Skip to main content

Density-Based Multiscale Analysis for Clustering in Strong Noise Settings

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10400))

Abstract

Finding clustering patterns in data is challenging when clusters can be of arbitrary shapes and the data contains high percentage (e.g., 80%) of noise. This paper presents a novel technique named density-based multiscale analysis for clustering (DBMAC) that can conduct noise-robust clustering without any strict assumption on the shapes of clusters. Firstly, DBMAC calculates the r-neighborhood statistics with different r (radius) values. Next, instead of trying to find a single optimal r value, a set of radius values appropriate for separating “clustered” objects and “noisy” objects is identified, using a formal statistical method for multimodality test. Finally, the classical DBSCAN is employed to perform clustering on the subset of data with significantly less amount of noise. Experiment results confirm that DBMAC is superior to classical DBSCAN in strong noise settings and also outperforms the latest technique SkinnyDip when the data contains arbitrarily shaped clusters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall Advanced Reference Series: Computer Science. Prentice Hall College Div (1988)

    Google Scholar 

  2. Do, C.B., Batzoglou, S.: What is the expectation maximization algorithm. Nat. Biotechnol. 26(8), 897–899 (2008)

    Article  Google Scholar 

  3. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. Adv. Neural. Inf. Process. Syst. 17, 1601–1608 (2004)

    Google Scholar 

  4. Ben-David, S., Haghtalab, N.: Clustering in the presence of background noise. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, pp. 280–288 (2014)

    Google Scholar 

  5. Murtagh, F., Raftery, A.E.: Fitting straight lines to point patterns. Pattern Recogn. 17(5), 479–483 (1984)

    Article  Google Scholar 

  6. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3), 803–821 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dave, R.N.: Characterization and detection of noise in clustering. Pattern Recogn. Lett. 12(11), 657–664 (1991)

    Article  Google Scholar 

  8. Cuesta-Albertos, J.A., Gordaliza, A., Matran, C.: Trimmed k-means: an attempt to robustifyquantizers. Ann. Stat. 25(2), 553–576 (1997)

    Article  MATH  Google Scholar 

  9. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, vol. 96, no. 34, pp. 226–231 (1996)

    Google Scholar 

  10. Ertöz, L., Steinbach, M., Kumar, V.: Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 3rd SIAM International Conference on Data Mining, vol. 112, pp. 47–58 (2003)

    Google Scholar 

  11. Böhm, C., Plant, C., Shao, J., Yang, Q.: Clustering by synchronization. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 583–592 (2010)

    Google Scholar 

  12. Goebl, S., He, X., Plant, C., Böhm, C.: Finding the optimal subspace for clustering. In: IEEE International Conference on Data Mining, pp. 130–139 (2014)

    Google Scholar 

  13. Dasgupta, A., Raftery, A.E.: Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc. Theory Methods 93(441), 294–302 (1998)

    Article  MATH  Google Scholar 

  14. Wong, W.K., Moore, A.: Efficient algorithms for non-parametric clustering with clutter. In: Proceedings of the 34th Interface Symposium, vol. 34, pp. 541–553 (2002)

    Google Scholar 

  15. Cuevas, A., Febrero, M., Fraiman, R.: Estimating the number of clusters. Can. J. Stat. 28(2), 367–382 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Huang, X., Selke, C., Yong, J.: A fast algorithm for finding correlation clusters in noise data. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS, vol. 4426, pp. 639–647. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71701-0_68

    Chapter  Google Scholar 

  17. Maurus, S., Plant, C.: Skinny-dip: clustering in a sea of noise. In: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, pp. 1055–1064 (2016)

    Google Scholar 

  18. Hartigan, J.A., Hartigan, P.M.: The dip test of unimodality. Ann. Stat. 13(1), 70–84 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1073–1080 (2009)

    Google Scholar 

  21. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. ACM SIGMOD Rec. Int. Conf. Manag. Data 27(2), 73–84 (1998)

    Article  MATH  Google Scholar 

  22. Chaoji, V., Al Hasan, M., Salem, S., Zaki, M.J.: SPARCL: efficient and effective shape-based clustering. In: IEEE International Conference on Data Mining, pp. 93–102 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, T., Yuan, B. (2017). Density-Based Multiscale Analysis for Clustering in Strong Noise Settings. In: Peng, W., Alahakoon, D., Li, X. (eds) AI 2017: Advances in Artificial Intelligence. AI 2017. Lecture Notes in Computer Science(), vol 10400. Springer, Cham. https://doi.org/10.1007/978-3-319-63004-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63004-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63003-8

  • Online ISBN: 978-3-319-63004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics