
The University of Manchester Research

Efficient Verified (UN)SAT Certificate Checking

DOI:
10.1007/978-3-319-63046-5_15

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Lammich, P. (2017). Efficient Verified (UN)SAT Certificate Checking. In International Conference on Automated
Deduction (pp. 237-254). (Automated Deduction – CADE 26; Vol. 10395). https://doi.org/10.1007/978-3-319-
63046-5_15

Published in:
International Conference on Automated Deduction

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Apr. 2024

https://doi.org/10.1007/978-3-319-63046-5_15
https://research.manchester.ac.uk/en/publications/751d0e95-6538-4012-a204-52d283d4abdc
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-63046-5_15


Efficient Verified (UN)SAT Certificate Checking

Peter Lammich

Technische Universität München, lammich@in.tum.de

Abstract. We present an efficient formally verified checker for satisfia-
bility and unsatisfiability certificates for Boolean formulas in conjunctive
normal form. It utilizes a two phase approach: Starting from a DRAT cer-
tificate, the unverified generator computes an enriched certificate, which
is checked against the original formula by the verified checker.

Using the Isabelle/HOL Refinement Framework, we verify the actual
implementation of the checker, specifying the semantics of the formula
down to the integer sequence that represents it.

On a realistic benchmark suite drawn from the 2016 SAT competition,
our approach is more than two times faster than the unverified standard
tool drat-trim. Additionally, we implemented a multi-threaded version of
the generator, which further reduces the runtime.

1 Introduction

Modern SAT solvers are highly optimized and use complex algorithms and
heuristics. This makes them prone to bugs. Given that SAT solvers are used in
software and hardware verification, a single bug in a SAT solver may invalidate
the verification of many systems.

One measure to increase the trust in SAT solvers is to make them output a
certificate, which is used to check the result of the solver by a simpler algorithm.
Most SAT solvers support the output of a satisfying valuation of the variables as
an easily checkable certificate for satisfiability. Certificates for unsatisfiability are
more complicated, and different formats have been proposed (e. g. [39,41,42]).
Since 2013, the SAT competition [35] requires solvers to output unsat certificates.
Since 2014, only certificates in the DRAT format [42] are accepted [36].

The standard tool to check DRAT certificates is drat-trim [10, 42]. It is a
highly optimized C program with many features, including forward and backward
checking mode, a satisfiability certificate checking mode, and a feature to output
reduced (trimmed) certificates. However, the high degree of optimization and the
wealth of features come at the price of code complexity, increasing the likelihood
of bugs. And indeed, during our formalization of the RAT property, we realized
that drat-trim was missing a crucial check, thus accepting (maliciously engineered)
unsat certificates for satisfiable formulas. This bug has been confirmed by the
authors, and is now fixed. Moreover, we discovered several numeric and buffer
overflow issues in the parser [11], which could lead to misinterpretation of the



formula. Thus, although being less complex than SAT solvers, efficient DRAT
checkers are still complex enough to easily overlook bugs.1

One method to eliminate bugs from software is to conduct a machine-checked
correctness proof. A common approach is to prove correct a specification in the
logic of an interactive theorem prover, and then generate executable code from
the specification. Here, code generation is merely a syntax transformation from
the executable fragment of the theorem prover’s logic to the target language.
Following the LCF approach [14], modern theorem provers like Isabelle [34] and
Coq [3] are explicitly designed to maximize their trustworthiness. Unfortunately,
the algorithms and low-level optimizations required for efficient unsat certificate
checking are hard to verify and existing approaches (e. g. [8, 41]) do not scale to
large problems.

While working on the verification of an efficient DRAT checker, the author
learned about GRIT, proposed by Cruz-Filipe et al. [7]: They use a modified
version of drat-trim to generate an enriched certificate from the original DRAT
certificate. The crucial idea is to record the required unit propagations, such that
the checker of the enriched certificate only needs to implement a check whether
a clause is unit, instead of a fully fledged unit propagation algorithm.

Cruz-Filipe et al. formalize a checker for their enriched certificates in the Coq
theorem prover [3], and generate OCaml code from the formalization. However,
their current approach still has some deficits: GRIT only supports the less powerful
DRUP fragment [41] of DRAT, making it unsuitable for recent SAT solvers that
output full DRAT (e. g. CryptoMiniSat, Riss6 [37]). Also, their checker does not
consider the original formula, but assumes that the certificate correctly mirrors
the formula. Moreover, they use unverified code to parse the certificate into the
internal data structures of the checker. Finally, their verified checker is quite slow:
Checking a certificate requires roughly the same time as generating it, which
effectively doubles the verification time. However, an unverified implementation
of their checker in C is two orders of magnitude faster.

In this paper, we present enriched certificates for full DRAT, along with
a checker whose correctness is formally verified down to the integer sequence
representing the formula. The simple unverified parser that reads a formula into
an integer array is written in Standard ML [30], which guarantees that numeric
and buffer overflows will not go unnoticed.

We use stepwise refinement techniques to obtain an efficient verified checker,
and implement aggressive optimizations in the generator. As a result, our tool
chain (generation plus checking) is more than two times faster than drat-trim,
with the additional benefit of providing strong formal correctness guarantees.
Another distinguishing is a multi-threaded mode for the generator, which allows
us to trade hardware resources for additional speedup: With 8 threads, our tool
chain verifies a DRAT-certificate seven times (on average) faster than drat-trim.

1 Unfortunately, the available version history of drat-trim [9] only dates back to October
2016. We can only speculate whether the discovered bugs were present in the versions
used for the 2014 and 2016 SAT competitions.

2



Building on the technology of our verified unsat certificate checker, we also
provide a verified sat certificate checker, obtaining a complete, formally verified,
and fast SAT solver certification tool chain. Our tools, formalizations, and
benchmark results are available online [20].

Independently to us, Cruz-Filipe et al. also extended their work to DRAT [6].
Their certificate generator is still based on drat-trim, and first benchmarks
indicate that our approach might be significantly faster.2

The rest of this paper is organized as follows: After briefly recalling the
theory of DRAT certificates (§2), we introduce our enriched certificate format
(§3). We then give a short overview of the Isabelle Refinement Framework (§4)
and describe its application to verifying our certificate checker (§5). The paper
ends with a brief description of our certificate generator (§6) and a report on the
experimental evaluation of our tools (§7).

2 Unsatisfiability Certificates

We briefly recall the theory of DRAT unsatisfiability certificates. Let V be a
set of variable names. The set of literals is defined as L := V ∪̇{¬v | v ∈ V }.
We identify v and ¬¬v. Let F = C1 ∧ . . . ∧ Cn for Ci ∈ 2L be a formula in
conjunctive normal form (CNF). F is satisfied by an assignment A : V ⇒ bool
iff instantiating the variables in F with A yields a true (ground) formula. We
call F satisfiable iff there exists an assignment that satisfies F .

A clause C is called a tautology iff there is a variable v with {v,¬v} ⊆ C.
Removing a tautology from a formula yields an equivalent formula. In the following
we assume that formulas do not contain tautologies. The empty clause is called a
conflict. A formula that contains a conflict is unsatisfiable. A singleton clause
{l} ∈ F is called a unit clause. Removing all clauses that contain l, and all literals
¬l from F yields an equisatisfiable formula. Repeating this exhaustively for all
unit clauses is called unit propagation. When identifying formulas that contain a
conflict, unit propagation is strongly normalizing. We name the result of unit
propagation F u, defining F u = {∅} if unit propagation yields a conflict.

A DRAT certificate χ = χ1 . . . χn with χi ∈ 2L ∪̇ {dC | C ∈ 2L} is a list of
clause addition and deletion items. The effect of a (prefix of) a DRAT certificate
is to add/delete the specified clauses to/from the original formula F0, and apply
unit propagation:

eff(ε) = (F0)u eff(χC) = (eff(χ) ∧ C)u eff(χdC) = eff(χ) \ C

where F \ C removes one occurrence of clause C from F . We call the clause
addition items of a DRAT certificate lemmas.

A DRAT certificate χ = χ1 . . . χn is valid iff eff(χ) = {∅} and each lemma
has the RAT property wrt. the effect of the previous items:

valid(χ1 . . . χn) := ∀1 ≤ i ≤ n. χi ∈ 2L =⇒ RAT(eff(χ1 . . . χi−1), χi)

2 However, we expect that most of our optimizations can be transferred to their tools.

3



where a clause C has the RAT (resolution asymmetric tautology) property wrt.
formula F (we write RAT(F,C)) iff either C is empty and F u = {∅}, or if there
is a pivot literal l ∈ C, such that for all RAT candidates D ∈ F with ¬l ∈ D, we
have (F ∧ ¬(C ∪D \ {¬l}))u = {∅}. Adding a lemma with the RAT property
to a formula preserves satisfiability, and so do unit propagation and deletion of
clauses. Thus, existence of a valid DRAT certificate implies unsatisfiability of
the original formula.

A strictly weaker property than RAT is RUP (reverse unit propagation): A
lemma C has the RUP property wrt. formula F iff (F ∧ ¬C)u = {∅}. Adding a
lemma with the RUP property yields an equivalent formula. The predecessor of
DRAT is DRUP [18], which admits only lemmas with the RUP property.

Checking a lemma for RAT is much more expensive than checking for RUP,
as the clause database must be searched for candidate clauses, performing a unit
propagation for each of them. Thus, practical DRAT certificate checkers first
perform a RUP check on a lemma, and only if this fails they resort to a full RAT
check. Exploiting that (F ∧ ¬(C ∪D))u is equivalent to ((F ∧ ¬C)u ∧ ¬D)u, the
result of the initial unit propagation from the RUP check can even be reused.
Another important optimization is backward checking [13,18]: The lemmas are
processed in reverse order, marking the lemmas that are actually needed in unit
propagations during RUP and RAT checks. Lemmas that remain unmarked
need not be processed at all. To further reduce the number of marked lemmas,
core-first unit propagation [42] prefers marked unit clauses over unmarked ones.

In practice, DRAT certificate checkers spend most time on unit propagation3,
for which highly optimized implementations of rather complex algorithms are
used (e. g. drat-trim uses a two watched literals algorithm [32]). Unfortunately,
verifying such highly optimized code in a proof assistant is a major endeavor. Thus,
a crucial idea is to implement an unverified tool that enriches the certificate with
additional information that can be used for simpler and more efficient verification.
For DRUP, the GRIT format has been proposed recently [7]. It stores, for each
lemma, a list of unit clauses in the order they become unit, followed by a conflict
clause. Thus, unit propagation is replaced by simply checking whether a clause
is unit or conflict. A modified version of drat-trim is used to generate a GRIT
certificate from the original DRAT certificate.

3 The GRAT Format

The first contribution of this paper is to extend the ideas of GRIT from DRUP to
DRAT. To this end, we define the GRAT format. Like for GRIT, each clause is
identified by a unique positive ID. The clauses of the original formula implicitly
get the IDs 1 . . . N . The lemma IDs explicitly occur in the certificate, and must
be strictly ascending.

For memory efficiency reasons, we store the certificate in two parts: The lemma
file contains the lemmas, and is stored in DIMACS format. During certificate

3 Our profiling data indicates that, depending on the problem, up to 93% of the time
is spent for unit propagation.

4



checking, this part is entirely loaded into memory. The proof file contains the
hints and instructions for the certificate checker. It is not completely loaded into
memory, but only streamed during checking.

The proof file is a binary file, containing a sequence of 32 bit signed integers
stored in 2’s complement little endian format. The sequence is reversed (or the
file is streamed backwards), and then interpreted according to the following
grammar:

proof ::= rat-counts item* conflict

literal ::= int32 != 0

id ::= int32 > 0

count ::= int32 > 0

rat-counts ::= 6 (literal count)* 0

item ::= unit-prop | deletion | rup-lemma | rat-lemma

unit-prop ::= 1 id* 0

deletion ::= 2 id* 0

rup-lemma ::= 3 id id* 0 id

rat-lemma ::= 4 literal id id* 0 cand-prf* 0

cand-prf ::= id id* 0 id

conflict ::= 5 id

The checker maintains a clause map that maps IDs to clauses, and a partial
assignment that maps variables to true, false, or undecided. Partial assignments
are extended to literals in the natural way. Initially, the clause map contains the
clauses of the original formula, and the partial assignment maps all variables to
undecided. Then, the checker iterates over the items of the proof, processing each
item as follows:

rat-counts This item contains a list of pairs of literals and the number how
often they are used in RAT proofs. This map allows the checker to maintain
lists of RAT candidates for the relevant literals, instead of gathering the
possible RAT candidates by iterating over the whole clause database for each
RAT proof, which is expensive. Literals that are not used in RAT proofs at
all do not occur in the list. This item is the first item of the proof.

unit-prop For each listed clause ID, the corresponding clause is checked to be
unit, and the unit literal is assigned to true. Here, a clause is unit if the unit
literal is undecided, and all other literals are assigned to false.

deletion The specified IDs are removed from the clause map.
rup-lemma The item specifies the ID for the new lemma, which is the next

unprocessed lemma from the lemma file, a list of unit clause IDs, and a
conflict clause ID. First, the literals of the lemma are assigned to false. The
lemma must not be blocked, i. e. none of its literals may be already assigned
to true4. Note that assigning the literals of a clause C to false is equivalent to
adding the conjunct ¬C to the formula. Second, the unit clauses are checked
and the corresponding unit literals are assigned to true. Third, it is checked
that the conflict clause ID actually identifies a conflict clause, i. e. that all its

4 Blocked lemmas are useless for unsat proofs, such that there is no point to include
them into the certificate.

5



literals are assigned to false. Finally, the lemma is added to the clause-map
and the assignment is rolled back to the state before checking of the item
started.

rat-lemma The item specifies a pivot literal l, an ID for the lemma, an initial
list of unit clause IDs, and a list of candidate proofs. First, as for rup-lemma,
the literals of the lemma are assigned to false and the initial unit propagations
are performed. Second, it is checked that the provided RAT candidates are
exhaustive, and the corresponding cand-prf items are processed: A cand-prf

item consists of the ID of the candidate clause D, a list of unit clause IDs,
and a conflict clause ID. To check a candidate proof, the literals of D \ {¬l}
are assigned to false, the listed unit propagations are performed, and the
conflict clause is checked to be actually conflict. Afterwards, the assignment
is rolled back to the state before checking the candidate proof. Third, when
all candidate proofs have been checked, the lemma is added to the clause
map and the assignment is rolled back.
To simplify certificate generation in backward mode, we allow candidate
proofs referring to arbitrary, even invalid, clause IDs. Those proofs must be
ignored by the checker.

conflict This is the last item of the certificate. It specifies the ID of the root
conflict clause, i. e. the conflict found by unit propagation after adding the
last lemma of the certificate. It is checked that the ID actually refers to a
conflict clause.

4 Program Verification with Isabelle/HOL

Isabelle/HOL [34] is an interactive theorem prover for higher order logic. Its
design features the LCF approach [14], where a small logical inference kernel is
the only code that can produce theorems. Bugs in the non-kernel part may result
in failure to prove a theorem, but never in a false proposition being accepted
as a theorem. Isabelle/HOL includes a code generator [15–17] that translates
the executable fragment of HOL to various functional programming languages,
currently OCaml, Standard ML, Scala, and Haskell. Via Imperative HOL [5], the
code generator also supports imperative code, modeled by a heap monad inside
the logic.

A common problem when verifying efficient implementations of algorithms
is that implementation details tend to obfuscate the proof and increase its
complexity. Hence, efficiency of the implementation is often traded for simplicity
of the proof. A well-known approach to this problem is stepwise refinement [1,
2, 43], where an abstract version of the algorithm is refined towards an efficient
implementation in multiple correctness preserving steps. The abstract version
focuses on the algorithmic ideas, leaving open the exact implementation, while the
refinement steps focus on more and more concrete implementation aspects. This
modularizes the correctness proof, and makes verification of complex algorithms
manageable in the first place.

For Isabelle/HOL, the Isabelle Refinement Framework [22,24,25,29] provides
a powerful stepwise refinement tool chain, featuring a nondeterministic shallowly

6



embedded programming language [29], a library of efficient collection data struc-
tures and generic algorithms [24–26], and convenience tools to simplify canonical
refinement steps [22,24]. It has been used for various software verification projects
(e. g. [23, 27,28]), including a fully fledged verified LTL model checker [4, 12].

5 A Verified GRAT Certificate Checker

We give an overview of our Isabelle/HOL formalization of a GRAT certificate
checker (cf. Section 3). We use the stepwise refinement techniques provided
by the Isabelle Refinement Framework to verify an efficient implementation at
manageable proof complexity.

Note that we display only slightly edited Isabelle source text, and try to
explain its syntax as far as needed to get a basic understanding. Isabelle uses a
mixture of common mathematical notations and Standard ML [30] syntax (e. g.
there are algebraic data types, function application is written as f x, functions
are usually curried, e. g. f x y, and abstraction is written as λx y. t).

5.1 Syntax and Semantics of Formulas

The following Isabelle text specifies the abstract syntax of CNF formulas:

datatype ′a literal = Pos ′a | Neg ′a

type synonym ′a clause = ′a literal set

type synonym ′a cnf = ′a clause set

We abstract over the type ′a of variables, use an algebraic data type to specify
positive and negative literals, and model clauses as sets of literals, and a CNF
formula as set of clauses.

A partial assignment has type ′a ⇒ bool option, which is abbreviated as
′a ⇀ bool in Isabelle. It maps a variable to None for undecided, or to Some True

or Some False. We specify the semantics of literals and clauses as follows:

primrec sem_lit′ :: ′a literal ⇒ (′a⇀bool) ⇀ bool where
sem_lit′ (Pos x) A = A x | sem_lit′ (Neg x) A = map_option Not (A x)

definition sem_clause′ C A ≡
if (∃l∈C. sem_lit′ l A = Some True) then Some True

else if (∀l∈C. sem_lit′ l A = Some False) then Some False

else None

Note that we omitted the type specification for sem_clause′, in which case
Isabelle automatically infers the most general type.

For a fixed formula F , we define the models induced by a partial assignment to
be all total extensions that satisfy the formula. We define two partial assignments
to be equivalent if they induce the same models.

5.2 Unit Propagation and RAT

We define a predicate to state that, wrt. a partial assignment A, a clause C is
unit, with unit literal l:

7



definition is_unit_lit A C l

≡ l∈C ∧ sem_lit′ l A = None ∧ sem_clause′ (C-{l}) A = Some False

Assigning a unit literal to true yields an equivalent assignment:

lemma unit_propagation:

assumes C∈F and is_unit_lit A C l

shows equiv′ F A (assign_lit A l)

In Isabelle, all variables that occur free in a lemma (here: C,F,A,l) are implicitly
universally quantified.

Having formalized the basic concepts, we can show the essential lemma that
justifies RAT (cf. Section 2):

lemma abs_rat_criterion:

assumes l∈C and sem_lit′ l A 6= Some False

assumes ∀D∈F. neg_lit l ∈ D =⇒ implied_clause F A (C∪(D-{neg_lit l}))
shows redundant_clause F A C

Where a clause is implied if it can be added to the formula without changing the
models, and it is redundant if adding the clause preserves satisfiability (but not
necessarily the models).

5.3 Abstract Checker Algorithm

Having formalized the basic theory of CNF formulas wrt. partial assignments,
we can specify an abstract version of the certificate checker algorithm. Our
specifications live in an exception monad stacked onto the nondeterminism
monad of the Isabelle Refinement Framework. Exceptions are used to indicate
failure of the checker, and are never caught. We only prove soundness of our
checker, i. e. that it does not accept satisfiable formulas. Our checker actually
accepted all certificates in our benchmark set (cf. Section 7), yielding an empirical
argument that it is sufficiently complete.

At the abstract level, we model the proof as a stream of integers. On this,
we define functions parse_id and parse_lit that fetch an element from the
stream, try to interpret it as ID or literal, and fail if this is not possible. The
state of the checker is a tuple (last_id,CM,A). To check that the lemma IDs
are strictly ascending, last_id stores the ID of the last processed lemma. The
clause map CM contains the current formula as a mapping from IDs to clauses,
and also maintains the RAT candidate lists. Finally, A is the current assignment.

As first example, we present the abstract algorithm that is invoked after
reading the item-type of a rup-lemma item (cf. Section 3), i. e. we expect a
sequence of the form id id* "0" id.

1 check_rup_proof ≡ λ(last_id,CM,A0) it prf. do {
2 (i,prf) ← parse_id prf;

3 check (i>last_id);
4 (C,A′,it) ← parse_check_blocked A0 it;

5 (A′,prf) ← apply_units CM A′ prf;

6 (confl_id,prf) ← parse_id prf;

8



7 confl ← resolve_id CM confl_id;

8 check (sem_clause′ confl A′ = Some False);
9 CM ← add_clause i C CM;

10 return ((i,CM,A0),it,prf)
11 }

We use do-notation to conveniently express monad operations. First, the lemma
ID is pulled from the proof stream (line 2) and checked to be greater than
last_id (3). The check function throws an exception unless the first argument
evaluates to true. Next, parse_check_blocked (4) parses the next lemma from
the lemma file, checks that it is not blocked, and assigns its literals to false. Then,
the function apply_units (5) pulls the unit clause IDs from the proof stream,
checks that they are actually unit, and assigns the unit literals to true. Finally,
we pull the ID of the conflict clause (6), obtain the corresponding clause from
the clause map (7), check that it is actually conflict (8), and add the lemma to
the clause map (9). We return (10) the lemma ID as new last ID, the new clause
map, and the old assignment, as the changes to the assignment are local and
must be backtracked before checking the next clause. Additionally, we return
the new position in the lemma file (it) and in the proof stream (prf). Note
that this abstract specification contains non-algorithmic parts: For example,
in line 8, we check for the semantics of the conflict clause to be Some False,
without specifying how to implement this check. We prove the following lemma
for check_rup_proof:

lemma check_rup_proof_correct:

assumes invar (last_id,CM,A)
shows check_rup_proof (last_id,CM,A) it prf

≤ spec True (λ((last_id′,CM′,A′), it′, prf′).
invar (last_id′,CM′,A′) ∧ (sat′ (cm_F CM) A =⇒ sat′ (cm_F CM′) A′))

Here, spec Φ Ψ describes the postcondition Φ in case of an exception, and the
postcondition Ψ for a normal result. As we only prove soundness of the checker,
we use True as postcondition for exceptions. For normal results, we show that
an invariant on the state is preserved, and that the resulting formula and partial
assignment is satisfiable if the original formula and partial assignment was.

Finally, we present the specification of the checker’s main function:

1 definition verify_unsat F_begin F_end it prf ≡ do {
2 let A = λ_. None;

3 (CM,prf) ← init_rat_counts prf;

4 (CM,last_id) ← read_cnf F_end F_begin CM;

5 let s = (last_id,CM,A);
6 (so,_) ← while (λ(so,it). so 6=None) (λ(so,it).
7 do {
8 let (s,it,prf) = the so;

9 check_item s it

10 }) (Some (s,it,prf));
11 }

9



The parameters F_begin and F_end indicate the range that hold the representa-
tion of the formula, it points to the first lemma, and prf is the proof stream.
After initializing the assignment (line 2, all variables undecided), the RAT literal
counts are read (3), and the formula is parsed into the clause map (4). Then, the
function iterates over the proof stream and checks each item (6–10), until the
formula has been certified. (or an exception terminates the program) Here, the
checker’s state is wrapped into an option type, where None indicates that the
formula has been certified. Correctness of the abstract checker is expressed by
the following lemma:

lemma verify_unsat_correct:

assumes seg F_begin lst F_end

shows verify_unsat F_begin F_end it prf

≤ spec True (λ_. F_invar lst ∧ ¬sat (F_α lst))

Intuitively, if the range from F_begin to F_end is valid and contains the sequence
lst, and if verify_unsat returns a normal value, then lst represents a valid
CNF formula (F_invar lst) that is unsatisfiable (¬sat (F_α lst)). Note that
the correctness statement does not depend on the lemmas (it) or the proof stream
(prf). This will later allow us to use an optimized (unverified) implementation
for streaming the proof, without impairing the formal correctness statement.

5.4 Refinement towards an Efficient Implementation

The abstract checker algorithm that we described so far contains non-algorithmic
parts and uses abstract types like sets. Even if we could extract executable code,
its performance would be poor: For example, we model assignments as functions.
Translating this directly to a functional language results in assignments to be
stored as long chains of function updates with worst-case linear time lookup.

We now show how to refine the abstract checker to an efficient algorithm,
replacing the specifications by actual algorithms, and the abstract types by
efficient data structures. The refinement is done in multiple steps, where each step
focuses on different aspects of the implementation. Formally, we use a refinement
relation that relates objects of the refined type (e. g. a hash table) to objects
of the abstract type (e. g. a set). In our framework, refinement is expressed by
propositions of the form (c,a)∈R =⇒ g c ≤⇓S (f a): if the concrete argument
c is related to the abstract argument a by R, then the result of the concrete
algorithm g c is related to the result of the abstract algorithm f a by S. Moreover,
if the concrete algorithm throws an exception, the abstract algorithm must also
throw an exception.

In the first refinement step, we record the set of variables assigned during
checking a lemma, and use this set to reconstruct the original assignment from
the current assignment after the check. This saves us from copying the whole
original assignment before each check. Formally, we define an A0-backtrackable
assignment to be an assignment A together with a set of assigned variables T ,
such that unassigning the variables in T yields A0. The relation bt_assign_rel

relates A0-backtrackable assignments to plain assignments:

10



bt_assign_rel A0 ≡ { ((A,T),A) | A T. T ⊆ dom A ∧ A0 = A�(-T) }

We define apply_units_bt, which operates on A0-backtrackable assignments.
If applied to assignments (A′,T) and A related by bt_assign_rel A0, and to
the same proof stream position prf, then the results of apply_units_bt and
apply_units are related by bt_assign_rel A0 × Id, i. e. the returned assign-
ments are again related by bt_assign_rel A0, and the new proof stream positions
are the same (related by Id):

lemma apply_units_bt_refine: assumes ((A′,T),A)∈bt_assign_rel A0
shows apply_units_bt CM A′ T prf

≤ ⇓(bt_assign_rel A0 × Id) (apply_units CM A prf)

In the next refinement step, we implement clauses by iterators pointing to the
start of a null-terminated sequence of integers. Thus, the clause map will only
store iterators instead of (replicated) clauses. Now, we can specify algorithms for
functions on clauses. For example, we define:

check_conflict_clause1 A cref ≡ iterate_clause cref (λl _. do {
check (sem_lit′ l A = Some False)

}) ()

i. e. we iterate over the clause, checking each literal to be false. We show:

lemma check_conflict_clause1_refine: assumes CR: (cref,C)∈cref_rel
shows check_conflict_clause1 A cref

≤⇓Id (check (sem_clause′ C A = Some False))

where the relation cref_rel relates iterators to clauses.

In the next refinement step, we introduce efficient data structures. For example,
we implement the iterators by indexes into an array of integers that stores
both the formula and the lemmas. For many of the abstract types, we use
general purpose data structures from the Isabelle Refinement Framework [24, 25].
For example, we refine assignments to arrays, using the array_map_default

data structure, which implements functions of type nat⇒′a option by arrays
of type ′b array. It is parameterized by a relation R : (′b×′a) set and a
default concrete element d that does not correspond to any abstract element
(@a. (d,a)∈R). The implementation uses d to represent the abstract value None.
We define:

definition vv_rel ≡ {(1, False), (2, True)}
definition assignment_assn ≡ amd_assn 0 id_assn (pure vv_rel)

i. e. we implement Some False by 1, Some True by 2, and None by 0. Here,
amd_assn is the relation of the array_map_default data structure5. The refined
programs and refinement theorems in this step are automatically generated by
the Sepref tool [24]. For example, the command

5 The name suffix _assn instead of _rel indicates that the data structure may be
stored on the heap.

11



sepref definition check_rup_proof3 is check_rup_proof2

:: cdb_assnk * state_assnd * it_assnk * prf_assnd

→ error_assn + state_assn × it_assn × prf_assn

takes the definition of check_rup_proof2, generates a refined version, and
proves the corresponding refinement theorem. The first parameter is refined
wrt. cdb_assn (refining the set of clauses into an array), the second parameter
is refined wrt. state_assn (refining the clause map and the assignment into
arrays), the third parameter is refined wrt. it_assn (refining the iterator into
an array index), and the fourth parameter is refined wrt. prf_assn (refining the
stream position). Exception results are refined wrt. error_assn (basically the
identity relation), and normal results are refined wrt. state_assn, it_assn, and
prf_assn. The xd and xk annotations indicate whether the generated function
may overwrite a parameter (d like destroy) or not (k like keep).

By combining all the refinement steps and unfolding some definitions, we
prove the following correctness theorem for the implementation of our checker:

theorem verify_unsat_impl_correct:

<DBi 7→a DB>

verify_unsat_impl DBi F_end it prf

<λresult. DBi 7→a DB * ↑(¬isl result =⇒ formula_unsat_spec DB F_end)>

This Hoare triple states that if DBi points to an array holding the elements DB,
and we run verify_unsat_impl, the array will be unchanged, and if the return
value is no exception, the formula represented by the range 1. . . F_end in the
array is unsatisfiable. We have experimented with many equivalent formulations
of formula_unsat_spec, trying to reduce the trusted base, i. e. the concepts and
definitions the specification depends on. A concise one is:

definition assn_consistent :: (int ⇒ bool) ⇒ bool

where assn_consistent σ = (∀x. x6=0 =⇒ ¬ σ (-x) = σ x)
definition formula_unsat_spec DB F_end ≡ (
let lst = tl (take F_end DB) in

1 < F_end ∧ F_end ≤ length DB ∧ last lst = 0

∧ (@σ. assn_consistent σ ∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l)))

Here, a consistent assignment is a mapping from integers to Booleans, such
that a negative value is mapped to the opposite as its absolute value. The
specification then defines lst to be the elements 1,. . . ,F_end of the array6,
and states that F_end is in bounds, the last element of lst is a null, and that
there is no assignment such that each clause contains a literal assigned to true.
We define tokenize 0 lst to be the unique list of lists of non-null integers
whose concatenation as null-terminated lists yields lst. This way, we specify an
unsatisfiable formula down to the list of integers that represents it, only using
basic list functions. The last section of the proof outline of our formalization [21]
contains a detailed discussion of the correctness theorem.

The final step to a verified efficient unsat checker is to use Isabelle/HOL’s
code generator to extract Standard ML code for verify_unsat_impl and to link

6 Element 0 is used as a guard in our implementation.

12



this code with a small (40 LOC) parser to read the formula (and the lemmas)
into an array. Moreover, we implement a buffered reader for the proof file. This,
however, does not affect the correctness statement, which is valid for all proof
stream implementations. The resulting program is compiled with MLton [31].

6 Multithreaded Generation of Enriched Certificates

In order to generate GRAT certificates, we extend a DRAT checker algorithm to
record the unit clauses that lead to a conflict when checking each lemma.

Our certificate generator started as a reimplementation of the backward mode
of drat-trim [10,41] in C++, to which we then added GRAT certificate generation.
As the certificate generator is not part of the trusted code base, we could afford to
add aggressive novel optimizations: We maintain separate watchlists for marked
and unmarked lemmas, which allows a more efficient implementation of core-first
unit propagation. Moreover, we detect runs of lemmas with the same pivot
element, which allows to reuse the results of (expensive) RAT candidate searches
in certain cases. These optimizations alone make our generator more than two
times faster than drat-trim.

Another common optimization is parallelization: If one has more DRAT
certificates to check than processors available (e. g. when evaluating a SAT
competition), one can simply run multiple instances of the certificate generator
and checker in parallel. However, if one has only a few certificates to check
(e. g. when using SAT solvers for checking a single model), a more fine grained
parallelization is required to keep the available processors busy. To this end,
our certificate generator provides a multi-threaded mode, which parallelizes the
processing of lemmas, at the cost of using more memory. It uses all optimizations
of the single-threaded mode, some of them slightly adjusted for multi-threading.
For example, the lemmas of a run with the same pivot element are preferably
scheduled to the same thread.

The basic idea is to let multiple threads run backwards over the certificate,
verifying the lemmas in parallel. A thread tries to acquire a lemma before it
starts verification. If the lemma is already acquired by another thread, this thread
proceeds with the next lemma. This way, each lemma is only proved by one
thread. For the marking of lemmas, the only required synchronization is that
a thread sees its own markings: As every thread runs to the beginning, and on
processing a lemma only earlier lemmas are marked, every thread will try to
acquire at least the lemmas that it marked itself — and process them if no other
thread was faster. However, in order to improve the effectiveness of core-first unit
propagation, the threads periodically synchronize on their marking data.

7 Benchmarks

We present the experimental evaluation of our tools on a realistic set of bench-
marks. We used CryptoMiniSat [37,40] to generate DRAT certificates for the 110
unsatisfiable problems it solved at the 2016 SAT competition [38]. We ran the

13



benchmarks on a standard server board with a 22 core Intel XEON Broadwell
processor with 2.2 GHz and 128 GiB of RAM. To minimize interferences, we ran
only one benchmark at a time, with no other load on the server. Due to the page
limit of this paper, we only provide a short summary of our benchmark results.
The complete results are available on the tool’s homepage [20].

On each DRAT certificate, we ran drat-trim (version Nov 10 2016)7 and
our tool chain (version 1.2) with 1 and 8 threads. We measured the wall-clock
time and memory consumption. First of all, our tools successfully checked all
certificates, indicating that our approach is sufficiently complete. (Recall that
only soundness is formally proved)

We start with comparing drat-trim to our tool in single-threaded mode: drat-
trim timed out after 20.000 seconds on two certificates, and crashed on a third
one. For checking the remaining 107 certificates, drat-trim required 42.3 hours,
while our tool chain required only 17.3 hours. Out of the 17.3 hours, only 1.1
hours were required to run the verified certificate checker, i. e. its runtime is
almost negligible compared to certificate generation time. Our tool-chain verified
the three certificates for which drat-trim failed in 5.3 hours.

Our certificate generator requires roughly two times more memory than drat-
trim. This is due to the generated certificate being stored in memory. We could
not measure meaningful memory consumption values for our verified checker:
The MLton garbage collector only gets active when memory falls short, resulting
in unrealistic memory consumption values when being the only process running
on a machine with 128 GiB of RAM.

Next, we report on running the certificate generator with 8 threads: The
wall clock times required for generation and checking add up to only 8.3 hours.
Excluding certificates that required less than one minute to check, the average
speed up is 2.6 [min: 1.1, max: 4.9] compared to single-threaded mode, and 7.1
[min: 0.5, max: 36.0] compared to drat-trim. However, certificate generation
requires significantly more memory, as the DRAT certificate is duplicated for
each thread.

To complete the presentation, we briefly report on the results of our formally
verified satisfiability checker: The certificates for the 64 satisfiable problems that
CryptoMiniSat solved at the 2016 SAT competition [38] have a size of 229 MiB
and could be verified in 40 seconds.

8 Conclusions

We have presented a formally verified tool chain to check DRAT unsatisfiability
certificates. In single-threaded mode, our approach is more than two times faster
than the (unverified) standard tool drat-trim, on a benchmark suite taken from
the 2016 SAT competition. Additionally, we implemented a multi-threaded mode,
which allows us to trade computing resources for significantly smaller response
times. The formal proof covers the actual implementation of the checker and the
semantics of the formula down to the sequence of integers that represents it.

7 The current version at the time of writing this paper.

14



Our approach involves two phases: The first phase generates an enriched cer-
tificate, which is then checked against the original formula by the second phase.
While the main computational work is done by the first phase, soundness of the
approach only depends on the second phase, which is also algorithmically less
complex, making it more amenable to formal verification. Using stepwise refine-
ment techniques, we were able to formally verify a rather efficient implementation
of the second phase.

We conclude with some statistics: The formalization of the certificate checker
is roughly 5k lines of code. In order to realize this formalization, several general
purpose libraries (e. g. the exception monad and some imperative data structures)
had to be developed. These sum up to additional 3.5k lines. The time spent on
the formalization was roughly three man months. The multi-threaded certificate
generator has roughly 3k lines of code, and took two man month to develop.

8.1 Future Work

Currently, the formal proof of our verified checker goes down to the representation
of the formula as integer array, thus requiring a (small) unverified parser. A
logical next step would be to verify the parser, too. Moreover, verification stops
at the Isabelle code generator, whose correctness is only proved the classical way
on paper [16, 17]. There is work aiming at the mechanical verification of code
generators [33], and even the subsequent compilers [19]. Unfortunately, this is
not (yet) available for Isabelle/HOL.

We plan to attack the high memory consumption of our multi-threaded
generator by trying to share more (read-only) data between the threads.

An interesting research topic would be to integrate enriched certificate gener-
ation directly into SAT solvers. The performance decrease in the solver could
be weighed against the cost of generating an enriched certificate. However, such
modifications are probably complex and SAT-solver specific, whereas DRAT
certificates are designed to be easily integrated into virtually any CDCL based
SAT solver.

Finally, we chose a benchmark set which is realistic, but can be run in a few
days on the available hardware. We plan to run our tools on larger benchmark
suites, once we have access to sufficient (supercomputing) hardware.

Acknowledgements We thank Jasmin Blanchette and Mathias Fleury for very
useful comments on the draft version of this paper, and Lars Hupel for instant
help on any problems related to the benchmark server.

15



References

1. R.-J. Back. On the correctness of refinement steps in program development. PhD
thesis, Department of Computer Science, University of Helsinki, 1978.

2. R.-J. Back and J. von Wright. Refinement Calculus — A Systematic Introduction.
Springer, 1998.

3. Y. Bertot and P. Castran. Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions. Springer, 1st edition, 2010.

4. J. Brunner and P. Lammich. Formal verification of an executable LTL model
checker with partial order reduction. In Proc. of NFM, pages 307–321. Springer,
2016.

5. L. Bulwahn, A. Krauss, F. Haftmann, L. Erkök, and J. Matthews. Imperative
functional programming with Isabelle/HOL. In TPHOL, volume 5170 of LNCS,
pages 134–149. Springer, 2008.

6. L. Cruz-Filipe, M. Heule, W. Hunt, K. Matt, and P. Schneider-Kamp. Efficient
certified RAT verification. In Proc. of CADE. Springer, 2017. to appear.

7. L. Cruz-Filipe, J. Marques-Silva, and P. Schneider-Kamp. Efficient Certified
Resolution Proof Checking, pages 118–135. Springer, 2017.

8. A. Darbari, B. Fischer, and J. Marques-Silva. Industrial-strength certified SAT
solving through verified SAT proof checking. In Proc. of ICTAC, pages 260–274.
Springer, 2010.

9. DRAT-trim github repository. https://github.com/marijnheule/drat-trim.
10. DRAT-trim homepage. https://www.cs.utexas.edu/~marijn/drat-trim/.
11. DRAT-trim issue tracker. https://github.com/marijnheule/drat-trim/issues.
12. J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, and J.-G. Smaus. A

fully verified executable LTL model checker. In CAV, volume 8044 of LNCS, pages
463–478. Springer, 2013.

13. E. Goldberg and Y. Novikov. Verification of proofs of unsatisfiability for CNF
formulas. In Proc. of DATE. IEEE, 2003.

14. M. Gordon. From LCF to HOL: A short history. In Proof, Language, and Interaction,
pages 169–185. MIT Press, 2000.

15. F. Haftmann. Code Generation from Specifications in Higher Order Logic. PhD
thesis, Technische Universität München, 2009.

16. F. Haftmann, A. Krauss, O. Kunčar, and T. Nipkow. Data refinement in Is-
abelle/HOL. In Proc. of ITP, pages 100–115. Springer, 2013.

17. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems. In
FLOPS 2010, LNCS. Springer, 2010.

18. M. Heule, W. Hunt, and N. Wetzler. Trimming while checking clausal proofs. In
2013 Formal Methods in Computer-Aided Design, FMCAD 2013, pages 181–188.
IEEE, 2013.

19. R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: a verified implemen-
tation of ML. In Proc. of POPL, pages 179–192. ACM, 2014.

20. P. Lammich. Grat tool chain homepage. http://www21.in.tum.de/~lammich/

grat/.
21. P. Lammich. Gratchk proof outline. http://www21.in.tum.de/~lammich/grat/

outline.pdf.
22. P. Lammich. Automatic data refinement. In ITP, volume 7998 of LNCS, pages

84–99. Springer, 2013.
23. P. Lammich. Verified efficient implementation of Gabow’s strongly connected

component algorithm. In ITP, volume 8558 of LNCS, pages 325–340. Springer,
2014.

16

https://github.com/marijnheule/drat-trim
https://www.cs.utexas.edu/~marijn/drat-trim/
https://github.com/marijnheule/drat-trim/issues
http://www21.in.tum.de/~lammich/grat/
http://www21.in.tum.de/~lammich/grat/
http://www21.in.tum.de/~lammich/grat/outline.pdf
http://www21.in.tum.de/~lammich/grat/outline.pdf


24. P. Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages
253–269. Springer, 2015.

25. P. Lammich. Refinement based verification of imperative data structures. In CPP,
pages 27–36. ACM, 2016.

26. P. Lammich and A. Lochbihler. The Isabelle Collections Framework. In Proc. of
ITP, volume 6172 of LNCS, pages 339–354. Springer, 2010.

27. P. Lammich and R. Neumann. A framework for verifying depth-first search algo-
rithms. In CPP ’15, pages 137–146, New York, NY, USA, 2015. ACM.

28. P. Lammich and S. R. Sefidgar. Formalizing the Edmonds-Karp algorithm. In Proc.
of ITP, pages 219–234, 2016.

29. P. Lammich and T. Tuerk. Applying data refinement for monadic programs to
Hopcroft’s algorithm. In Proc. of ITP, volume 7406 of LNCS, pages 166–182.
Springer, 2012.

30. R. Milner, R. Harper, D. MacQueen, and M. Tofte. The Definition of Standard ML
(MIT Press). The MIT Press, 1997.

31. MLton Standard ML compiler. http://mlton.org/.
32. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proc. of DAC, pages 530–535. ACM, 2001.
33. M. O. Myreen and S. Owens. Proof-producing translation of higher-order logic into

pure and stateful ML. J. Funct. Program., 24(2-3):284–315, 2014.
34. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
35. SAT competition, 2013. http://satcompetition.org/2013/.
36. SAT competition, 2014. http://satcompetition.org/2014/.
37. Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, volume

B-2016-1. University of Helsinki, 2016.
38. SAT competition, 2016. http://baldur.iti.kit.edu/sat-competition-2016/.
39. C. Sinz and A. Biere. Extended resolution proofs for conjoining bdds. In Proc. of

CSR, pages 600–611. Springer, 2006.
40. M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic

problems. In Proc. of SAT 2009, pages 244–257. Springer, 2009.
41. N. Wetzler, M. J. H. Heule, and W. A. Hunt. Mechanical verification of SAT

refutations with extended resolution. In Proc. of ITP, pages 229–244. Springer,
2013.

42. N. Wetzler, M. J. H. Heule, and W. A. Hunt. Drat-trim: Efficient checking and
trimming using expressive clausal proofs. In Proc. of SAT 2014, pages 422–429.
Springer, 2014.

43. N. Wirth. Program development by stepwise refinement. Commun. ACM, 14(4),
Apr. 1971.

17

http://mlton.org/
http://satcompetition.org/2013/
http://satcompetition.org/2014/
http://baldur.iti.kit.edu/sat-competition-2016/

	Efficient Verified (UN)SAT Certificate Checking

