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Abstract. The monadic shallow linear Horn fragment is well-known to
be decidable and has many application, e.g., in security protocol anal-
ysis, tree automata, or abstraction refinement. It was a long standing
open problem how to extend the fragment to the non-Horn case, pre-
serving decidability, that would, e.g., enable to express non-determinism
in protocols. We prove decidability of the non-Horn monadic shallow lin-
ear fragment via ordered resolution further extended with dismatching
constraints and discuss some applications of the new decidable fragment.

1 Introduction

Motivated by the automatic analysis of security protocols, the monadic shallow
linear Horn (MSLH) fragment was shown to be decidable in [21]. In addition to
the restriction to monadic Horn clauses, the main restriction of the fragment is
positive literals of the form S(f(x1, . . . , xn)) or S(x) where all xi are different,
i.e., all terms are shallow and linear. The fragment can be finitely saturated
by superposition (ordered resolution) where negative literals with non-variable
arguments are always selected. As a result, productive clauses with respect
to the superposition model operator IN have the form S1(x1), . . . , Sn(xn) →
S(f(x1, . . . , xn)). Therefore, the models of saturated MSLH clause sets can both
be represented by tree automata [6] and shallow linear sort theories [8]. The mod-
els are typically infinite. The decidability result of MSLH clauses was rediscov-
ered in the context of tree automata research [7] where in addition DEXPTIME-
completeness of the MSLH fragment was shown. The fragment was further ex-
tended by disequality constraints [12,13] still motivated by security protocol
analysis [14]. Although from a complexity point of view, the difference between
Horn clause fragments and the respective non-Horn clause fragments is typically
reflected by membership in the deterministic vs. the non-deterministic respec-
tive complexity fragment, for monadic shallow linear clauses so far there was no
decidability result for the non-Horn case.

The results of this paper close this gap. We show the monadic shallow linear
non-Horn (MSL) clause fragment to be decidable by superposition (ordered res-
olution). From a security protocol application point of view, non-Horn clauses
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enable a natural representation of non-determinism. Our second extension to the
fragment are unit clauses with disequations of the form s 6≈ t, where s and t are
not unifiable. Due to the employed superposition calculus, such disequations do
not influence saturation of an MSL clause set, but have an effect on potential
models. They can rule out identification of syntactically different ground terms
as it is, e.g., desired in the security protocol context for syntactically different
messages or nonces. Our third extension to the fragment are straight dismatch-
ing constraints. These constraints are incomparable to the disequality constraints
mentioned above [12,13]. They do not strictly increase the expressiveness of the
MSL theory, but enable up to exponentially more compact saturations. For ex-
ample, the constrained clause

(S(x), T (y) → S(f(x, y)); y 6= f(x′, f(a, y′)))
over constants a, b describes the same set of ground clauses as the six uncon-
strained clauses

S(x), T (a) → S(f(x, a)) S(x), T (b) → S(f(x, b)) . . .
S(x), T (f(b, y′)) → S(f(x, f(b, y′)))

S(x), T (f(f(x′′, y′′), y′)) → S(f(x, f(f(x′′, y′′), y′)).
Furthermore, for a satisfiability equivalent transformation into MSL clauses, the
nested terms in the positive literals would have to be factored out by the in-
troduction of further predicates and clauses. E.g., the first clause is replaced
by the two MSL clauses S(x), T (a), R(y) → S(f(x, y)) and R(a) where R is a
fresh monadic predicate. The constrained clause belongs to the MSL(SDC) frag-
ment. Altogether, the resulting MSL(SDC) fragment is shown to be decidable
in Section 3.

The introduction of straight dismatching constraints (SDCs) enables an im-
proved refinement step of our approximation refinement calculus [18]. Before,
several clauses were needed to rule out a specific instance of a clause in an un-
satisfiable core. For example, if due to a linearity approximation from clause
S(x), T (x) → S(f(x, x)) to S(x), T (x), S(y), T (y) → S(f(x, y)) an instance
{x 7→ f(a, x′), y 7→ f(b, y′)} is used in the proof, before [18] several clauses
were needed to replace S(x), T (x) → S(f(x, x)) in a refinement step in or-
der to rule out this instance. With straight dismatching constraints the clause
S(x), T (x) → S(f(x, x)) is replaced by the two clauses S(f(a, x)), T (f(a, x)) →
S(f(f(a, x), f(a, x))) and (S(x), T (x) → S(f(x, x));x 6= f(a, y)). For the im-
proved approximation refinement approach (FO-AR) presented in this paper,
any refinement step results in just two clauses, see Section 4. The additional
expressiveness of constraint clauses comes almost for free, because necessary
computations, like, e.g., checking emptiness of SDCs, can all be done in polyno-
mial time, see Section 2.

In addition to the extension of the known MSLH decidability result and the
improved approximation refinement calculus FO-AR, we discuss in Section 5 the
potential of the MSL(SDC) fragment in the context of FO-AR, Theorem 2, and
its prototypical implementation in SPASS-AR (http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/spass-ar.tgz).
It turns out that for clause sets containing certain structures, FO-AR is superior
to ordered resolution/superposition [1] and instance generating methods [10].
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The paper ends with a discussion on challenges and future research directions,
Section 6.

2 First-Order Clauses with Straight Dismatching
Constraints: MSL(SDC)

We consider a standard first-order language where letters v, w, x, y, z denote
variables, f, g, h functions, a, b, c constants, s, t terms, p, q, r positions and Greek
letters σ, τ, ρ, δ are used for substitutions. S, P,Q,R denote predicates,≈ denotes
equality, A,B atoms, E,L literals, C,D clauses, N clause sets and V sets of
variables. L is the complement of L. The signature Σ = (F ,P) consists of two
disjoint, non-empty, in general infinite sets of function and predicate symbols F
and P , respectively. The set of all terms over variables V is T (F ,V). If there are
no variables, then terms, literals and clauses are called ground, respectively. A
substitution σ is denoted by pairs {x 7→ t} and its update at x by σ[x 7→ t]. A
substitution σ is a grounding substitution for V if xσ is ground for every variable
x ∈ V .

The set of free variables of an atom A (term t) denoted by vars(A) (vars(t)).
A position is a sequence of positive integers, where ε denotes the empty position.
As usual t|p = s denotes the subterm s of t at position p, which we also write
as t[s]p, and t[p/s′] then denotes the replacement of s with s′ in t at position p.
These notions are extended to literals and multiple positions.

A predicate with exactly one argument is called monadic. A term is complex
if it is not a variable and shallow if it has at most depth one. It is called linear if
there are no duplicate variable occurrences. A literal, where every argument term
is shallow, is also called shallow. A variable and a constant are called straight.
A term f(s1, . . . , sn) is called straight, if s1, . . . , sn are different variables except
for at most one straight term si.

A clause is a multiset of literals which we write as an implication Γ → ∆
where the atoms in the multiset ∆ (the succedent) denote the positive literals
and the atoms in the multiset Γ (the antecedent) the negative literals. We write
� for the empty clause. If Γ is empty we omit →, e.g., we can write P (x) as
an alternative of → P (x). We abbreviate disjoint set union with sequencing,
for example, we write Γ, Γ ′ → ∆,L instead of Γ ∪ Γ ′ → ∆ ∪ {L}. A clause
E,E, Γ → ∆ is equivalent to E, Γ → ∆ and we call them equal modulo duplicate
literal elimination. If every term in ∆ is shallow, the clause is called positive
shallow. If all atoms in ∆ are linear and variable disjoint, the clause is called
positive linear. A clause Γ → ∆ is called an MSL clause, if it is (i) positive
shallow and linear, (ii) all occurring predicates are monadic, (iii) no equations
occur in ∆, and (iv) no equations occur in Γ or Γ = {s ≈ t} and ∆ is empty
where s and t are not unifiable. MSL is the first-order clause fragment consisting
of MSL clauses. Clauses Γ, s ≈ t → ∆ where Γ , ∆ are non-empty and s, t are
not unifiable could be added to the MSL fragment without changing any of our
results. Considering the superposition calculus, it will select s ≈ t. Since the two
terms are not unifiable, no inference will take place on such a clause and the
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clause will not contribute to the model operator. In this sense such clauses do
not increase the expressiveness of the fragment.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground
atoms. It is lifted to literals by representing A and ¬A as multisets {A} and
{A,A}, respectively. The multiset extension of the literal ordering induces an
ordering on ground clauses. The clause ordering is compatible with the atom
ordering; if the maximal atom in C is greater than the maximal atom in D then
D ≺ C. We use ≺ simultaneously to denote an atom ordering and its multiset,
literal, and clause extensions. For a ground clause set N and clause C, the set
N≺C = {D ∈ N | D ≺ C} denotes the clauses of N smaller than C.

A Herbrand interpretation I is a - possibly infinite - set of ground atoms.
A ground atom A is called true in I if A ∈ I and false, otherwise. I is said to
satisfy a ground clause C = Γ → ∆, denoted by I � C, if ∆∩I 6= ∅ or Γ 6⊆ I. A
non-ground clause C is satisfied by I if I � Cσ for every grounding substitution
σ. An interpretation I is called a model of N , I � N , if I � C for every C ∈ N .
A model I of N is considered minimal with respect to set inclusion, i.e., if there
is no model I ′ with I ′ ⊂ I and I ′

� N . A set of clauses N is satisfiable, if there
exists a model that satisfies N . Otherwise, the set is unsatisfiable.

A disequation t 6= s is an atomic straight dismatching constraint if s and t
are variable disjoint terms and s is straight. A straight dismatching constraint π
is a conjunction of atomic straight dismatching constraints. Given a substitution
σ, πσ =

∧

i∈I tiσ 6= si. lvar(π) :=
⋃

i∈I vars(ti) are the left-hand variables of
π and the depth of π is the maximal term depth of the si. A solution of π is a
grounding substitution δ such that for all i ∈ I, tiδ is not an instance of si, i.e.,
there exists no σ such that tiδ = siσ. A dismatching constraint is solvable if it has
a solution and unsolvable, otherwise. Whether a straight dismatching constraint
is solvable, is decidable in linear-logarithmic time [19]. ⊤ and ⊥ represent the
true and false dismatching constraint, respectively.

We define constraint normalization π↓ as the normal form of the following
rewriting rules over straight dismatching constraints.

π ∧ f(t1, . . . , tn) 6= y ⇒ ⊥

π ∧ f(t1, . . . , tn) 6= f(y1, . . . , yn) ⇒ ⊥

π ∧ f(t1, . . . , tn) 6= f(s1, . . . , sn) ⇒ π ∧ ti 6= si if si is complex

π ∧ f(t1, . . . , tn) 6= g(s1, . . . , sm) ⇒ π

π ∧ x 6= s ∧ x 6= sσ ⇒ π ∧ x 6= s

Note that f(t1, . . . , tn) 6= f(s1, . . . , sn) normalizes to ti 6= si for some i, where
si is the one straight complex argument of f(s1, . . . , sn). Furthermore, the depth
of π↓ is less or equal to the depth of π and both have the same solutions.

A pair of a clause and a constraint (C;π) is called a constrained clause. Given
a substitution σ, (C;π)σ = (Cσ;πσ). Cδ is called a ground clause of (C;π) if δ is
a solution of π. G((C;π)) is the set of ground instances of (C;π). If G((C;π)) ⊆
G((C′;π′)), then (C;π) is an instance of (C′;π′). If G((C;π)) = G((C′;π′)),
then (C;π) and (C′;π′) are called variants. A Herbrand interpretation I satisfies
(C;π), if I � G((C;π)). A constrained clause (C;π) is called redundant inN if for
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every D ∈ G((C;π)), there exist D1, . . . , Dn in G(N)≺D such that D1, . . . , Dn �

D. A constrained clause (C′;π′) is called a condensation of (C;π) if C′ ⊂ C and
there exists a substitution σ such that, πσ = π′, π′ ⊆ π, and for all L ∈ C there
is an L′ ∈ C′ with Lσ = L′. A finite unsatisfiable subset of G(N) is called an
unsatisfiable core of N .

An MSL clause with straight dismatching constraints is called an MSL(SDC)
clause with MSL(SDC) being the respective first-order fragment. Note that any
clause set N can be transformed into an equivalent constrained clause set by
changing each C ∈ N to (C;⊤).

3 Decidability of the MSL(SDC) fragment

In the following we will show that the satisfiability of the MSL(SDC) fragment
is decidable. For this purpose we will define ordered resolution with selection
on constrained clauses [19] and show that with an appropriate ordering and
selection function, saturation of an MSL(SDC) clause set terminates.

For the rest of this section we assume an atom ordering ≺ such that a literal
¬Q(s) is not greater than a literal P (t[s]p), where p 6= ε. For example, a KBO
where all symbols have weight one has this property.

Definition 1 (sel). Given an MSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn) →
P1(s1), . . . , Pm(sm);π). The Superposition Selection function sel is defined by
Si(ti) ∈ sel(C) if (1) ti is not a variable or (2) t1, . . . , tn are variables and ti /∈
vars(s1, . . . , sm) or (3) {t1, . . . , tn} ⊆ vars(s1, . . . , sm) and for some 1 ≤ j ≤ m,
sj = ti.

The selection function sel (Definition 1) ensures that a clause Γ → ∆ can
only be resolved on a positive literal if Γ contains only variables, which also
appear in ∆ at a non-top position. For example:

sel(P (f(x)), P (x), Q(z) → Q(x), R(f(y))= {P (f(x))}
sel(P (x), Q(z) → Q(x), R(f(y)))= {Q(z)}
sel(P (x), Q(y) → Q(x), R(f(y)))= {P (x)}

sel(P (x), Q(y) → Q(f(x)), R(f(y)))= ∅.
Note that given anMSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn)→ P1(s1), . . . Pm(sm);π),
if some Si(ti) is maximal in C, then at least one literal is selected.

Definition 2. A literal A is called [strictly] maximal in a constrained clause
(C ∨A;π) if and only if there exists a solution δ of π such that for all literals B
in C, Bδ � Aδ [Bδ ≺ Aδ].

Definition 3 (SDC-Resolution).

(Γ1 → ∆1, A ; π1) (Γ2, B → ∆2 ; π2)

((Γ1, Γ2 → ∆1, ∆2)σ ; (π1 ∧ π2)σ↓)
, if

1. σ = mgu(A,B) 2. (π1 ∧ π2)σ↓ is solvable
3. Aσ is strictly maximal in (Γ1 → ∆1, A;π1)σ and sel(Γ1 → ∆1, A) = ∅
4. B ∈ sel(Γ2, B → ∆2)
5. sel(Γ2, B → ∆2) = ∅ and ¬Bσ maximal in (Γ2, B → ∆2;π2)σ
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Definition 4 (SDC-Factoring).

(Γ → ∆,A,B ; π)

((Γ → ∆,A)σ;πσ↓)
, if

1. σ = mgu(A,B) 2. sel(Γ → ∆,A,B) = ∅
3. Aσ is maximal in (Γ → ∆,A,B;π)σ 4. πσ↓ is solvable

Note that while the above rules do not operate on equations, we can actually
allow unit clauses that consist of non-unifiable disequations, i.e., clauses s ≈ t →
where s and t are not unifiable. There are no potential superposition inferences
on such clauses as long as there are no positive equations. So resolution and
factoring suffice for completeness. Nevertheless, clauses such as s ≈ t → affect
the models of satisfiable problems. Constrained Resolution and Factoring are
sound.

Lemma 1 (Soundness). SDC-Resolution and SDC-Factoring are sound.

Proof. Let (Γ1, Γ2 → ∆1, ∆2)σδ be a ground instance of ((Γ1, Γ2 → ∆1, ∆2)σ; (π1∧
π2)σ). Then, δ is a solution of (π1∧π2)σ and σδ is a solution of π1 and π2. Hence,
(Γ1 → ∆1, A)σδ and (Γ2, B → ∆2)σδ are ground instances of (Γ1 → ∆1, A;π1)
and (Γ2, B → ∆2;π2), respectively. Because Aσδ = Bσδ, if (Γ1 → ∆1, A)σδ
and (Γ2, B → ∆2)σδ are satisfied, then (Γ1, Γ2 → ∆1, ∆2)σδ is also satisfied.
Therefore, SDC-Resolution is sound. Let (Γ → ∆,A)σδ be a ground instance of
((Γ → ∆,A)σ;πσ). Then, δ is a solution of πσ and σδ is a solution of π. Hence,
(Γ → ∆,A,B)σδ is a ground instance of (Γ → ∆,A,B;π). Because Aσδ = Bσδ,
if (Γ → ∆,A,B)σδ is satisfied, then (Γ → ∆,A)σδ is also satisfied. Therefore,
SDC-Factoring is sound. ⊓⊔

Definition 5 (Saturation). A constrained clause set N is called saturated up
to redundancy, if for every inference between clauses in N the result (R;π) is
either redundant in N or G((R;π)) ⊆ G(N).

Note that our redundancy notion includes condensation and the condition
G((R;π)) ⊆ G(N) allows ignoring variants of clauses.

Lemma 2. Let constrained clause (C′;π′) be a condensation of constrained clause
(C;π). Then, (i)(C;π) � (C′;π′) and (ii)(C;π) is redundant in {(C′;π′)}.

Proof. Let σ be a substitution such that C′ ⊂ C, πσ = π′, π′ ⊆ π, and for all
L ∈ C there is a L′ ∈ C′ with Lσ = L′.

(i) Let C′δ ∈ G((C′;π′)). Then σδ is a solution of π and hence Cσδ ∈
G((C;π)). Let I � Cσδ. Hence, there is a Lσδ ∈ I for some L ∈ C and thus
L′δ ∈ I for some L′ ∈ C′ with Lσ = L′. Therefore, I � C′δ. Since I and C′δ
were arbitrary, (C;π) � (C′;π′).

(ii) Let Cδ ∈ G((C;π)). Because π′ ⊆ π, δ is a solution of π′ and hence,
C′δ ∈ G((C′;π′)). Therefore, since C′δ ⊂ Cδ, C′δ ∈ G({(C′;π′)})≺Cδ and C′δ �

Cδ. ⊓⊔
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Definition 6 (Partial Minimal Model Construction). Given a constrained
clause set N , an ordering ≺ and the selection function sel, we construct an
interpretation IN for N , called a partial model, inductively as follows:

IC :=

D∈G(N)
⋃

D≺C

δD, where C ∈ G(N)

δD :=







{A} if D = Γ → ∆,A
A strictly maximal, sel(D) = ∅ and ID 6� D

∅ otherwise

IN :=
⋃

C∈G(N)

δC

Clauses D with δD 6= ∅ are called productive.

Lemma 3 (Ordered SDC Resolution Completeness). Let N be a con-
strained clause set saturated up to redundancy by ordered SDC-resolution with
selection. Then N is unsatisfiable, if and only if � ∈ G(N). If � 6∈ G(N) then
IN |= N .

Proof. Assume N is unsatisfiable but � 6∈ G(N). For the partial model IN , there
exists a minimal false clause Cσ ∈ G((C;π)) for some (C;π) ∈ N .

Cσ is not productive, because otherwise IN � Cσ. Hence, either sel(C) 6=
∅ or no positive literal in Cσ is strictly maximal. Assume C = Γ2, B → ∆2

with B ∈ sel(C) or ¬Bσ maximal. Then, Bσ ∈ ICσ and there exists a ground
instance (Γ1 → ∆1, A)τ = Dτ ≺ Cσ of some clause (D;π′) ∈ N , which produces
Aτ = Bσ. Therefore, there exists a ρ = mgu(A,B) and ground substitution δ
such that Cσ = Cρδ, Dτ = Dρδ. Since ρδ = σ is a solution of π and π′, δ is
a solution of (π ∧ π′)ρ. Under these conditions, SDC-Resolution can be applied
to (Γ1 → ∆1, A;π

′) and (Γ2, B → ∆2;π). Their resolvent (R;πR) = ((Γ1, Γ2 →
∆1, ∆2)ρ; (π ∧ π′)ρ) is either redundant in N or G((R;πR)) ⊆ G(N). Its ground
instance Rδ is false in IN and Rδ ≺ Cσ. If (R;πR) is redundant in N , there exist
C1, . . . , Cn in G(N)≺Rδ with C1, . . . , Cn � Rδ. Because Ci ≺ Rδ ≺ Cσ, IN � Ci

and hence IN � Rδ, which contradicts IN 6� Rδ. Otherwise, if G((R;πR)) ⊆
G(N), then Rδ ∈ G(N), which contradicts Cσ being minimal false.

Now, assume sel(C) = ∅ and C = Γ → ∆,B with Bσ maximal. Then,
C = Γ → ∆′, A,B with Aσ = Bσ. Therefore, there exists a ρ = mgu(A,B) and
ground substitution δ such that Cσ = Cρδ and ρδ is a solution of π. Hence,
δ is a solution of πρ. Under these conditions, SDC-Factoring can be applied to
(Γ → ∆′, A,B;π). The result (R;πR) = ((Γ → ∆′, A)ρ;πρ) is either redundant
inN or G((R;πR)) ⊆ G(N). Its ground instanceRδ is false in IN andRδ ≺ Cσ. If
(R;πR) is redundant in N , there exist C1, . . . , Cn in G(N)≺Rδ with C1, . . . , Cn �

Rδ. Because Ci ≺ Rδ ≺ Cσ, IN � Ci and hence IN � Rδ, which contradicts
IN 6� Rδ. Otherwise, if G((R;πR)) ⊆ G(N), then Rδ ∈ G(N), which contradicts
Cσ being minimal false.

Therefore, if � 6∈ G(N), no minimal false clause exists and IN |= N . ⊓⊔
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Lemma 4. Let N be a set of MSL(SDC) clauses without variants or uncon-
densed clauses over a finite signature Σ. N is finite if there exists an integer d
such that for every (C;π) ∈ N , depth(π)≤ d and
(1) C = S1(x1), . . . , Sn(xn), S

′
1(t), . . . , S

′
m(t) → ∆ or

(2) C = S1(x1), . . . , Sn(xn), S
′
1(t), . . . , S

′
m(t) → S(t), ∆

with t shallow and linear, and vars(t) ∩ vars(∆) = ∅.

Proof. Let (C;π) ∈ N . (C;π) can be separated into variable disjoint components
(Γ1, . . . , Γn → ∆1, . . . , ∆n;π1∧. . .∧πn), where |∆i| ≤ 1 and lvar(πi) ⊆ vars(Γi →
∆i). For each positive literal P (s) ∈ ∆ there is a fragment

(A) (S1(x1), . . . , Sk(xk) → P (s);π′)

with {x1, . . . , xk} ⊆ vars(s). If m > 0, there is another fragment

(B) (S1(x1), . . . , Sk(xk), S
′
1(t), . . . , S

′
m(t) →;π′)

or

(C) (S1(x1), . . . , Sk(xk), S
′
1(t), . . . , S

′
m(t) → S(t);π′)

with {x1, . . . , xk} ⊆ vars(t), respectively. Lastly, for each variable x ∈ vars(C)
with x /∈ vars(t) ∪ vars(∆) there is a fragment

(D) (S1(x), . . . , Sk(x) →;π′).

Since there are only finitely many terms s with depth(s)≤ d modulo renam-
ing, there are only finitely many atomic constraints x 6= s for a given variable x
different up to renaming s. Thus, a normal constraint can only contain finitely
many combinations of subconstraints

∧

i∈I
x 6= si without some si being an

instance of another sj . Therefore, for a fixed set of variables x1, . . . , xk, there
are only finitely many constraints π =

∧

i∈I
zi 6= si with lvar(π) ⊆ {x1, . . . , xk}

up to variants.
Since the number of predicates, function symbols, and their ranks is finite,

the number of possible shallow and linear atoms S(t) different up to variants is
finite. For a given shallow and linear t, there exist only finitely many clauses of
the form (S1(t), . . . , Sn(t) → S(t);π) or (S1(t), . . . , Sn(t) →;π) with lvar(π) ⊆
vars(t) modulo condensation and variants. For a fixed set of variables x1, . . . , xk,
there exist only finitely many clauses of the form (S1(y1), . . . , Sk(yl) →;π) with
{y1, . . . , yl} ∪ lvar(π) ⊆ {x1, . . . , xk} modulo condensation and variants. There-
fore, there are only finitely many distinct clauses of each form (A)-(D) without
variants or condensations.

If in the clause (C;π) = (Γ1, . . . , Γn → ∆1, . . . , ∆n;π1 ∧ . . . ∧ πn) for some
i 6= j, (Γi → ∆i;πi) is a variant of (Γj → ∆j ;πj), then (C;π) has a condensation
and is therefore not part of N . Hence, there can be only finitely many different
(C;π) without variants or condensations and thus N is finite. ⊓⊔
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Lemma 5 (Finite Saturation). Let N be an MSL(SDC) clause set. Then
N can be finitely saturated up to redundancy by SDC-resolution with selection
function sel.

Proof. The general idea is that given the way sel is defined the clauses involved
in constrained resolution and factoring can only fall into certain patterns. Any
result of such inferences then is either strictly smaller than one of its parents
by some terminating measure or falls into a set of clauses that is bounded by
Lemma 4. Thus, there can be only finitely many inferences before N is saturated.

Let d be an upper bound on the depth of constraints found in N and Σ be
the finite signature consisting of the function and predicate symbols occurring
in N . Let (Γ1 → ∆1, S(t);π1) and (Γ2, S(t

′) → ∆2;π2) be clauses in N where
sdc-resolution applies with σ = mgu(S(t), S(t′)) and resolvent R = ((Γ1, Γ2 →
∆1, ∆2)σ; (π1 ∧ π2)σ↓).

Because no literal is selected by sel, Γ1 → ∆1, S(t) can match only one of
two patterns:

(A) S1(x1), . . . , Sn(xn) → S(f(y1, . . . , yk)), ∆

where t = f(y1, . . . , yk) and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ vars(∆).

(B) S1(x1), . . . , Sn(xn) → S(y), ∆

where t = y and x1, . . . , xn are variables in vars(∆), i.e., y occurs only once.

The literal S(t′) is selected by sel in Γ2, S(t
′) → ∆2, and therefore Γ2, S(t

′) → ∆2

can match only one of the following three patterns:

(1) S(f(t1, . . . , tk)), Γ
′ → ∆′

(2) S(y′), Γ ′ → ∆′ where Γ ′ has no function terms and y /∈ vars(∆′).

(3) S(y′), Γ ′ → S′(y′), ∆′ where Γ ′ has no function terms.

This means that the clausal part (Γ1, Γ2 → ∆1, ∆2)σ of R has one of six forms:

(A1) S1(x1)σ, . . . , Sn(xn)σ, Γ
′ → ∆,∆′ with σ = {y1 7→ t1, . . . }.

∆σ = ∆ because S(f(y1, . . . , yk)) and ∆ do not share variables.

(B1) S1(x1), . . . , Sn(xn), Γ
′ → ∆,∆′.

The substitution {y 7→ f(t1, . . . , tk)} is irrelevant since S(y) is the only literal
with variable y.

(A2) S1(x1), . . . , Sn(xn), Γ
′τ → ∆,∆′ with τ = {y′ 7→ f(y1, . . . , yk)}.
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∆′τ = ∆′ because y′ /∈ vars(∆′).

(B2) S1(x1), . . . , Sn(xn), Γ
′ → ∆,∆′.

(A3) S1(x1), . . . , Sn(xn), Γ
′τ → S′(f(y1, . . . , yk)), ∆,∆′ with τ = {y 7→ f(y1, . . . , yk)}.

∆′τ = ∆′ because y′ /∈ vars(∆′).

(B3) S1(x1), . . . , Sn(xn), Γ
′ → S′(y′), ∆,∆′.

In the constraint (π1 ∧ π2)σ↓ the maximal depth of the subconstraints is less
or equal to the maximal depth of π1 or π2. Hence, d is also an upper bound on
the constraint of the resolvent. In each case, the resolvent is again an MSL(SDC)
clause.

In the first and second case, the multiset of term depths of the negative
literals in R is strictly smaller than for the right parent. In both, the Γ is the
same between the right parent and the resolvent. Only the f(t1, . . . , tk) term is
replaced by x1σ, . . . , xnσ and x1, . . . , xn respectively. In the first case, the depth
of the xiσ is either zero if xi /∈ {y1, . . . , yk} or at least one less than f(t1, . . . , tk)
since xiσ = ti. In the second case, the xi have depth zero which is strictly smaller
than the depth of f(t1, . . . , tk). Since the multiset ordering on natural numbers
is terminating, the first and second case can only be applied finitely many times
by constrained resolution.

In the third to sixth caseR is of the form (S1(x1), . . . , Sl(xl), S
′
1(t), . . . , S

′
m(t) →

∆;π) or (S1(x1), . . . , Sl(xl), S
′
1(t), . . . , S

′
m(t) → S(t)), ∆;π) with t = f(y1, . . . , yk).

By Lemma 4, there are only finitely many such clauses after condensation and
removal of variants. Therefore, these four cases can apply only finitely many
times during saturation.

Let (Γ → ∆,S(t), S(t′);π) be a clause in N where sdc-factoring applies
with σ = mgu(S(t), S(t′)) and R = ((Γ → ∆,S(t))σ;πσ ↓). Because in Γ →
∆,S(t), S(t′) no literal is selected, Γ → ∆,S(t), S(t′) and (Γ → ∆,S(t))σ can
only match one of three patterns.

(A) S1(x1), . . . , Sn(xn) → S(f(y1, . . . , yk)), S(f(z1, . . . , zl)), ∆

where t = f(y1, . . . , yk), t
′ = f(z1, . . . , zk), and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪

{z1, . . . , zl} ∪ vars(∆). The result is

S1(x1)σ, . . . , Sn(xn)σ → S(f(y1, . . . , yk)), ∆ with σ = {z1 7→ y1, . . . }.

(B) S1(x1), . . . , Sn(xn) → S(f(y1, . . . , yk)), S(z), ∆

where t = f(y1, . . . , yk), t
′ = z and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ vars(∆), i.e., z

occurs only once. The result is

S1(x1), . . . , Sn(xn) → S(f(y1, . . . , yk)), ∆.

(C) S1(x1), . . . , Sn(xn) → S(y), S(z), ∆
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where t = y, t′ = z and {x1, . . . , xn} ⊆ vars(∆), i.e., y and z occur only once.
The result is

S1(x1), . . . , Sn(xn) → S(y), ∆.

In the new constraint πσ↓ the maximal depth of the subconstraints is less
or equal to the maximal depth of π. Hence d is also an upper bound on the
constraint of the resolvent. In each case, the resolvent is again an MSL(SDC)
clause.

Furthermore, in each case the clause is of the form (S1(x1), . . . , Sl(xl) →
∆;π). By Lemma 4, there are only finitely many such clauses after condensation
and removal of variants. Therefore, these three cases can apply only finitely many
times during saturation. ⊓⊔

Theorem 1 (MSL(SDC) Decidability). Satisfiability of the MSL(SDC) first-
order fragment is decidable.

Proof. Follows from Lemma 5 and 3.

4 Approximation and Refinement

In the following, we show how decidability of the MSL(SDC) fragment can be
used to improve the approximation refinement calculus presented in [18].

Our approach is based on a counter-example guided abstraction refinement
(CEGAR) idea. The procedure loops trough four steps: approximation, testing
(un)satisfiability, lifting, and refinement. The approximation step transforms
any first-order logic clause set into the decidable MSL(SDC) fragment while
preserving unsatisfiability. The second step employs the decidability result for
MSL(SDC), Section 3, to test satisfiability of the approximated clause set. If
the approximation is satisfiable, the original problem is satisfiable as well and
we are done. Otherwise, the third step, lifting, tests whether the proof of un-
satisfiability found for the approximated clause set can be lifted to a proof of
the original clause set. If so, the original clause set is unsatisfiable and we are
again done. If not, we extract a cause for the lifting failure that always amounts
to two different instantiations of the same variable in a clause from the original
clause set. This is resolved by the fourth step, the refinement. The crucial clause
in the original problem is replaced and instantiated in a satisfiability preserving
way such that the different instantiations do not reoccur anymore in subsequent
iterations of the loop.

As mentioned before, our motivation to use dismatching constraints is that
for an unconstrained clause the refinement adds quadratically many new clauses
to the clause set. In contrast, with constrained clauses the same can be accom-
plished with adding just a single new clause. This extension is rather simple as
constraints are treated the same as the antecedent literals in the clause. Further-
more we present refinement as a separate transformation rule.

11



The second change compared to the previous version is the removal of the
Horn approximation rule, where we have now shown in Section 3 that a restric-
tion to Horn clauses is not required for decidability anymore. Instead, the linear
and shallow approximations are extended to apply to non-Horn clauses instead.

The approximation consists of individual transformation rules N ⇒ N ′ that
are non-deterministically applied. They transform a clause that is not in the
MSL(SDC) fragment in finite steps into MSL(SDC) clauses. Each specific prop-
erty of MSL(SDC) clauses, i.e, monadic predicates, shallow and linear positive
literals, is generated by a corresponding rule: the Monadic transformation en-
codes non-Monadic predicates as functions, the shallow transformation extracts
non-shallow subterms by introducing fresh predicates and the linear transforma-
tion renames non-linear variable occurrences.

Starting from a constrained clause set N the transformation is parameterized
by a single monadic projection predicate T , fresh to N and for each non-monadic
predicate P a separate projection function fP fresh to N . The clauses in N are
called the original clauses while the clauses in N ′ are the approximated clauses.
We assume all clauses in N to be variable disjoint.

Definition 7. Given a predicate P , projection predicate T , and projection func-
tion fP , define the injective function µT

P (P (~t)) := T (fp(~t)) and µT
P (Q(~s)) :=

Q(~s) for P 6= Q. The function is extended to [constrained] clauses, clause sets
and interpretations. Given a signature Σ with non-monadic predicates P1, . . . , Pn,
define µT

Σ(N) := µT
P1
(. . . (µT

Pn

(N)) . . .) and µT
Σ(I) := µT

P1
(. . . (µT

Pn

(I)) . . .).

Monadic N ⇒MO µT
P (N)

provided P is a non-monadic predicate in the signature of N .

Shallow N ∪̇ {(Γ → E[s]p, ∆;π)} ⇒SH

N ∪ {(S(x), Γl → E[p/x], ∆l;π); (Γr → S(s), ∆r;π)}

provided s is complex, |p| = 2, x and S fresh, Γl{x 7→ s}∪Γr = Γ , ∆l∪∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x], ∆l)} ⊆ Γl, {Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

Linear 1 N ∪̇ {(Γ → ∆,E′[x]p, E[x]q;π)} ⇒LI

N ∪ {(Γσ, Γ → ∆,E′[x]p, E[q/x′];π ∧ πσ)}

provided x′ is fresh and σ = {x 7→ x′}.

Linear 2 N ∪̇ {(Γ → ∆,E[x]p,q;π)} ⇒LI

N ∪ {(Γσ, Γ → ∆,E[q/x′];π ∧ πσ)}

provided x′ is fresh, p 6= q and σ = {x 7→ x′}.

Refinement N ∪̇ {(C, π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}}

provided x ∈ vars(C), t straight and vars(t) ∩ vars((C, π)) = ∅.
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Note that variables are not renamed unless explicitly stated in the rule. This
means that original clauses and their approximated counterparts share variable
names. We use this to trace the origin of variables in the approximation.

The refinement transformation ⇒Ref is not needed to eventually generate
MSL(SDC) clauses, but can be used to achieve a more fine-grained approxima-
tion of N , see below.

In the shallow transformation, Γ and∆ are separated into Γl, Γr, ∆l, and∆r,
respectively. The separation can be almost arbitrarily chosen as long as no atom
from Γ ,∆ is skipped. However, the goal is to minimize the set of shared variables,
i.e., the variables of (Γ → E[s]p, ∆;π) that are inherited by both approximation
clauses, vars(Γr, s,∆r)∩vars(Γl, E[p/x], ∆l). If there are no shared variables, the
shallow transformation is satisfiability equivalent. The conditions on Γl and Γr

ensure that S(x) atoms are not separated from the respective positive occurrence
of x in subsequent shallow transformation applications.

Consider the clause Q(f(x), y) → P (g(f(x), y)). The simple shallow trans-
formation S(x′), Q(f(x), y) → P (g(x′, y));S(f(x)) is not satisfiability equiva-
lent – nor with any alternative partitioning of Γ . However, by replacing the
occurrence of the extraction term f(x) in Q(f(x), y) with the fresh variable x′,
the approximation S(x′), Q(x′, y) → P (g(x′, y));S(f(x)) is satisfiability equiv-
alent. Therefore, we allow the extraction of s from the terms in Γl and require
Γl{x 7→ s} ∪ Γr = Γ .

We consider Linear 1 and Linear 2 as two cases of the same linear transfor-
mation rule. Their only difference is whether the two occurrences of x are in the
same literal or not. The duplication of literals and constraints in Γ and π is not
needed if x does not occur in Γ or π.

Further, consider a linear transformation N ∪ {(C;π)} ⇒LI N ∪ {(Ca;πa)},
where a fresh variable x′ replaces an occurrence of a non-linear variable x in
(C;π). Then, (Ca;πa){x′ 7→ x} is equal to (C;π) modulo duplicate literal elim-
ination. A similar property can be observed of a resolvent of (Cl;π) and (Cr;π)
resulting from a shallow transformation N ∪{(C;π)} ⇒SH N ∪{(Cl;π), (Cr ;π)}.
Note that by construction, (Cl;π) and (Cr;π) are not necessarily variable dis-
joint. To simulate standard resolution, we need to rename at least the shared
variables in one of them.

Definition 8 (⇒AP). We define ⇒AP as the priority rewrite system [3] con-
sisting of ⇒Ref , ⇒MO, ⇒SH and ⇒LI with priority ⇒Ref >⇒MO>⇒SH>⇒LI,
where ⇒Ref is only applied finitely many times.

Lemma 6 (⇒AP is a Terminating Over-Approximation). (i) ⇒∗
AP termi-

nates, (ii) if N ⇒AP N ′ and N ′ is satisfiable, then N is also satisfiable.

Proof. (i) The transformations can be considered sequentially, because of the
imposed rule priority. There are, by definition, only finitely many refinements at
the beginning of an approximation ⇒∗

AP. The monadic transformation strictly
reduces the number of non-monadic atoms. The shallow transformation strictly
reduces the multiset of term depths of the newly introduced clauses compared to
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the removed parent clause. The linear transformation strictly reduces the number
of duplicate variable occurrences in positive literals. Hence ⇒AP terminates.

(ii) Let N ∪{(C;π)} ⇒LI N ∪{(Ca;πa)} where an occurrence of a variable x
in (C;π) is replaced by a fresh x′. As (Ca;πa){x′ 7→ x} is equal to (C;π) modulo
duplicate literal elimination, I |= (C;π) if I |= (Ca;πa). Therefore, the linear
transformation is an over-approximation.

Let N ∪ {(C;π)} ⇒SH N ∪ {(Cl;πl), (Cr ;πr)} and (Ca;πa) be the shallow
ρ-resolvent. As (Ca;πa)ρ

−1 equals (C;π) modulo duplicate literal elimination,
I |= (C;π) if I |= (Cl;πl), (Cr;πr). Therefore, the shallow transformation is an
over-approximation.

Let N ⇒MO µP (N) = N ′. Then, N = µ−1
P (N ′). Let I be a model of N ′ and

(C;π) ∈ N . Since µP ((C;π)) ∈ N ′ , I � µP ((C;π)) and thus, µ−1
P (I) � (C;π).

Hence, µ−1
P (I) is a model of N . Therefore, the monadic transformation is an

over-approximation. Actually, it is a satisfiability preserving transformation.
Let N ∪ {(C;π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}}. Let Cδ ∈

G((C;π)). If xδ is not an instance of t, then δ is a solution of π ∧ x 6= t and
Cδ ∈ G((C;π∧x 6= t)). Otherwise, δ = {x 7→ t}δ′ for some substitution δ′. Then,
δ is a solution of π{x 7→ t} and thus, Cδ = C{x 7→ t}δ′ ∈ G((C{x 7→ t};π{x 7→
t})). Hence, G((C;π)) ⊆ G((C;π ∧ x 6= t)) ∪ G((C;π){x 7→ t}). Therefore, if I
is a model of N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}}, then I is also a model of
N ∪ {(C;π)}. ⊓⊔

Note that ⇒Ref and ⇒MO are also satisfiability preserving transformations.

Corollary 1. If N ⇒∗
AP N ′ and N ′ is satisfied by a model I, then µ−1

Σ (I) is a
model of N .

Proof. Follows from Lemma 6 (ii)-(v). ⊓⊔

On the basis of ⇒AP we can define an ancestor relation ⇒A that relates
clauses, literal occurrences, and variables with respect to approximation. This
relation is needed in order to figure out the exact clause, literal, variable for
refinement.

Definition 9 (The Shallow Resolvent). Let N∪{(C;π)} ⇒SH N∪{(Cl;π), (Cr ;π)}
with C = Γ → E[s]p, ∆, Cl = S(x), Γl → E[p/x], ∆l and Cr = Γr → S(s), ∆r.
Let x1, . . . , xn be the variables shared between Cl and Cr and ρ = {x1 7→
x′
1, . . . , xn 7→ x′

n} be a variable renaming with x′
1, . . . , x

′
n fresh in Cl and Cr. We

define (Γl{x 7→ sρ}, Γrρ → E[p/sρ], ∆l, ∆rρ;π ∧ πρ) as the shallow ρ-resolvent.

Let (Ca;πa) be the shallow ρ-resolvent ofN∪{(C;π)} ⇒SH N∪{(Cl;π), (Cr ;π)}.
Note that for any two ground instances Clδl and Crδr, their resolvent is a ground
instance of (Ca;πa). Furthermore, using the reverse substitution ρ−1 = {x′

1 7→
x1, . . . , x

′
n 7→ xn}, (Ca;πa)ρ

−1 = (Γl{x 7→ s}, Γr → E[s]p, ∆l, ∆r;π ∧π) is equal
to (C;π) modulo duplicate literal elimination. This is because, ∆l∪∆r = ∆ and
Γl{x 7→ s} ∪ Γr = Γ by definition of ⇒SH and π ∧ π is equivalent to π.

Next, we establish parent relations that link original and approximated clauses,
as well as their variables and literals. Together the parent, variable and literal
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relations will allow us to not only trace any approximated clause back to their
origin, but also predict what consequences changes to the original set will have
on its approximations.

For the following definitions, we assume that clause and literal sets are lists
and that µT

P and substitutions act as mappings. This means we can uniquely
identify clauses and literals by their position in those lists. Further, for every
shallow transformation N ⇒SH N ′, we will also include the shallow resolvent in
the parent relation as if it were a member of N ′.

Definition 10 (Parent Clause). For an approximation step N ⇒AP N ′ and
two clauses (C;π) ∈ N and (C′;π′) ∈ N ′, we define [(C;π), N ] ⇒A [(C′;π′), N ′]
expressing that (C;π) in N is the parent clause of (C′;π′) in N ′:
If N ⇒MO µT

P (N), then
[(C;π), N ] ⇒A [µT

P ((C;π)), µT
P (N)] for all (C;π) ∈ N .

If N = N ′′ ∪ {(C;π)} ⇒SH N ′′ ∪ {(Cl;πl), (Cr;πr)} = N ′, then
[(D, π′), N ] ⇒A [(D, π′), N ′] for all (D, π′) ∈ N ′′ and
[(C, π), N ] ⇒A [(Cl;πl), N

′],
[(C, π), N ] ⇒A [(Cr ;πr), N

′] and
[(C, π), N ] ⇒A [(Ca;πa), N

′] for any shallow resolvent (Ca;πa).
If N = N ′′ ∪ {(C;π)} ⇒LI N

′′ ∪ {(Ca;πa)} = N ′, then
[(D, π′), N ] ⇒A [(D, π′), N ′] for all (D, π′) ∈ N ′′ and
[(C, π), N ] ⇒A [(Ca, πa), N

′].
If N = N ′′ ∪ {(C;π)} ⇒Ref N

′′ ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}} = N ′, then
[(D, π′), N ] ⇒A [(D, π′), N ′] for all (D, π′) ∈ N ′′ ,
[(C, π), N ] ⇒A [(C;π ∧ x 6= t), N ′] and
[(C, π), N ] ⇒A [(C;π){x 7→ t}, N ′].

Definition 11 (Parent Variable). Let N ⇒AP N ′ be an approximation step
and [(C;π), N ] ⇒A [(C′;π′), N ′]. For two variables x and y, we define [x, (C;π), N ] ⇒A

[y, (C′;π′), N ′] expressing that x ∈ vars(C) is the parent variable of y ∈ vars(C′):
If x ∈ vars((C;π)) ∩ vars((C′;π′)), then

[x, (C;π), N ] ⇒A [x, (C′;π′), N ′].
If N ⇒SH N ′ and (C′, π′) is the shallow ρ-resolvent,

[xi, (C;π), N ] ⇒A [xiρ, (C
′;π′), N ′] for each xi in the domain of ρ.

If N ⇒LI N
′, C = Γ → ∆[x]p,q and C′ = Γ{x 7→ x′}, Γ → ∆[q/x′], then

[x, (C;π), N ] ⇒A [x′, (C′;π′), N ′].

Note that if N ⇒SH N ′ and x is the fresh extraction variable in (Cl;πl), then
x has no parent variable. For literals, we actually further specify the relation on
the positions within literals of a clause (C;π) using pairs (L, r) of literals and
positions. We write (L, r) ∈ C to denote that (L, r) is a literal position in (C;π)
if L ∈ C and r ∈ pos(L). Note that a literal position (L, r) in (C;π) corresponds
to the term L|r.

Definition 12 (Parent literal position). Let N ⇒AP N ′ be an approxima-
tion step and [(C;π), N ] ⇒A [(C′;π′), N ′]. For two literal positions (L, r) and
(L′, r′), we define [r, L, (C;π), N ] ⇒A [r′, L′, (C′;π′), N ′] expressing that (L, r)
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in (C;π) is the parent literal position of (L′, r′) in (C′;π′):
If (C;π) = (C′;π′), then

[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ C.
If N ⇒Ref N

′ and (C′, π′) = (C;π ∧ x 6= t), then
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ C.

If N ⇒Ref N
′ and (C′, π′) = (C;π){x 7→ t}, then

[r, L, (C;π), N ] ⇒A [r, L{x 7→ t}, (C′;π′), N ′] for all (L, r) ∈ C.
If N ⇒MO µT

P (N) = N ′, then
[ε, P (~t), (C;π), N ] ⇒A [ε, T (fp(~t)), (C

′;π′), N ′] for all P (~t) ∈ C and
[r, P (~t), (C;π), N ] ⇒A [1.r, T (fp(~t)), (C

′;π′), N ′] for all (P (~t), r) ∈ C.
If N ⇒SH N ′, C = Γ → E[s]p, ∆ and C′ = S(x), Γl → E[p/x], ∆l, then

[r, E[s]p, (C;π), N ] ⇒A [r, E[p/x], (C′;π′), N ′] for all r ∈ pos(E[p/x]),
[p,E[s]p, (C;π), N ] ⇒A [r, S(x), (C′;π′), N ′] for all r ∈ pos(S(x)),
[r, L{x 7→ s}, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ Γl,
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ ∆l.

If N ⇒SH N ′, C = Γ → E[s]p, ∆ and C′ = Γr → S(s), ∆r, then
[p,E[s]p, (C;π), N ] ⇒A [ε, S(s), (C′;π′), N ′],
[pr, E[s]p, (C;π), N ] ⇒A [1.r, S(s), (C′;π′), N ′] for all r ∈ pos(s), and
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ Γr ∪∆r.

If N ⇒SH N ′, C = Γ → E[s]p, ∆ and (C′, π′) is the shallow ρ-resolvent, then
[r, E[s]p, (C;π), N ] ⇒A [r, E[p/sρ], (C′;π′), N ′] for all r ∈ pos(E[p/sρ]),
[r, L{x 7→ s}, (C;π), N ] ⇒A [r, L{x 7→ sρ}, (C′;π′), N ′] for all (L, r) ∈ Γl,
[r, L, (C;π), N ] ⇒A [r, Lρ, (C′;π′), N ′] for all (L, r) ∈ Γr ∪∆r, and
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ ∆l.

If N ⇒LI N
′, C = Γ → ∆,E′[x]p, E[x]q and C′ = Γ{x 7→ x′}, Γ → ∆,E′[x]p, E[q/x′],

[r, E′[x]p, (C;π), N ] ⇒A [r, E′[x]p, (C
′;π′), N ′] for all r ∈ pos(E′[x]p),

[r, E[x]q, (C;π), N ] ⇒A [r, E[q/x′], (C′;π′), N ′] for all r ∈ pos(E[q/x′]),,
[r, L, (C;π), N ] ⇒A [r, L{x 7→ x′}, (C′;π′), N ′] for all (L, r) ∈ Γ ,
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ Γ , and
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ ∆.

If N ⇒LI N
′, C = Γ → ∆,E[x]p,q and C′ = Γ{x 7→ x′}, Γ → ∆,E[q/x′], then

[r, E[x]p,q, (C;π), N ] ⇒A [r, E[q/x′], (C′;π′), N ′] for all r ∈ pos(E[q/x′]),
[r, L, (C;π), N ] ⇒A [r, L{x 7→ x′}, (C′;π′), N ′] for all (L, r) ∈ Γ ,
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ Γ , and
[r, L, (C;π), N ] ⇒A [r, L, (C′;π′), N ′] for all (L, r) ∈ ∆.

The transitive closures of each parent relation are called ancestor relations.
The over-approximation of a clause setN can introduce resolution refutations

that have no corresponding equivalent in N which we consider a lifting failure.
Compared to our previous calculus [18], the lifting process is identical with the
exception that there is no case for the removed Horn transformation. We only
update the definition of conflicting cores to consider constrained clauses.

Definition 13 (Conflicting Core). A finite set of unconstrained clauses and
a solvable constraint (N⊥;π) are a conflicting core if N⊥δ is unsatisfiable for
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Γ → E [s]p, ∆

Γl, S(x)→ E [p/x], ∆l

Γ → E [s]p, ∆

Γr → S(x), ∆r

Γ → E [s]p, ∆

Γl{x 7→ sρ}, Γrρ →E[p/sρ], ∆l, ∆rρ

shallow left shallow right shallow resolvent

Γ → ∆, E′[x]p, E[x]q

Γσ, Γ → ∆, E′[x]p, E[q/x′]

Γ → ∆, E[x]p,q

Γσ, Γ → ∆, E[q/x′]

linear 1 linear 2

Fig. 1. Visual representation of the parent literal position relation (Definition 12)

all solutions δ of π over vars(N⊥) ∪ lvar(π). A conflicting core (N⊥;π) is a
conflicting core of the constrained clause set N if for every C ∈ N⊥ there is a
clause (C′, π′) ∈ N such that (C;π) is an instance of (C′;π′) modulo duplicate
literal elimination. The clause (C′;π′) is then called the instantiated clause of
(C;π) in (N⊥;π). We call (N⊥;π) complete if for every clause C ∈ N⊥ and
literal L ∈ C, there exists a clause D ∈ N⊥ with L ∈ D.

A conflicting core is a generalization of a ground unsatisfiability core that
allows global variables to act as parameters. This enables more efficient lifting
and refinement compared to a simple ground unsatisfiable core. We show some
examples at the end of this section.

We discuss the potential lifting failures and the corresponding refinements
only for the linear and shallow case because lifting the satisfiability equivalent
monadic and refinement transformations always succeeds. To reiterate from our
previous work: in the linear case, there exists a clause in the conflicting core that
is not an instance of the original clauses. In the shallow case, there exists a pair
of clauses whose resolvent is not an instance of the original clauses. We combine
these two cases by introducing the notion of a lift-conflict.

Definition 14 (Conflict). Let N ∪ {(C, π)} ⇒LI N ∪ {(Ca, πa)} and N⊥ be
a complete ground conflicting core of N ∪ {(Ca, πa)}. We call a conflict clause
Cc ∈ N⊥ with the instantiated clause (Ca, πa) a lift-conflict if Cc is not an
instance of (C, π) modulo duplicate literal elimination. Then, Cc is an instance
of (Ca, πa), which we call the conflict clause of Cc.

Let N∪{(C, π)} ⇒SH N∪{(Cl, πl), (Cr , πr)}, (Ca;πa) be the shallow resolvent
and N⊥ be a complete ground conflicting core of N ∪{(Cl, πl), (Cr , πr)}. We call
the resolvent Cc of Clδl ∈ N⊥ and Crδr ∈ N⊥ a lift-conflict if Cc is not an
instance of (C, π) modulo duplicate literal elimination. Then, Cc is an instance
of (Ca;πa), which we call the conflict clause of Cc.
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The goal of refinement is to instantiate the original parent clause in such
a way that is both satisfiability equivalent and prevents the lift-conflict after
approximation. Solving the refined approximation will then either necessarily
produce a complete saturation or a new refutation proof, because its conflicting
core has to be different. For this purpose, we use the refinement transformation
to segment the original parent clause (C;π) into two parts (C;π ∧ x 6= t) and
(C;π){x 7→ t}.

For example, consider N and its linear transformation N ′.
→P (x, x) ⇒LI →P (x, x′)

P (a, b)→ ⇒0
AP P (a, b)→

The ground conflicting core of N ′ is
→P (a, b)

P (a, b)→
Because P (a, b) is not an instance of P (x, x), lifting fails. P (a, b) is the lift-
conflict. Specifically, {x 7→ a} and {x 7→ b} are conflicting substitutions for the
parent variable x. We pick {x 7→ a} to segment P (x, x) into (P (x, x);x 6= a) and
P (x, x){x 7→ a}. Now, any descendant of (P (x, x);x 6= a) cannot have a at the
position of the first x, and any descendant of P (x, x){x 7→ a} must have an a
at the position of the second x. Thus, P (a, b) is excluded in both cases and no
longer appears as a lift-conflict.

To show that the lift-conflict will not reappear in the general case, we use
that the conflict clause and its ancestors have strong ties between their term
structures and constraints.

Definition 15 (Constrained Term Skeleton). The constrained term skele-
ton of a term t under constraint π, skt(t, π), is defined as the normal form of
the following transformation:

(t[x]p,q ;π) ⇒skt (t[q/x
′];π ∧ π{x 7→ x′}), where p 6= q and x′ is fresh.

The constrained term skeleton of a term t is essentially a linear version of t
where the restrictions on each variable position imposed by π are preserved. For
(t, π) and a solution δ of π, tδ is called a ground instance of (t, π).

Lemma 7. Let N0 ⇒∗
AP Nk, (Ck;πk) in N with the ancestor clause (C0;π0) ∈

N0 and N⊥
k be a complete ground conflicting core of Nk. Let δ be a solution

of πk such that Ckδ is in N⊥
k . If (L′, q′) is a literal position in (Ck;πk) with

the ancestor (L, q) in (C0, π0), then (i) L′δ|q′ is an instance of skt(L|q, π0), (ii)
q = q′ if L and L′ have the same predicate, and (iii) if L′|q′ = x and there exists
an ancestor variable y of x in (C0, π0), then L|q = y.

Proof. By induction on the length of the approximation N0 ⇒∗
AP Nk.

The base case Nk = N0, is trivial. Let N0 = N ∪ {(C;π)} ⇒SH N ∪
{(Cl;πl), (Cr ;πr)} = Nk, (Ck;πk) be the shallow ρ-resolvent and Ckδ be the
resolvent of two instances of (Cl;πl) and (Cr;πr) in N⊥

k . Then, (Ck;πk)ρ
−1 is

equal to (C;π) modulo duplicate literal elimination. Thus, by definition (L, q) =
(L′, q′)ρ−1. Therefore, (i) L′δ|q′ is an instance of skt(L|q, π0), (ii) q = q′ if L and
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L′ have the same predicate, and (iii) if L′|q′ = x and there exists an ancestor
variable y of x in (C0, π0), then L|q = y.

Now, letN0 ⇒AP N1 ⇒∗
AP Nk. Since (L

′, p) has an ancestor literal position in
(C0, π0), the ancestor clause of (Ck;πk) in N1, (C1, π1), contains the the ancestor
literal position (L1, q1), which has (L, q) as its parent literal position. By the
induction hypothesis on N1 ⇒∗

AP Nk, (i) L′δ|q′ is an instance of skt(L1|q1 , π1),
(ii) q1 = q′ if L1 and L′ have the same predicate, and (iii) if L′|q′ = x and there
is an ancestor variable y1 of x in (C1, π1), then L1|q1 = y1.

Let N0 = N ∪ {(C;π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}} = N1. If
(C1, π1) is neither (C;π ∧ x 6= t) nor (C;π){x 7→ t}, then trivially (C0, π0) =
(C1, π1). Otherwise, (C1, π1) = (C;π ∧ x 6= t) or (C1, π1) = (C;π){x 7→ t}.
Then (L1, q1) = (L, q) or (L1, q1) = (L, q){x 7→ t}. In either case,(i) L′δ|q′ is an
instance of skt(L|q, π0), (ii) q = q′ if L and L′ have the same predicate, and (iii)
if L′|q′ = x and there exists an ancestor variable y of x in (C0, π0), then L|q = y.

Let N0 ⇒MO µP (N) = N1. If P is not the predicate of L, then trivially
(L, q) = (L1, q1). If P is the predicate of L, then (L, q) = (P (t1, . . . , tn), q) and
(L1, q1) = (T (fp(t1, . . . , tn)), 1.q). Thus, (i) L

′δ|q′ is an instance of skt(L|q, π0) =
skt(T (fp(t1, . . . , tn)|1.q, π0). (ii) The predicate of L′ is not P by definition. (iii)
Let L′|q′ = x and y be the ancestor variable of x in (C0, π0). Then, y is
also the ancestor variable of x in (C1, π1) and L1|q1 = y. Therefore, L|q =
P (t1, . . . , tn)|q = T (fp(t1, . . . , tn)|1.q = L1|q1 = y.

Let N0 = N ∪ {(C;π)} ⇒LI N ∪ {(Ca;πa)} = N1 where an occurrence
of a variable x is replaced by a fresh x′. If (C1, π1) 6= (Ca;πa), then trivially
(C0, π0) = (C1, π1). Otherwise, (C1, π1) = (Ca;πa), (C0, π0) = (C, π). By def-
inition, (L, q) = (L1{x′ 7→ x}, q1) and π0 = π1{x′ 7→ x}. Thus, skt(L|q, π0) =
skt(L1|q1 , π1). Therefore, L

′δ|q′ is an instance of skt(L|q, π0). Since L and L1

have the same predicate and q = q1, q = q′ if L and L′ have the same predicate.
Let L′|q′ = z and y be the ancestor variable of z in (C1, π1). If y 6= x′, then y is
the ancestor variable of z in (C0, π0) and L|q = L1{x′ 7→ x}|q1 = y1. Otherwise,
x is the ancestor variable of z in (C0, π0) and L|q = L1{x

′ 7→ x}|q1 = x.

Let N0 = N ∪ {(C;π)} ⇒SH N ∪ {(Cl;πl), (Cr ;πr)} = N1 where a term s is
extracted from a positive literal Q(s′[s]p) via introduction of fresh predicate S
and variable x. If (C1, π1) is neither (Cl;πl) nor (Cr ;πr), then trivially (C0, π0) =
(C1, π1).

If (C1, π1) = (Cl;πl) and L1 = S(x), then (C0, π0) = (C;π), q1 = 1, (L′, q′) =
(S(x), 1) and (Q(s′[s]p), 1.p) is the parent literal position of (S(x), 1). Let L′δ =
S(t). Because N⊥

k is complete and ground, there is a clause C′
kδ

′ ∈ N⊥
k that

contains the positive literal S(t). The ancestor of (C′
k, π

′
k) ∈ Nk in N1 is (Cr ;πr)

because it is the only clause inN1 with a positive S-literal. Then, by the inductive
hypothesis, (S(s), 1) in (Cr ;πr) is the ancestor literal position of (S(x), 1) in
(C′

k, π
′
k). Thus, t is an instance of skt(S(s)|1, πr) = skt(s, πr). Therefore, t =

L′δ|q′ is an instance of skt(Q(s′[s]p)|1.p, π) = skt(s, πr). Further, Q and S are not
the same predicate because S is fresh. Since x has no parent variable, L′|q′ = x
has no ancestor variable in (C0, π0).
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If (C1, π1) = (Cl;πl) and L1 = Q(s′[p/x]), then (C0, π0) = (C;π) and
(Q(s′[s]p), q1) in (C;π) is the parent literal position of (L1, q1) in (C1, π1) and
ancestor literal position of (L′, q′) in (Ck, πk). If q1 is not a position at or above p,
the subterm at p is irrelevant and thus skt(Q(s′[s]p)|q1 , π) = skt(Q(s′[p/x])|q1 , πl).
Otherwise, let r be a position such that q1r = 1.p. Since |p| = 2, no following
shallow transformation step extracts a subterm of s′[p/x] containing x. Thus by
definition of ⇒AP, L

′ = Q(t′[x]p) and Ck also contains the negative literal S(x).
Let S(x)δ = S(t). Analogously to the previous case, t is an instance of skt(s, πr).
Combined with L′δ|q′ being an instance of skt(L1|q1 , π1) = skt(Q(s′[p/x])|q1 , πl)
and L′δ|1.p = t, L′δ|q′ is an instance of skt(Q(s′[s]p)|q, π). Since L and L1 have
the same predicate and q = q1, q = q′ if L and L′ have the same predicate. Let
L′|q′ = z and y in (C1, π1) be the ancestor variable of z in (Ck, πk). Since x
has no parent, y 6= x and y in (C0, π0) is the ancestor variable of z. Therefore,
Q(s′[s]p)|q1 = y because Q(s′[p/x])|q1 = y.

If (C1, π1) = (Cr;πr) and L1 = S(s), let q1 = 1.q′1. Then, (C0, π0) = (C;π)
and (L, q) = (Q(s′[s]p), 1.pq

′
1) in (C0, π0) is the parent literal position of (L1, q1)

in (C1, π1). Thus, L
′δ|q′ is an instance of skt((Q(s′[s]p)|1.pq′

1
, π) = skt(s|q′

1
, π) =

skt(L1|q1 , πr). Because S is fresh, Q is not the predicate of L′. Let L′|q′ = z and
y in (C1, π1) be the ancestor variable of z in (Ck, πk). Then, y in (C0, π0) is the
ancestor variable of z and Q(s′[s]p)|q = s|q′

1
= y because s|q′

1
= L1|q1 = y.

Otherwise, (L1, q1) in (C0, π0) is the parent literal position of (L1, q1) in
(C1, π1), by definition. Then, skt(L1, π) = skt(L1, πl) or skt(L1, π) = skt(L1, πr),
respectively. ⊓⊔

Next, we define the notion of descendants and descendant relations to con-
nect lift-conflicts in ground conflicting cores with their corresponding ancestor
clauses. The goal, hereby, is that if a ground clause D is not a descendant of a
clause in N , then it can never appear in a conflicting core of an approximation
of N .

Definition 16 (Descendants). Let N ⇒∗
AP N ′, [(C;π), N ] ⇒∗

A [(C′;π′), N ′]
and D be a ground instance of (C′;π′). Then, we call D a descendant of (C;π)
and define the [(C;π), N ] ⇒∗

A [(C′;π′), N ′]-descendant relation ⇒D that maps
literals in D to literal positions in (C;π) using the following rule:

L′δ ⇒D (L, r) if L′δ ∈ D and [r, L, (C;π), N ] ⇒∗
A [ε, L′, (C′;π′), N ′]

For the descendant relations it is of importance to note that while there
are potentially infinite ways that a lift-conflict Cc can be a descendant of an
original clause (C;π), there are only finitely many distinct descendant relations
over Cc and (C;π). This means, if a refinement transformation can prevent one
distinct descendant relation without generating new distinct descendant relations
(Lemma 8), a finite number of refinement steps can remove the lift-conflict Cc

from the descendants of (C;π) (Lemma 9). Thereby, preventing any conflicting
cores containing Cc from being found again.

A clause (C;π) can have two descendants that are the same except for the
names of the S-predicates introduced by shallow transformations. Because the
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used approximation N ⇒∗
AP N ′ is arbitrary and therefore also the choice of

fresh S-predicates, if D is a descendant of (C;π), then any clause D′ equal
to D up to a renaming of S-predicates is also a descendant of (C;π). On the
other hand, the actual important information about an S-predicate is which
term it extracts. Two descendants of (C;π) might be identical but their S-
predicate extract different terms in (C;π). For example, P (a) → S(f(a)) is
a descendant of P (x), P (y) → Q(f(x), g(f(x))) but might extract either oc-
currence of f(x). These cases are distinguished by their respective descendant
relations. In the example, we have either S(f(a)) ⇒D (Q(f(x), g(f(x))), 1) or
S(f(a)) ⇒D (Q(f(x), g(f(x))), 2.1).

Lemma 8. Let N0 = N ∪ {(C;π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→
t}} = N1 be a refinement transformation and D a ground clause. If there is a
[(C;π ∧ x 6= t), N1] ⇒∗

A [(C′;π′), N2]- or [(C;π){x 7→ t}, N1] ⇒∗
A [(C′;π′), N2]-

descendant relation ⇒1
D, then there is an equal [(C;π), N0] ⇒

∗
A [(C′;π′), N2]-

descendant relation ⇒0
D.

Proof. Let LD be a literal of D and L′ ⇒1
D (L, r). If D is a descendant of

(C;π ∧ x 6= t), then [r, L, (C;π ∧ x 6= t), N1] ⇒
∗
A [ε, L′, (C′;π′), N2]. Because

[r, L, (C;π), N0] ⇒A [r, L, (C;π ∧ x 6= t), N1], L
′ ⇒0

D (L, r). If D is a descendant
of (C;π){x 7→ t}, the proof is analogous. ⊓⊔

Lemma 9 (Refinement). Let N ⇒AP N ′ and N⊥ be a complete ground con-
flicting core of N ′. If Cc ∈ N⊥ is a lift-conflict, then there exists a finite re-
finement N ⇒∗

Ref NR such that for any approximation NR ⇒∗
AP N ′

R and ground
conflicting core N⊥

R of N ′
R, Cc is not a lift-conflict in N⊥

R modulo duplicate literal
elimination.

Proof. Let (Ca, πa) be the conflict clause of Cc and (C;π) ∈ N be the par-
ent clause of (Ca, πa). Cc is a descendant of (C;π) with the corresponding
[(C;π), N ] ⇒A [(Ca;πa), N

′]-descendant relation ⇒0
Cc

. We apply induction on
the number of distinct [(C;π), N ] ⇒∗

A [(C′;π′), N ′′]-descendant relations ⇒Cc

for arbitrary approximations N ⇒∗
AP N ′′.

Since only the shallow and linear transformations can produce lift-conflicts,
the clause (C;π) is replaced by either a linearized clause (C′;π′) or two shallow
clauses (Cl;π) and (Cr;π). Then, the conflict clause (Ca;πa) of Cc is either
the linearized (C′;π′) or the resolvent of (Cl;π) and (Cr ;π). In either case,
Cc = Caδ for some solution δ of πa. Furthermore, there exists a substitution
τ = {x′

1 7→ x1, . . . , x
′
n 7→ xn} such that (C;π) and (Ca;πa)τ are equal modulo

duplicate literal elimination. That is, τ = {x′ 7→ x} for a linear transformation
and τ = ρ−1 for shallow transformation (Definition 9).

Assume Cc = Caτσ for some grounding substitution σ, where τσ is a solution
of πa. Thus, σ is a solution of πaτ , which is equivalent to π. Then, Cc is equal to
Cσ modulo duplicate literal elimination an instance of (C;π), which contradicts
with Cc being a lift-conflict. Hence, Cc = Caδ is not an instance of Caτ and
thus, xiδ 6= x′

iδ for some xi in the domain of τ .
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Because xiδ and x′
iδ are ground, there is a position p where xiδ|p and x′

iδ|p
have different function symbols. We construct the straight term t using the path
from the root to p on xiδ with variables that are fresh in (C, π). Then, we can
use xi and t to segment (C;π) into (C;π ∧ xi 6= t) and (C;π){xi 7→ t} for the
refinement N ⇒Ref NR. Note, that xiδ is a ground instance of t, while x′

iδ is
not.

Let (L′
1, r

′
1) and (L′

2, r
′
2) in (Ca, πa) be literal positions of the variables xi

and x′
i in Ca, and (L1, r1) and (L2, r2) in (C, π) be the parent literal positions

of (L′
1, r

′
1) and (L′

2, r
′
2), respectively. Because (Ca, πa)τ is equal to (C;π) mod-

ulo duplicate literal elimination, L1|r1 = L2|r2 = xi. Let N ⇒Ref N1 be the
refinement where (C;π) is segmented into (C;π ∧ xi 6= t) and (C;π){xi 7→ t}.

By Lemma 8, all [(C;π ∧ xi 6= t), N1] ⇒∗
A [(C′

a;π
′
a), N2]- or [(C;π){xi 7→

t}, N1] ⇒∗
A [(C′

a;π
′
a), N2]-descendant relations correspond to an equal [(C;π), N ] ⇒A

[(C′
a;π

′
a), N2]-descendant relation. Assume there is a [(C;π ∧ xi 6= t), N1] ⇒∗

A

[(C′
a;π

′
a), N2]-descendant relation ⇒1

Cc

that is not distinct from ⇒0
Cc

. Because
L′
1δ ⇒0

Cc

(L1, r) for some literal position (L1, r) in (C;π), which is the parent
literal position of (L1, r) in (C;π∧xi 6= t), L′

1δ ⇒1
Cc

(L1, r). However, this contra-
dicts Lemma 7 because xiδ is not an instance of skt(L1|r1 , π∧xi 6= t) = skt(xi, π∧
xi 6= t). The case that there is a [(C;π){xi 7→ t}, N1] ⇒∗

A [(C′
a;π

′
a), N2]-

descendant relation that is not distinct from ⇒0
Cc

is analogous using the ar-
gument that x′

iδ is not an instance of skt(L2{xi 7→ t}|r2 , π) = skt(t, π). Hence,
there are strictly less distinct descendant relations over Cc and (C;π ∧ x 6= t) or
(C;π){x 7→ t} than there are distinct descendant relations over Cc and (C, π).

If there are no descendant relations, then Cc can no longer appear as a lift
conflict. Otherwise, by the inductive hypothesis, there exists a finite refinement
N ⇒Ref N1 ⇒∗

Ref NR such that for any approximation NR ⇒AP N ′
R and ground

conflicting core N⊥
R of N ′

R, Cc is not a lift-conflict in N⊥
R modulo duplicate literal

elimination. ⊓⊔

Theorem 2 (Soundness and Completeness of FO-AR). Let N be an un-
satisfiable clause set and N ′ its MSL(SDC) approximation: (i) if N is unsatis-
fiable then there exists a conflicting core of N ′ that can be lifted to a refutation
in N , (ii) if N ′ is satisfiable, then N is satisfiable too.

Proof. (Idea) By Lemma 6 and Lemma 9, where the latter can be used to show
that a core of N ′ that cannot be lifted also excludes the respective instance for
unsatisfiability of N .

Let (Ca, πa) be the conflict clause of Cc and (C;π) ∈ N be the parent clause
of (Ca, πa). Cc is a descendant of (C;π) with the corresponding [(C;π), N ] ⇒A

[(Ca;πa), N
′]-descendant relation ⇒0

Cc

. We apply induction on the number of
distinct [(C;π), N ] ⇒∗

A [(C′;π′), N ′′]-descendant relations ⇒Cc

for arbitrary ap-
proximations N ⇒∗

AP N ′′.
Since only the shallow and linear transformations can produce lift-conflicts,

the clause (C;π) is replaced by either a linearized clause (C′;π′) or two shallow
clauses (Cl;π) and (Cr;π). Then, the conflict clause (Ca;πa) of Cc is either
the linearized (C′;π′) or the resolvent of (Cl;π) and (Cr ;π). In either case,
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Cc = Caδ for some solution δ of πa. Furthermore, there exists a substitution
τ = {x′

1 7→ x1, . . . , x
′
n 7→ xn} such that (C;π) and (Ca;πa)τ are equal modulo

duplicate literal elimination. That is, τ = {x′ 7→ x} for a linear transformation
and τ = ρ−1 for shallow transformation (Definition 9).

Assume Cc = Caτσ for some grounding substitution σ, where τσ is a solution
of πa. Thus, σ is a solution of πaτ , which is equivalent to π. Then, Cc is equal to
Cσ modulo duplicate literal elimination an instance of (C;π), which contradicts
with Cc being a lift-conflict. Hence, Cc = Caδ is not an instance of Caτ and
thus, xiδ 6= x′

iδ for some xi in the domain of τ .
Because xiδ and x′

iδ are ground, there is a position p where xiδ|p and x′
iδ|p

have different function symbols. We construct the straight term t using the path
from the root to p on xiδ with variables that are fresh in (C, π). Then, we can
use xi and t to segment (C;π) into (C;π ∧ xi 6= t) and (C;π){xi 7→ t} for the
refinement N ⇒Ref NR. Note, that xiδ is a ground instance of t, while x′

iδ is
not.

Let (L′
1, r

′
1) and (L′

2, r
′
2) in (Ca, πa) be literal positions of the variables xi

and x′
i in Ca, and (L1, r1) and (L2, r2) in (C, π) be the parent literal positions

of (L′
1, r

′
1) and (L′

2, r
′
2), respectively. Because (Ca, πa)τ is equal to (C;π) mod-

ulo duplicate literal elimination, L1|r1 = L2|r2 = xi. Let N ⇒Ref N1 be the
refinement where (C;π) is segmented into (C;π ∧ xi 6= t) and (C;π){xi 7→ t}.

By Lemma 8, all [(C;π ∧ xi 6= t), N1] ⇒∗
A [(C′

a;π
′
a), N2]- or [(C;π){xi 7→

t}, N1] ⇒
∗
A [(C′

a;π
′
a), N2]-descendant relations correspond to an equal [(C;π), N ] ⇒A

[(C′
a;π

′
a), N2]-descendant relation. Assume there is a [(C;π ∧ xi 6= t), N1] ⇒∗

A

[(C′
a;π

′
a), N2]-descendant relation ⇒1

Cc

that is not distinct from ⇒0
Cc

. Because
L′
1δ ⇒0

Cc

(L1, r) for some literal position (L1, r) in (C;π), which is the parent
literal position of (L1, r) in (C;π∧xi 6= t), L′

1δ ⇒1
Cc

(L1, r). However, this contra-
dicts Lemma 7 because xiδ is not an instance of skt(L1|r1 , π∧xi 6= t) = skt(xi, π∧
xi 6= t). The case that there is a [(C;π){xi 7→ t}, N1] ⇒∗

A [(C′
a;π

′
a), N2]-

descendant relation that is not distinct from ⇒0
Cc

is analogous using the ar-
gument that x′

iδ is not an instance of skt(L2{xi 7→ t}|r2 , π) = skt(t, π). Hence,
there are strictly less distinct descendant relations over Cc and (C;π ∧ x 6= t) or
(C;π){x 7→ t} than there are distinct descendant relations over Cc and (C, π).

If there are no descendant relations, then Cc can no longer appear as a lift
conflict. Otherwise, by the inductive hypothesis, there exists a finite refinement
N ⇒Ref N1 ⇒∗

Ref NR such that for any approximation NR ⇒AP N ′
R and ground

conflicting core N⊥
R of N ′

R, Cc is not a lift-conflict in N⊥
R modulo duplicate literal

elimination. ⊓⊔

Actually, Lemma 9 can be used to define a fair strategy on refutations in N ′

in order to receive also a dynamically complete FO-AR calculus, following the
ideas presented in [18].

In Lemma 9, we segment the conflict clause’s immediate parent clause. If
the lifting later successfully passes this point, the refinement is lost and will
be possibly repeated. Instead, we can refine any ancestor of the conflict clause
as long as it contains the ancestor of the variable used in the refinement. By
Lemma 7-(iii), such an ancestor will contain the ancestor variable at the same
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positions. If we refine the ancestor in the original clause set, the refinement is
permanent because lifting the refinement steps always succeeds. Only variables
introduced by shallow transformation cannot be traced to the original clause
set. However, these shallow variables are already linear and the partitioning in
the shallow transformation can be chosen such that they are not shared vari-
ables. Assume a shallow, shared variable y, that is used to extract the term t,
in the shallow transformation of Γ → E[s]p, ∆ into S(x), Γl → E[p/x], ∆l and
Γr → S(s), ∆r. Since ∆l ∪̇ ∆r = ∆ is a partitioning, y can only appear in either
E[p/x], ∆l or S(s), ∆r. If y ∈ vars(E[p/x], ∆l) we instantiate Γr with {y 7→ t}
and Γl, otherwise. Now, y is no longer a shared variable.

The refinement Lemmas only guarantee a refinement for a given ground con-
flicting core. In practice, however, conflicting cores contain free variables. We can
always generate a ground conflicting core by instantiating the free variables with
ground terms. However, if we only exclude a single ground case via refinement,
next time the new conflicting core will likely have overlaps with the previous
one. Instead, we can often remove all ground instances of a given conflict clause
at once.

The simplest case is when unifying the conflict clause with the original clause
fails because their instantiations differ at some equivalent positions. For example,
consider N = {P (x, x);P (f(x, a), f(y, b)) →}. N is satisfiable but the linear
transformation is unsatisfiable with conflict clause P (f(x, a), f(y, b)) which is not
unifiable with P (x, x), because the two terms f(x, a) and f(y, b) have different
constants at the second argument. A refinement of P (x, x) is

(P (x, x) ; x 6= f(v, a))
(P (f(x, a), f(x, a)) ;⊤)

P (f(x, a), f(y, b)) shares no ground instances with the approximations of the
refined clauses.

Next, assume that again unification fails due to structural difference, but
this time the differences lie at different positions. For example, consider N =
{P (x, x);P (f(a, b), f(x, x)) →}. N is satisfiable but the linear transformation of
N is unsatisfiable with conflict clause P (f(a, b), f(x, x)) which is not unifiable
with P (x, x) because in f(a, b) the first an second argument are different but
the same in f(x, x). A refinement of P (x, x) is

(P (x, x) ; x 6= f(a, v))
(P (f(a, x), f(a, x))) ; x 6= a)
(P (f(a, a), f(a, a))) ;⊤)

P (f(a, b), f(x, x)) shares no ground instances with the approximations of the
refined clauses.

It is also possible that the conflict clause and original clause are unifiable
by themselves, but the resulting constraint has no solutions. For example, con-
sider N = {P (x, x); (P (x, y) →;x 6= a ∧ x 6= b ∧ y 6= c ∧ y 6= d)} with signature
Σ = {a, b, c, d}. N is satisfiable but the linear transformation of N is unsatisfi-
able with conflict clause (→ P (x, y);x 6= a∧x 6= b∧y 6= c∧y 6= d). While P (x, x)
and P (x, y) are unifiable, the resulting constraint x 6= a ∧ x 6= b ∧ x 6= c ∧ x 6= d
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has no solutions. A refinement of P (x, x) is
(P (x, x) ; x 6= a ∧ x 6= b)
(P (a, a) ;⊤)
(P (b, b) ;⊤)

(P (x, y);x 6= a ∧ x 6= b ∧ y 6= c ∧ y 6= d) shares no ground instances with the
approximations of the refined clauses.

Lastly, we should mention that there are cases where the refinement process
does not terminate. For example, consider the clause setN = {P (x, x);P (y, g(y)) →}.
N is satisfiable but the linear transformation of N is unsatisfiable with conflict
clause P (y, g(y)), which is not unifiable with P (x, x). A refinement of P (x, x)
based on the ground instance P (a, g(a)) is

(P (x, x) ; x 6= g(v))
(P (g(x), g(x)) ;⊤)

While P (y, g(y)) is not an instance of the refined approximation, it shares ground
instances with P (g(x), g(x′)). The new conflict clause is P (g(y), g(g(y))) and the
refinement will continue to enumerate all P (gi(x), gi(x)) instances of P (x, x)
without ever reaching a satisfiable approximation. Satisfiability of first-order
clause sets is undecidable, so termination cannot be expected by any calculus,
in general.

5 Experiments

In the following we discuss several first-order clause classes for which FO-AR
implemented in SPASS-AR immediately decides satisfiability but superposition
and instantiation-based methods fail. We argue both according to the respec-
tive calculi and state-of-the-art implementations, in particular SPASS 3.9 [22],
Vampire 4.1 [11,20], for ordered-resolution/superposition, iProver 2.5 [9] an im-
plementation of Inst-Gen [10], and Darwin v1.4.5 [4] an implementation of the
model evolution calculus [5]. All experiments were run on a 64-Bit Linux com-
puter (Xeon(R) E5-2680, 2.70GHz, 256GB main memory). For Vampire and
Darwin we chose the CASC-sat and CASC settings, respectively. For iProver we
set the schedule to “sat” and SPASS, SPASS-AR were used in default mode.
Please note that Vampire and iProver are portfolio solvers including implemen-
tations of several different calculi including superposition (ordered resolution),
instance generation, and finite model finding. SPASS, SPASS-AR, and Darwin
only implement superposition, FO-AR, and model evolution, respectively.

For the first example
P (x, y) → P (x, z), P (z, y); P (a, a)

and second example,
Q(x, x); Q(v, w), P (x, y) → P (x, v), P (w, y); P (a, a)

the superposition calculus produces independently of the selection strategy and
ordering an infinite number of clauses of form

→P (a, z1), P (z1, z2), . . . , P (zn, a).
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Using linear approximation, however, FO-AR replaces P (x, y) → P (x, z), P (z, y)
and → Q(x, x) with P (x, y) → P (x, z), P (z′, y) and → Q(x, x′), respectively.
Consequently, ordered resolution derives → P (a, z1), P (z2, a) which subsumes
any further inferences → P (a, z1), P (z2, z3), P (z4, a). Hence, saturation of the
approximation terminates immediately. Both examples belong to the Bernays-
Schönfinkel fragment, so model evolution (Darwin) and Inst-Gen (iProver) can
decide them as well. Note that the concrete behavior of superposition is not lim-
ited to the above examples but potentially occurs whenever there are variable
chains in clauses.

On the third problem
P (x, y) → P (g(x), z); P (a, a)

superposition derives all clauses of the form → P (g(. . . g(a) . . .), z). With a shal-
low approximation of P (x, y) → P (g(x), z) into S(v) → P (v, z) and P (x, y) →
S(g(x)), FO-AR (SPASS-AR) terminates after deriving → S(g(a)) and S(x) →
S(g(x)). Again, model evolution (Darwin) and Inst-Gen (iProver) can also solve
this example.

The next example
P (a); P (f(a)) →; P (f(f(x))) → P (x); P (x) → P (f(f(x)))

is already saturated under superposition. For FO-AR, the clause P (x) → P (f(f(x)))
is replaced by S(x) → P (f(x)) and P (x) → S(f(x)). Then ordered resolution
terminates after inferring S(a) → and S(f(x)) → P (x).

The Inst-Gen and model evolution calculi, however, fail. In either, a satisfying
model is represented by a finite set of literals, i.e, a model of the propositional
approximation for Inst-Gen and the trail of literals in case of model evolution.
Therefore, there necessarily exists a literal P (fn(x)) or ¬P (fn(x)) with a maxi-
mal n in these models. This contradicts the actual model where either P (fn(a))
or P (fn(f(a))) is true. However, iProver can solve this problem using its built-in
ordered resolution solver whereas Darwin does not terminate on this problem.

Lastly consider an example of the form
f(x) ≈ x →; f(f(x)) ≈ x →; . . . ; fn(x) ≈ x →

which is trivially satisfiable, e.g., saturated by superposition, but any model has
at least n+1 domain elements. Therefore, adding these clauses to any satisfiable
clause set containing f forces calculi that explicitly consider finite models to
consider at least n + 1 elements. The performance of final model finders [15]
typically degrades in the number of different domain elements to be considered.

Combining each of these examples into one problem is then solvable by nei-
ther superposition, Inst-Gen, or model evolution and not practically solvable
with increasing n via testing finite models. For example, we tested

P (x, y) → P (x, z), P (z, y); P (a, a); P (f(a), y) →;
P (f(f(x)), y) → P (x, y); P (x, y) → P (f(f(x)), y);

f(x) ≈ x →; , . . . , fn(x) ≈ x →;
for n = 20 against SPASS, Vampire, iProver, and Darwin for more than one
hour each without success. Only SPASS-AR solved it in less than one second.

For iProver we added an artificial positive equation b ≈ c. For otherwise,
iProver throws away all disequations while preprocessing. This is a satisfiabil-
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ity preserving operation, however, the afterwards found (finite) models are not
models of the above clause set due to the collapsing of ground terms.

6 Conclusion

The previous section showed FO-AR is superior to superposition, instantiation-
based methods on certain classes of clause sets. Of course, there are also classes
of clause sets where superposition and instantiation-based methods are superior
to FO-AR, e.g., for unsatisfiable clause sets where the structure of the clause set
forces FO-AR to enumerate failing ground instances due to the approximation
in a bottom-up way.

Our prototypical implementation SPASS-AR cannot compete with systems
such as iProver or Vampire on the respective CASC categories of the TPTP [17].
This is already due to the fact that they are all meanwhile portfolio solvers. For
example, iProver contains an implementation of ordered resolution and Vampire
an implementation of Inst-Gen. Our results, Section 5, however, show that these
systems may benefit from FO-AR by adding it to their portfolio.

The DEXPTIME-completeness result for MSLH strongly suggest that both
the MSLH and also our MSL(SDC) fragment have the finite model property.
However, we are not aware of any proof. If MSL(DSC) has the finite model
property, the finite model finding approaches are complete on MSL(SDC). The
models generated by FO-AR and superposition are typically infinite. It remains
an open problem, even for fragments enjoying the finite model property, e.g., the
first-order monadic fragment, to design a calculus that combines explicit finite
model finding with a structural representation of infinite models. For classes
that have no finite models this problem seems to become even more difficult. To
the best of our knowledge, SPASS is currently the only prover that can show
satisfiability of the clauses R(x, x) →; R(x, y), R(y, z) → R(x, z); R(x, g(x)) due
to an implementation of chaining [2,16]. Apart from the superposition calculus,
it is unknown to us how the specific inferences for transitivity can be combined
with any of the other discussed calculi, including the abstraction refinement
calculus introduced in this paper.

Finally, there are not many results on calculi that operate with respect to
models containing positive equations. Even for fragments that are decidable with
equality, such as the Bernays-Schoenfinkel-Ramsey fragment or the monadic
fragment with equality, there seem currently no convincing suggestions com-
pared to the great amount of techniques for these fragments without equality.
Adding positive equations to MSL(SDC) while keeping decidability is, to the
best of our current knowledge, only possible for at most linear, shallow equations
f(x1, . . . , xn) ≈ h(y1, . . . , yn) [8]. However, approximation into such equations
from an equational theory with nested term occurrences typically results in an
almost trivial equational theory. So this does not seem to be a very promising
research direction.
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