
On the Combination of Argumentation Solvers
into Parallel Portfolios

Mauro Vallati[1], Federico Cerutti[2], and Massimiliano Giacomin[3]

1 University of Huddersfield, United Kingdom
2 Cardiff University, United Kingdom

3 Università degli Studi di Brescia, Italy

Abstract. In the light of the increasing interest in efficient algorithms
for solving abstract argumentation problems and the pervasive availabil-
ity of multicore machines, a natural research issue is to combine existing
argumentation solvers into parallel portfolios. In this work, we introduce
six methodologies for the automatic configuration of parallel portfolios of
argumentation solvers for enumerating the preferred extensions of a given
framework. In particular, four methodologies aim at combining solvers in
static portfolios, while two methodologies are designed for the dynamic
configuration of parallel portfolios. Our empirical results demonstrate
that the configuration of parallel portfolios is a fruitful way for exploit-
ing multicore machines, and that the presented approaches outperform
the state of the art of parallel argumentation solvers.

Keywords: Argumentation Reasoning, Parallel Computing, Algorithm
Selection

1 Introduction

Dung’s theory of abstract argumentation [11] is a unifying framework able to
encompass a large variety of specific formalisms in the areas of nonmonotonic
reasoning, logic programming and computational argumentation. It is based on
the notion of argumentation framework (AF ), consisting of a set of arguments
and a binary attack relation between them. Arguments can thus be represented
by nodes of a directed graph, and attacks by arcs. The nature of arguments is
left unspecified: it can be anything from logical statements to informal natural
language text. For instance, [21] shows how argumentation can be efficiently used
for supporting critical thinking and intelligence analysis in military-sensitive
contexts.

Different argumentation semantics declare the criteria to determine which ar-
guments emerge as “justified” among conflicting ones, by identifying a number of
extensions, i.e. sets of arguments that can “survive the conflict together”. In [11]
four “traditional” semantics were introduced, namely complete, grounded, sta-
ble, and preferred semantics. For a complete overview of subsequently proposed
alternative semantics, the interested reader is referred to [3].



2 M. Vallati, F. Cerutti, and M. Giacomin

The main computational problems in abstract argumentation include deci-
sion—–e.g. determine if an argument is in all the extensions prescribed by a
semantics—–and construction problems, and turn out to be computationally
intractable for most argumentation semantics [12]. In this paper we focus on
the extension enumeration problem, i.e. constructing all extensions for a given
AF : its solution provides complete information about the justification status of
arguments and allows for solving the other problems as well.

Nowadays, increases in computational power are mostly achieved through
hardware parallelisation. Almost every machine on the market is equipped with
a multicore CPU, therefore, parallel solvers are gaining importance in many areas
of Artificial Intelligence. However, the manual constructions of parallel solvers is
a very challenging task, as it often requires to design specific algorithms, rather
than adapting existing sequential ones. One promising approach for exploiting
the computational power provided by multicore machines is then to combine
solvers into parallel portfolios, which have been recently introduced in areas
such as SAT and ASP [1, 17]. Notably, while work has been done in the area of
sequential portfolios for argumentation [10], there is a lack of approaches aiming
at combining solvers into parallel portfolios.

In this work, we consider the automatic construction of static and dynamic
portfolios of argumentation solvers for enumerating the preferred extensions of a
given AF . In particular, we introduce four methodologies for configuring static
portfolios, and two for the dynamic selection of solvers to be executed in par-
allel. The designed techniques are general, in the sense that they are able to
configure portfolios for any given number of available cores—here we focus on
the 4-cores case, which correspond to most widely available machines. Our ex-
tensive experimental analysis demonstrates that: (i) combining argumentation
solvers in parallel portfolios is an effective way for exploiting multiple cores; (ii)
static portfolios that execute more solvers on each core are extremely robust; and
(iii) the configured parallel portfolios outperform state-of-the-art native parallel
argumentation solvers.

2 Dung’s Argumentation Framework

An argumentation framework [11] consists of a set of arguments and a binary
attack relation between them.

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where
A is a set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b,a〉 ∈ R,
also denoted as b→ a.

The basic properties of conflict–freeness, acceptability, and admissibility of a
set of arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;



Parallel Portfolios of Argumentation Solvers 3

– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A
s.t. b→ a, ∃ c ∈ S s.t. c→ b;

– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and
every element of S is acceptable with respect to S of Γ .

An argumentation semantics σ prescribes for any AF Γ a set of extensions,
denoted as Eσ(Γ ), namely a set of sets of arguments satisfying the conditions
dictated by σ. Here we need to recall the definition of preferred (denoted as PR)
semantics only.

Definition 3. Given an AF Γ = 〈A,R〉: a set S ⊆ A is a preferred extension
of Γ , i.e. S ∈ EPR(Γ ), iff S is a maximal (w.r.t. set inclusion) admissible set of
Γ .

3 Configuring Parallel Portfolios of Argumentation
Solvers

In this section we describe the techniques we designed for combining argumen-
tation solvers into parallel portfolios. Each approach requires as input: (i) the
number of cores and the runtime available for the configured portfolio, (ii) a set
of basic solvers that given an AF return the corresponding set of preferred ex-
tensions, (iii) a set of training AF s, and (iv) measures of performance of solvers
on the training set. Solvers’ performance is measured in terms of Penalised Av-
erage Runtime (PAR) score. This metric trades off coverage (i.e. the percentage
of AF s successfully processed by the cutoff time) and runtime for successfully
analysed AF s: runs that do not solve the given problem get ten times the cutoff
time (PAR10), other runs get the actual runtime. The PAR10 score of a solver
on a set of AF s is the average of the relevant scores.

3.1 Static Parallel Portfolios

The first approach, called S-Naive, orders solver according to PAR10 perfor-
mance achieved on the training instances. Given k available cores, top k solvers
are allocated to one core each, and run for all the available runtime.

The second approach for generating static portfolios is called S-Overall, and
also assigns one solver per core. It starts from an empty portfolio, and iteratively
adds the solver—not already included—that maximises the improvement of the
PAR10 score of the portfolio. It continues until no more cores are available, or
it is not possible to further improve the PAR10 score of the portfolio on the
training instances. In the latter case, remaining x cores are allocated to the x
solvers with the best PAR10 that are not yet member of the portfolio.

Two other approaches, called Iterative-Single and Iterative-All, are inspired
by the hill-climbing method introduced in [15]. The mentioned approach had to
be extended in order to be able to handle multiple parallel cores, and to generate
portfolios for minimising the (expected) runtime.



4 M. Vallati, F. Cerutti, and M. Giacomin

S-Iter-Single configures a different sequential portfolio for each available
core. Given a core, this method starts by an empty portfolio, and iteratively
either add a new basic solver to the portfolio, or extend the allocated CPU-time
of a solver already added to the portfolio, depending on what maximises the
decrement of the PAR10 score for the considered sequential portfolio. Once the
sequential portfolio for the given core has been configured, the selected solvers
are removed from the pool of available solvers, and the process moves to the
next core. As it is apparent, the portfolio configured for a given core has no
information about the other portfolios, running on the other processing units, or
the number of available cores. This approach aims at reducing the complexity
of generating a parallel portfolio, and at the same time maximising the diversity
of included solvers.

S-Iter-All configures a single general parallel portfolio by considering at the
same time all the available cores, and distributing solvers among them. In each
step of the configuration process, either the CPU-time allocated to one included
solver is increased, or a new solver is added to the portfolio. In the latter case,
the solver is scheduled on the core that allows it the earliest start.

3.2 Dynamic Parallel Portfolios

Dynamic portfolios rely on instance features for configuring an instance-specific
portfolio. For each AF a vector of features is computed; each feature is a real
number that summarises a potentially important aspect of the considered AF .
Similar instances should have similar feature vectors, and, on this basis, portfo-
lios are configured using empirical performance models [16].

In this investigation we consider the largest set of features available for AF s
[6]. Such set includes 50 features, extracted by exploiting the representation
of AF s both as directed (loss-less) or undirected (lossy) graphs. Features are
extracted by considering aspects such as the size of graphs, the presence of
connected components, the presence of auto-loops, etc. The features extraction
process has been parallelised in order to minimise its impact on portfolio per-
formance. Remarkably, as features are extracted by considering two different
representations of AF s, their extraction is suitable to be parallelised on two
different cores. Following this approach, feature extraction usually requires less
than 1 wallclock time second on average.

In this work we propose two techniques, inspired by [10], for generating per-
instance parallel portfolios, both based on regression models. Regression models
predict the runtime needed by a solver for analysing the considered AF on the
basis of the extracted features and on the performance observed on training
instances.

The R-Overall approach orders the solvers according to the predicted run-
time on the given AF , and then allocates one solver per core. While simplistic,
this approach aims at reducing the detrimental impact of underestimation mis-
takes of the predictive model. Instead, the proposed R-Iterative technique ini-
tially allocates the solvers predicted to be fastest on available processing units.
However, each solver is run only for its predicted CPU-time (increased by 10%



Parallel Portfolios of Argumentation Solvers 5

for accounting minor underestimation mistakes). If a solver does not success-
fully analyse the considered AF in the allocated CPU-time, it is stopped and no
longer available to be selected, and the process iterates by selecting a different
solver.

4 Experimental Analysis

Our experimental analysis aims to evaluate the fruitfulness of parallel portfo-
lios for solving hard argumentation problems, by focusing on the problem of
enumerating preferred extensions.

We randomly generated 2,000 AF s based on four different graph models:
Barabasi-Albert [2], Erdös-Rényi [13], Watts-Strogatz [23] and graphs featuring
a large number of stable extensions (hereinafter StableM).

Erdös-Rényi graphs [13] are generated by randomly selecting attacks be-
tween arguments according to a uniform distribution. While Erdös-Rényi was
the predominant model used for randomly generated experiments, [5] investi-
gated also other graph structures such as scale-free and small-world networks.
As discussed by Barabasi and Albert [2], a common property of many large net-
works is that the node connectivities follow a scale-free power-law distribution.
This is generally the case when: (i) networks expand continuously by the ad-
dition of new nodes, and (ii) new nodes attach preferentially to sites that are
already well connected. Moreover, Watts and Strogatz [23] show that many bi-
ological, technological and social networks are neither completely regular nor
completely random, but something in the between. They thus explored sim-
ple models of networks that can be tuned through this middle ground: regular
networks rewired to introduce increasing amounts of disorder. These systems
can be highly clustered, like regular lattices, yet have small characteristic path
lengths, like random graphs, and they are named small-world networks by anal-
ogy with the small-world phenomenon. The AF s have been generated by using
AFBenchGen2 [7]. It is worthy to emphasise that Watts-Strogatz and Barabasi-
Albert produce undirected graphs: in this work, differently from [5], each edge of
the undirected graph is then associated with a direction following a probability
distribution, that can be provided as input to AFBenchGen. Finally, the fourth
set has been generated using the code provided in Probo [8] by the organisers of
ICCMA-15 [20].

In order to identify challenging frameworks—i.e., neither trivial nor too com-
plex to be successfully analysed in the given CPU-time—AF s for each set have
been selected using the protocol introduced in the 2014 edition of the Interna-
tional Planning Competition [22]. This protocol lead to the selection of AF s with
a number of arguments between 250 and 650, and number of attacks between
(approximately) 400 and 180,000.

The set of AF s has been divided into training and testing sets. For each
graph model, we randomly selected 200 AF s for training, and the remaining
300 for testing. Therefore, out of the 2,000 AF s generated, 800 have been used



6 M. Vallati, F. Cerutti, and M. Giacomin

for training purposes, while the remaining 1,200 have been used for testing and
comparing the performance of trained approaches.

We considered all the 15 solvers that took part in the EE-PR track of ICCMA-
15 [20]. For the sake of clarity and conciseness, we removed from the analysis
single solvers that did not successfully analyse at least one AF or which were al-
ways outperformed by another solver. The interested reader is referred to [19] for
detailed descriptions of the solvers. Hereinafter, we will refer to such systems as
basic solvers, regardless of the approach they exploit for solving argumentation-
related problems.

Experiments have been run on a cluster with computing nodes equipped
with 2.5 Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux operating
system. A cutoff of 600 wallclock seconds was imposed to compute preferred
extensions for each AF . For each solver we recorded the overall result: success
(if it solved the considered problem), crashed, timed-out or ran out of memory.

Given the large availability of quad-core processing units, in this work we
focus on portfolios configured to run on four cores. Notably, the proposed con-
figuration techniques are general, and can be straightforwardly exploited for
configuring portfolios for a different number of cores.

After a set of experiments on a subset of the training instances, the M5-
rule technique [14] has been selected for generating the regression models for
predicting the expected runtime of solvers.

4.1 Results

Table 1 compares the results of solvers and the proposed parallel portfolio ap-
proaches on the testing set of 1,200 AF s. In ICCMA, solvers have been evaluated
by considering only coverage (in case of ties the overall runtime on solved in-
stances). Here results are shown in terms of PAR10, coverage and number of time
an approach has been the fastest. These results clearly indicate that combining
solvers in parallel portfolios is a very fruitful way for reducing the wall-clock time
required for successfully analyse an AF . Table 1 also shows the performance of
the Virtual Best Solver (VBS). The VBS shows the performance of a (virtual)
oracle which always selects the best (fastest) solver for the given framework.
The performance gap between the best basic solver and the VBS gives a good
indication about the level of complementarity of the considered reasoners.

Remarkably, the performance of the S-Overall and R-Overall approaches are
very close to those of the VBS: this is a clear indication that the proposed tech-
niques are able to effectively select and combine the basic solvers. In particular,
the per-instance portfolio R-Overall is able to identify the fastest solver, and
run it first, in the 95.7% of the cases. It is also interesting to note that iterative
approaches, i.e. those that are allowed to run sequentially more than one solver
per core, are not able to fruitfully exploit this additional degree of freedom. Our
intuition is that the underestimation of the CPU-time needed by basic solvers,
due to the fact that training instances are smaller than and/or different from
testing ones, is strongly affecting the performance of iterative approaches. On



Parallel Portfolios of Argumentation Solvers 7

Table 1. Performance, in terms of PAR10 and coverage (cov.)—percentage of AF s
successfully analysed—of the considered basic solvers and generated parallel portfolios,
for solving the preferred enumeration problem on the complete testing set (All) of 1,200
AF s. F.t column indicates the number of times a system has been the fastest among
considered. Systems are listed in the order of increasing PAR10.

System PAR10 Cov. F.t

VBS 562.9 91.4 1118

S-Overall 569.6 91.3 968
R-Overall 573.6 91.2 1070
S-Iter-All 665.9 89.8 629
R-Iterative 907.3 85.4 911
S-Naive 1013.3 84.3 511
S-Iter-Single 1032.4 84.1 214
Cegartix 1350.4 79.1 229
ArgSemSAT 1916.2 69.1 35
LabSATSolver 2050.3 66.8 9
prefMaxSAT 2057.2 66.8 273
DIAMOND 2417.0 61.0 1
ASPARTIX-D 2728.6 56.1 4
ASPARTIX-V 2772.2 55.2 21
CoQuiAas 3026.4 50.5 78
ASGL 3477.3 43.2 1
Conarg 3696.3 39.3 158
ArgTools 3906.2 35.2 322
Gris 4543.7 24.4 174

the contrary, overall approaches do not need to consider this aspect, at the cost
of a reduced number of solvers that can be run.

In order to shed some light on the configuration of static portfolios, Table
2 shows the CPU-time allocated to each solver by the proposed techniques.
Interestingly, the S-Iter-Single approach shows a behaviour that is very different
from what can be observed for S-Iter-All. The former opted for including a huge
number of solvers, in fact all but one; the latter instead is allocating most of
the cores to a single solver each. Unsurprisingly, given the fact that it is by far
the best basic solver, all the static approaches are including Cegartix. It is the
only solver that is identified by all the techniques as important and worthy to be
run. Similarly, we noticed that per-instance portfolios are usually including it.
As a side note, given the good performance observed on training instances, the
R-Iterative approach tend to allocate to Cegartix a short amount of CPU-time.

When considering the results shown in Table 1 and Table 2, the question
about the actual importance of Cegartix—or the other considered basic solvers—
for a portfolio naturally arises. In other words, what is the added value provided
by a solver to a portfolio? For answering this question, thus getting some insights
into the state of the art of argumentation solvers for enumerating preferred
extensions, we rely on the notion of state-of-the-art contributors (SOTA) [18,



8 M. Vallati, F. Cerutti, and M. Giacomin

Table 2. Solvers included in the portfolios configured by the proposed techniques. �
indicates that the solver has been selected for running on a core for the maximum
available time, otherwise allocated CPU-time seconds are shown.

Solver S-Naive S-Overall S-Iter-All S-Iter-Single
Cegartix � � 570 210
ArgSemSAT � � 420
LabSATSolver � 150
prefMaxSAT � � 210
DIAMOND 300
ASPARTIX-D 300
ASPARTIX-V 300
CoQuiAas 150
ASGL
Conarg 30 30
ArgTools � � 150
Gris � � 180

24]. SOTA assess the contribution of a basic solver by the performance decrease
of the VBS when the considered solver is omitted. This method reflects the
added value due to a given solver much more effectively than comparing average
performance. This is because, for instance, the SOTA method can identify—and
correctly recognise—solvers that may have poor performance on average, but
are able to analyse some extremely challenging AF s that would not be analysed
by any other basic solver.

Figure 1 presents the top five basic solvers according to their marginal PAR10
contribution—evaluated following the SOTA method previously recalled—to the
VBS. For the sake of readability, solvers with low marginal score—i.e, less than
1 PAR10 point—are not shown.

Surprisingly, the largest marginal PAR10 increment is provided by Gris, fol-
lowed by Cegartix and prefMaxSAT. These results are in apparent contradiction
with results shown in Table 1: however, they are explained by the great perfor-
mance of Gris on Barabasi AF s. It is the only considered basic solver that is able
to analyse the vast majority of such frameworks. Similarly, prefMaxSAT does
not show outstanding overall performance, but it tends to be fast on some chal-
lenging frameworks. It is also interesting to notice the very limited contribution
of ArgTools to the VBS. ArgTools is the solver that would have been ranked
first according to the number of time it has been the fastest. Yet its contribution
is limited because such AF s are quickly addressed also by other solvers.

To assess the generalisation ability of the proposed approaches for static and
per-instance portfolios, we exploited the leave-one-out methodology. Starting
from the original training set composed by 800 AF s, we removed all the frame-
works corresponding to one set at a time, and randomly oversampled frameworks
from the remaining three sets—in order to have again approximately 800 frame-
works for training. The generated portfolios were then tested on the complete
testing set of 1,200 frameworks. The results of this analysis are presented in
Table 3.

Static portfolios usually show better generalisation performance; per-instance
approaches tend to be more sensitive to the lack of representativeness of the



Parallel Portfolios of Argumentation Solvers 9

0

25

50

75

100

125

150

175

200

Gris Cegartix MaxSAT Conarg ArgTools

P

A

R

1

0

M

a

r

g

i

n

a

l

I

n



r

e

m

e

n

t

Fig. 1. PAR10 Marginal increments, with regard to the VBS, given by the top five
solvers that took part in ICCMA 2015. PAR10 of the VBS, including all the available
solver, is 562.9.

Table 3. Performance, in terms of PAR10 and coverage (cov.)—percentage of AF s
successfully analysed—-of the systems considered in this study on the complete testing
set, when trained on a training set not containing AF s of that structure (leave-one-
set-out scenario). Best results in bold.

Barabasi Erdos Stable Watts
Solver PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

R-Iterative 1310.8 78.7 1223.8 80.2 989.4 84.1 835.9 86.8
R-Overall 823.9 87.1 574.8 91.3 744.0 88.4 799.2 87.6
S-Iter-All 958.7 85.2 664.1 89.9 957.1 84.8 699.8 89.2
S-Iter-Single 1598.0 74.2 1068.7 83.5 1218.3 80.8 1056.0 83.8
S-Overall 958.6 85.2 664.1 89.9 569.6 91.3 645.0 90.1
S-Naive 1916.2 69.1 1350.4 79.1 1916.2 69.1 1916.2 69.1

training set, with regards to testing instances. On the one hand, results pre-
sented in Table 3 confirm that the performance of static portfolios remain very
stable regardless of the used training set, and the S-Overall portfolio is consis-
tently among the best options. On the other hand, per-instance regression-based
portfolio R-Overall guarantees very good generalisation. In particular, the pre-
dictive model is able to provide accurate runtime predictions even when Barabasi
or Erdos frameworks are removed from the training set. This suggests that the
exploited features are sufficiently informative for the task of identifying solvers
to run in parallel. However, as indicated by the generally poor performance of
R-Iterative, predicting the actual runtime is significantly harder.

Comparison with SoA of Parallel Argumentation Reasoning In order to
assess the fruitfulness of exploiting parallel computational units by combining



10 M. Vallati, F. Cerutti, and M. Giacomin

Table 4. Performance, in terms of PAR10 and coverage (cov.)—percentage of AF s
successfully analysed—of the generated parallel portfolios and of the parallel solver
P-SCC-REC, for solving the preferred enumeration problem on the testing set of 120
AF s. Systems are listed in the order of increasing PAR10.

System PAR10 Cov.

S-Iter-Single 15.8 100.0
R-Overall 21.0 100.0
S-Iter-All 28.6 100.0
S-Naive 29.8 100.0
S-Overall 39.7 100.0
R-Iterative 71.0 99.2
P-SCC-REC 816.8 89.2

sequential solvers into parallel portfolios, and to better contextualise the per-
formance of the configured portfolios, in this section we compare the generated
static and per-instance portfolios with the state of the art of parallel solvers for
enumerating preferred extensions: P-SCC-REC [9].

P-SCC-REC is based on the SCC-recursive schema [4]. It recursively de-
composes a framework so as to compute semantics labellings (that are in a
one-to-one relationship with extensions) on restricted sub-frameworks, in this
case strongly-connected components, in order to reduce the computational ef-
fort. The labellings computation is then parallelised: each core is dedicated to
a single SCC, and results are merged at each recursion layer. Here we consider
the P4 version, which exploits four parallel cores.

It has been shown that P-SCC-REC takes advantage of available parallel
cores when the number of SCCs is higher than 40 [9]. In the benchmarks consid-
ered in our analysis, this is not usually the case. Therefore, for this comparison
we generated 120 AF s following the distribution used in [9]. These are extremely
large AF s, with a number of SCCs between 90 and 150, the number of argu-
ments between 2,700 and 6,000, and considering different uniformly distributed
probabilities of attacks, either between arguments or between different SCCs,
leading to AF s with a number of attacks between approximately 100 thousands
and more than 1 million.

Given the extreme size of the AF s, we observed that the sequential CPU-time
required for extracting features can be significant, between 2 and 250 seconds.
However, the extraction process can be parallelised on the available cores. In this
way, we were able to reduce the wall-clock time to one third of the sequential
time. In the followings, extraction time is included in the portfolio results.

Table 4 shows the PAR10 and coverage performance of P-SCC-REC, and of
the parallel portfolio approaches. Portfolios have been configured according to
the complete training set exploited in the previous analysis. Despite this, results
clearly indicate that portfolio-based approaches, either static or per-instance, are
able to outperform the state of the art parallel solver P-SCC-REC. The portfolio
generated following the R-Iterative approach is the only portfolio-based system



Parallel Portfolios of Argumentation Solvers 11

that is not able to solve the 100% of the testing frameworks. According to our
analysis, this is due to a huge overestimation of the runtime of solvers. The
testing AF s are significantly larger than those used for training purposes.

Summary Results of this extensive experimental analysis support the hypoth-
esis that combining solvers in parallel portfolios is, at the state of the art, the
most fruitful way for exploiting multicore machines for abstract argumentation
problems. Sequential solvers are able to provide very good performance, due to
the higher level of optimisation, and their complementarity allows to combine
effectively them in portfolios.

5 Conclusion

In the light of the current trend of increasing computational power through
hardware parallelisation, we presented six approaches for configuring parallel
portfolios of argumentation solvers for enumerating preferred extensions. We in-
troduced four methodologies for configuring static portfolios, and two techniques
for configuring and executing dynamic portfolios.

Our extensive experimental analysis: (i) assessed the marginal increments
given by state-of-the-art solvers; (ii) demonstrated that static portfolios tend to
generalise better on previously unseen testing AF s; (iii) confirmed that parallel
portfolios outperform the state-of-the-art parallel argumentation solver, thus are
a fruitful way for exploiting multicore machines.

Future work includes the investigation of techniques for combining solvers in
mixed portfolios, i.e. partly dynamically and partly statically configured. Given
the number of abstract argumentation computational problems, we are also in-
terested in identifying methodologies for generating portfolios of solvers that
can solve different problems in parallel, therefore minimising the overall time
required to get a complete overview of a given AF .

Acknowledgement The authors would like to acknowledge the use of the Uni-
versity of Huddersfield Queensgate Grid in carrying out this work.

References

1. Balyo, T., Sanders, P., Sinz, C.: Hordesat: A massively parallel portfolio SAT solver.
In: Theory and Applications of Satisfiability Testing SAT. pp. 156–172 (2015)

2. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 11 (1999)

3. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation se-
mantics. Knowledge Eng. Review 26(4), 365–410 (2011)

4. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168(1-2), 165–210 (2005)

5. Bistarelli, S., Rossi, F., Santini, F.: Benchmarking Hard Problems in Random
Abstract AFs: The Stable Semantics. In: COMMA 2014. pp. 153–160 (2014)



12 M. Vallati, F. Cerutti, and M. Giacomin

6. Cerutti, F., Giacomin, M., Vallati, M.: Algorithm selection for preferred extensions
enumeration. In: Proceedings of COMMA. pp. 221–232 (2014)

7. Cerutti, F., Giacomin, M., Vallati, M.: Generating structured argumentation
frameworks: Afbenchgen2. In: Proceedings of COMMA. pp. 467–468 (2016)

8. Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M.: A benchmark framework
for a computational argumentation competition. In: Proceedings of COMMA. pp.
459–460 (2014)

9. Cerutti, F., Tachmazidis, I., Vallati, M., Batsakis, S., Giacomin, M., Antoniou, G.:
Exploiting parallelism for hard problems in abstract argumentation. In: Proceed-
ings of AAAI. pp. 1475–1481 (2015)

10. Cerutti, F., Vallati, M., Giacomin, M.: Where are we now? state of the art and
future trends of solvers for hard argumentation problems. In: Proceedings of
COMMA. pp. 207–218 (2016)

11. Dung, P.M.: On the Acceptability of Arguments and Its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming, and n-Person Games. Artificial
Intelligence 77(2), 321–357 (1995)

12. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Argu-
mentation in AI, chap. 5, pp. 85–104. Springer-Verlag (2009)

13. Erdös, P., Rényi, A.: On random graphs. I. Publ. Math. Debrecen 6, 290–297 (1959)
14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

WEKA data mining software: An update. SIGKDD Explorations 11(1), 10–18
(2009)

15. Helmert, M., Röger, G., Karpas, E.: Fast Downward Stone Soup: A baseline for
building planner portfolios. In: Proceedings of the ICAPS-11 Workshop of AI Plan-
ning and Learning (PAL) (2011)

16. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence 206, 79–111 (2014)

17. Lindauer, M.T., Hoos, H.H., Hutter, F.: From sequential algorithm selection to
parallel portfolio selection. In: Learning and Intelligent Optimization - 9th Inter-
national Conference, LION. pp. 1–16 (2015)

18. Sutcliffe, G., Suttner, C.: Evaluating general purpose automated theorem proving
systems. Artificial Intelligence 131(1), 39–54 (2001)

19. Thimm, M., Villata, S.: System descriptions of the first international compe-
tition on computational models of argumentation (iccma’15). arXiv preprint
arXiv:1510.05373 (2015)

20. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary
report of the first international competition on computational models of argumen-
tation. AI Magazine (2016)

21. Toniolo, A., Norman, T.J., Etuk, A., Cerutti, F., Ouyang, R.W., Srivastava, M.,
Oren, N., Dropps, T., Allen, J.A., Sullivan, P.: Agent Support to Reasoning with
Different Types of Evidence in Intelligence Analysis. In: Proc. of AAMAS. pp.
781–789 (2015)

22. Vallati, M., Chrpa, L., Grzes, M., McCluskey, T., Roberts, M., Sanner, S.: The
2014 international planning competition: Progress and trends. AI Magazine (2015)

23. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature
393(6684), 440–442 (1998)

24. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver
contributions to portfolio-based algorithm selectors. In: Proceedings of SAT. pp.
228–241 (2012)


