

  6. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2014). http://dx.doi.org/10.1016/j.amc.2014.06.087

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Alotto, L., Pizzuti, C.: Characterization of one-dimensional cellular automata rules through topological network features. In: Numerical Computations Theory and Algorithms 2016, AIP Conference Proceedings, vol. 1776, pp. 090048-1–090048-4 (2016)

    Google Scholar 

  8. D’Ambrosio, D., Filippone, G., Marocco, D., Rongo, R., Spataro, W.: Efficient application of GPGPU for lava flow hazard mapping. J. Supercomput. 65(2), 630–644 (2013)

    Article  Google Scholar 

  9. De Cosmis, S., De Leone, R.: The use of grossone in mathematical programming and operations research. Appl. Math. Comput. 218(16), 8029–8038 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Gilman, R.: Classes of linear automata. Ergod. Theor. Dyn. Syst. 7, 105–118 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hedlund, G.A.: Edomorphisms and automorphisms of the shift dynamical system. Math. Syst. Theor. 3, 51–59 (1969)

    Article  Google Scholar 

  12. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Interpretation of percolation in terms of infinity computations. Appl. Math. Comput. 218(16), 8099–8111 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Lolli, G.: Infinitesimals and infinities in the history of mathematics: a brief survey. Appl. Math. Comput. 218(16), 7979–7988 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Lolli, G., Metamathematical Investigations on the Theory of Grossone, Preprint, Applied Mathematics and Computation. Elsevier (submitted and accepted for publication)

    Google Scholar 

  15. Mart’nez, G.J.: A note on elementary cellular automata classification. J. Cell. Automata 8, 233–259 (2013)

    MathSciNet  Google Scholar 

  16. Margenstern, M.: Using grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers Ultrametric Anal. Appl. 3(3), 196–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Margenstern, M.: An application of grossone to the study of a family of tilings of the hyperbolic plane. Appl. Math. Comput. 218(16), 8005–8018 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Narici, L., Beckenstein, E., Bachman, G.: Functional Analysis and Valuation Theory. Marcel Dekker Inc., New York (1971)

    MATH  Google Scholar 

  19. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Italy (2003)

    MATH  Google Scholar 

  20. Sergeyev, Y.D.: Numerical Point of view on calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Anal. Ser. A Theor. Methods Appl. 71(12), e1688–e1707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sergeyev, Y.D.: Numerical computations with infinite and infinitesimal numbers: theory and applications. In: Sorokin, A., Pardalos, P.M. (eds.) Dynamics of Information Systems: Algorithmic Approaches, pp. 1–66. Springer, New York (2013)

    Google Scholar 

  22. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Sergeyev, Y.D.: Measuring fractals by infinite and infinitesimal numbers. Math. Methods Phys. Methods Simul. Sci. Technol. 1(1), 217–237 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Sergeyev, Y.D., Garro, A.: Observability of turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Sergeyev, Y.D., Garro, A.: Single-tape and multi-tape turing machines through the lens of grossone methodology. J. Supercomput. 65(2), 645–663 (2013)

    Article  Google Scholar 

  26. Sirakoulis, G.C., Krafyllidis, I., Spataro, W.: A computational intelligent oxidation process model and its VLSI implementation. In: International Conference on Scientific Computing Proceedings, pp. 329–335 (2009)

    Google Scholar 

  27. Trunfio, G.A.: Predicting wildfire spreading through a hexagonal cellular automata model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30479-1_40

    Chapter  Google Scholar 

  28. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for simulating wilfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22, 1–26 (2011)

    Article  Google Scholar 

  29. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  31. Wolfram, S.: Universality and complexity in cellular automata. Phys. D 10, 1–35 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218(16), 8064–8076 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis D’Alotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

D’Alotto, L. (2017). Finite and Infinite Computations and a Classification of Two-Dimensional Cellular Automata Using Infinite Computations. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics