Skip to main content

Multiple Kernel Learning with One-Level Optimization of Radius and Margin

  • Conference paper
  • First Online:
AI 2017: Advances in Artificial Intelligence (AI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10400))

Included in the following conference series:

Abstract

Generalization error rates of support vector machines are closely related to the ratio of radius of sphere which includes all the data and the margin between the separating hyperplane and the data. There are already several attempts to formulate the multiple kernel learning of SVMs using the ratio rather than only the margin. Our approach is to combine the well known formulations of SVMs and SVDDs. The proposed model is a closed system and always reaches the global optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, P., Shawe-Taylor, J.: Generalization performance of support vector machines and other pattern classifiers. In: Advances in Kernel Methods, pp. 43–54. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Bector, M.K., Bector, C.R., Klassen, J.E.: Duality for a nonlinear programming problem. Util. Math. 11, 87–99 (1977)

    MathSciNet  MATH  Google Scholar 

  3. Cambini, A., Martein, L.: Generalized Convexity and Optimization, 1st edn. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  4. Do, H., Kalousis, A.: Convex formulations of radius-margin based support vector machines. In: Proceedings of the 30th International Conference on Machine Learning, Cycle 1. JMLR Proceedings, vol. 28, pp. 169–177. JMLR.org (2013)

  5. Do, H., Kalousis, A., Woznica, A., Hilario, M.: Margin and radius based multiple kernel learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5781, pp. 330–343. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04180-8_39

    Chapter  Google Scholar 

  6. Gai, K., Chen, G., Zhang, C.: Learning kernels with radiuses of minimum enclosing balls. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, NIPS 2010, pp. 649–657. Curran Associates Inc., USA (2010)

    Google Scholar 

  7. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kloft, M., Brefeld, U., Düessel, P., Gehl, C., Laskov, P.: Automatic feature selection for anomaly detection. In: Proceedings of the 1st ACM Workshop on Workshop on AISec, AISec 2008, pp. 71–76. ACM, New York (2008)

    Google Scholar 

  9. Kloft, M., Brefeld, U., Sonnenburg, S., Zien, A.: lp-norm multiple kernel learning. J. Mach. Learn. Res. 12, 953–997 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Liu, X., Wang, L., Yin, J., Zhu, E., Zhang, J.: An efficient approach to integrating radius information into multiple kernel learning. IEEE Trans. Cybern. 43(2), 557–569 (2013)

    Article  Google Scholar 

  11. Liu, X., Yin, J., Long, J.: On radius-incorporated multiple kernel learning. In: Torra, V., Narukawa, Y., Endo, Y. (eds.) MDAI 2014. LNCS, vol. 8825, pp. 227–240. Springer, Cham (2014). doi:10.1007/978-3-319-12054-6_20

    Google Scholar 

  12. Mangasarian, O.L.: Nonlinear Programming (1969)

    Google Scholar 

  13. Mond, B.: Mond-weir duality. In: Pearce, C., Hunt, E. (eds.) Optimization, pp. 157–165 (2009)

    Google Scholar 

  14. Mond, B., Weir, T.: Generalized concavity and duality. In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 263–279. Academic Press (1981)

    Google Scholar 

  15. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  16. Uddin, M., Saha, S., Hossain, M., Mondal, R.: A new approach of solving linear fractional programming problem (LFP) by using computer algorithm. Open J. Optim. 4, 74–86 (2015)

    Article  Google Scholar 

  17. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  MATH  Google Scholar 

  18. Vapnik, V.N.: Statistical Learning Theory, 1st edn. Wiley, Hoboken (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yamada, S., Neshatian, K. (2017). Multiple Kernel Learning with One-Level Optimization of Radius and Margin. In: Peng, W., Alahakoon, D., Li, X. (eds) AI 2017: Advances in Artificial Intelligence. AI 2017. Lecture Notes in Computer Science(), vol 10400. Springer, Cham. https://doi.org/10.1007/978-3-319-63004-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63004-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63003-8

  • Online ISBN: 978-3-319-63004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics