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Abstract. Preprocessing techniques for formulas in conjunctive normal
form play an important role in first-order theorem proving. To speed up
the proving process, these techniques simplify a formula without affect-
ing its satisfiability or unsatisfiability. In this paper, we introduce the
principle of implication modulo resolution, which allows us to lift sev-
eral preprocessing techniques—in particular, several clause-elimination
techniques—from the SAT-solving world to first-order logic. We analyze
confluence properties of these new techniques and show how implication
modulo resolution yields short soundness proofs for the existing first-
order techniques of predicate elimination and blocked-clause elimination.

1 Introduction

Automatic theorem provers often have to deal with formulas that contain a con-
siderable amount of redundant information. To speed up the proving process,
they therefore usually employ dedicated preprocessing methods that aim at sim-
plifying formulas as much as possible [1, 2]. Since most provers are based on
proof systems that require formulas to be in conjunctive normal form (CNF),
preprocessing techniques operating on the clause level play a particularly impor-
tant role. Research on SAT and on quantified Boolean formulas has given rise to
a wide variety of CNF preprocessing techniques that significantly improve the
performance of modern solvers [3], but for many of these techniques it was not
clear whether they could be lifted to the level of first-order logic.

In this paper, we address this issue and introduce the principle of implica-
tion modulo resolution—a first-order generalization of quantified implied outer
resolvents as introduced by Heule et al. [4] in the context of quantified Boolean
formulas. Informally, a clause C is implied modulo resolution by a CNF for-
mula F (which can be seen as a set of clauses) if C contains a literal such that
all resolvents upon this literal are implied by F \{C}. Here, by all resolvents we
mean all resolvents with clauses in F \ {C}. In other words, although F \ {C}
might not necessarily imply the clause C, it implies all the conclusions that can
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be derived with C via resolution upon one of its literals. We show that this suf-
fices to ensure that C can be removed from F without affecting the satisfiability
or unsatisfiability of F .

The importance of implication modulo resolution lies in the fact that it al-
lows us to construct soundness proofs for numerous preprocessing techniques. We
therefore use the principle of implication modulo resolution to lift several SAT-
preprocessing techniques to first-order logic without equality. These techniques,
which have not been available in first-order logic so far, include clause-elimination
procedures for covered clauses (CC) [5], asymmetric tautologies (AT) [6], resolu-
tion asymmetric tautologies (RAT) [7], and resolution subsumed clauses (RS) [7].
Moreover, we show how the use of implication modulo resolution yields short
soundness proofs for the existing preprocessing techniques of blocked-clause elim-
ination [8, 9] and predicate elimination [2], again in the restricted case of first-
order logic without equality.

Covered clauses are a generalization of the above-mentioned blocked clauses
(which we discuss briefly in Section 4). To detect whether a clause is covered,
one first adds a number of so-called covered literals to it and then checks whether
the resulting clause is a blocked clause. Covered-clause elimination is more pow-
erful than blocked-clause elimination in the sense that it implicitly removes all
blocked clauses from a formula. As blocked-clause elimination leads to significant
performance improvements of first-order theorem provers [8] and since the elim-
ination of covered clauses has been shown to speed up modern SAT solvers [10],
we expect covered-clause elimination to further boost prover performance.

Asymmetric tautologies and resolution asymmetric tautologies owe their pop-
ularity to the fact that their addition and elimination can simulate most of the
reasoning techniques employed by state-of-the-art SAT solvers [7]. Because of
this, they provide the basis for the well-known DRAT proof system [11], which is
the de-facto standard for unsatisfiability proofs in practical SAT solving. Finally,
the elimination of resolution subsumed clauses is another promising technique
from the SAT world whose soundness on the first-order level can be easily shown
using the principle of implication modulo resolution.

The main contributions of this paper are as follows: (1) We introduce the
principle of implication modulo resolution. (2) We use implication modulo resolu-
tion to lift several clause-elimination techniques from the SAT world to first-order
logic. (3) We show how implication modulo resolution yields short soundness
proofs for existing preprocessing techniques from the literature. (4) We analyze
confluence properties of the preprocessing techniques.

2 Preliminaries

We assume the reader to be familiar with the basics of first-order logic. As usual,
formulas of a first-order language L are built using predicate symbols, function
symbols, and constants from some given alphabet together with logical connec-
tives, quantifiers, and variables. We use the letters P,Q,R, S, . . . as predicate
symbols and the letters f, g, h, . . . as non-constant function symbols. Moreover,



we use the letters a, b, c, . . . for constants and the letters x, y, z, u, v, . . . for vari-
ables (possibly with subscripts). An expression (i.e., a term, literal, formula, etc.)
is ground if it contains no variables.

A literal is an atom or the negation of an atom, and a disjunction of literals
is a clause. For a literal L, we define L̄ = ¬P if L = P and L̄ = P if L = ¬P ,
where P is an atom. In the former case, L is of positive polarity ; in the latter
case, it is of negative polarity. If not stated otherwise, formulas are assumed to
be in conjunctive normal form (CNF), i.e., a conjunction of clauses. Without loss
of generality, clauses are assumed to be variable disjoint. Variables occurring in
a CNF formula are implicitly universally quantified. We treat CNF formulas as
sets of clauses and clauses as multisets of literals. A clause is a tautology if it
contains both L and L̄ for some literal L.

Regarding the semantics, we use the standard notions of interpretation,
model, validity, satisfiability, and logical equivalence. We say that two formu-
las are equisatisfiable if they are either both satisfiable or both unsatisfiable.
A propositional assignment is a mapping from ground atoms to the truth val-
ues 1 (true) and 0 (false). Accordingly, a set of ground clauses is propositionally
satisfiable if there exists a propositional assignment that satisfies F under the
usual semantics for the logical connectives. We sometimes write assignments as
sequences of literals where a positive (negative) polarity of a literal indicates
that the truth value 1 (0, respectively) is assigned to the literal’s atom.

A substitution is a mapping from variables to terms that agrees with the
identity function on all but finitely many variables. Let σ be a substitution. The
domain, dom(σ), of σ is the set of variables for which σ(x) 6= x. The range,
ran(σ), of σ is the set {σ(x) | x ∈ dom(σ)}. We denote the inverse substitution
of σ, which is just the inverse function of σ, by σ−1. A substitution is ground
if its range consists only of ground terms. As common, Eσ denotes the result
of applying σ to the expression E. If Eσ is ground, it is a ground instance of
E. Juxtaposition of substitutions denotes their composition, i.e., xστ stands
for τ(σ(x)). The substitution σ is a unifier of the expressions E1, . . . , En if
E1σ = · · · = Enσ. For substitutions σ and τ , we say that σ is more general
than τ if there exists a substitution λ such that σλ = τ . Furthermore, σ is a
most general unifier (mgu) of E1, . . . , En if, for every unifier τ of E1, . . . , En, σ
is more general than τ . It is well-known that whenever a set of expressions is
unifiable, there exists an idempotent most general unifier of this set. In the rest
of the paper, we use a popular variant of Herbrand’s Theorem [12]:

Theorem 1. A formula F is satisfiable if and only if every finite set of ground
instances of clauses in F is propositionally satisfiable.

Next, we introduce a formal notion of clause redundancy. Intuitively, a clause
C is redundant w.r.t. a formula F if its removal from F does not affect the
satisfiability or unsatisfiability of F [4]:

Definition 1. A clause C is redundant w.r.t. a formula F if F and F \ {C}
are equisatisfiable.



Note that this notion of redundancy does not require logical equivalence of F and
F \ {C}, and that it differs from other well-known redundancy notions such as
the one of Bachmair and Ganzinger that is usually employed within the context
of ordered resolution [13]. It provides the basis for clause-elimination procedures.
Note also that the redundancy of a clause C w.r.t. a formula F can be shown
by proving that the satisfiability of F \ {C} implies the satisfiability of F .

Finally, given two clauses C = L1 ∨ · · · ∨Lk ∨C ′ and D = N1 ∨ · · · ∨Nl ∨D′
such that the literals L1, . . . , Lk, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause
C ′σ∨D′σ is said to be a resolvent of C and D. If k = l = 1, it is a binary resolvent
of C and D upon L1.

3 Implication Modulo Resolution

In this section, we introduce the central concept of this paper—the principle
of implication modulo resolution for first-order logic. We use the results of this
section in subsequent sections to prove the soundness of various first-order pre-
processing techniques. The definition of implication modulo resolution relies on
the notion of L-resolvents:

Definition 2. Given two clauses C = L ∨ C ′ and D = N1 ∨ · · · ∨Nl ∨D′ such
that the literals L, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ ∨ D′σ
is called L-resolvent of C and D.

Example 1. Let C = P (x)∨Q(x), D = ¬P (y)∨¬P (z)∨R(y, z), and L = P (x).
Then, the substitution σ = {y 7→ x, z 7→ x} is an mgu of P (x), P (y), and P (z).
Therefore, Q(x) ∨R(x, x) is an L-resolvent of C and D. ut

Before we next define the principle of implication modulo resolution, we want to
highlight that whenever we say that a formula F implies a clause C, we mean
that every model of F is a model of C, that is, F |= C.

Definition 3. A clause C is implied modulo resolution upon L ∈ C by a for-
mula F if all L-resolvents of C, with clauses in F \{C}, are implied by F \{C}.

We say that a clause C is implied modulo resolution by F if F implies C modulo
resolution upon one of its literals. A simple example for clauses that are implied
modulo resolution are clauses with pure literals. A pure literal is a literal whose
predicate symbol occurs in only one polarity in the whole formula. Since there
are no resolvents upon such a literal, the containing clause is trivially implied
modulo resolution. The following example is a little more involved:

Example 2. Let C = P (x) ∨Q(x) and

F = {P (x) ∨Q(x), ¬P (y) ∨R(y), R(z) ∨ S(z), ¬S(u) ∨Q(u)}.

There is one P (x)-resolvent of C, namely Q(x) ∨R(x), obtained by resolving C
with ¬P (y) ∨R(y). Clearly, this resolvent is implied by the clauses R(z) ∨ S(z)
and ¬S(u) ∨Q(u). Therefore, F implies C modulo resolution upon P (x). ut



In the following, we prove that implication modulo resolution ensures redun-
dancy, i.e., if a clause C is implied modulo resolution by a formula F , then
C is redundant w.r.t. F . The proof relies on Herbrand’s Theorem (Theorem 1),
which tells us that a formula F is satisfiable if and only if all finite sets of ground
instances of clauses in F are propositionally satisfiable.

To prove that the satisfiability of F \ {C} implies the satisfiability of F , we
proceed as follows: Given a finite set of ground instances of clauses in F , we can
obtain a satisfying propositional assignment of this set from an assignment that
satisfies all the ground instances of clauses in F \ {C}. The latter assignment
is guaranteed to exist because F \ {C} is satisfiable. The key idea behind the
modification of this assignment is to flip (interchange) the truth values of certain
ground literals. We illustrate this on the following example:

Example 3. Consider C and F from Example 2, let C ′ = P (a)∨Q(a) be a ground
instance of C, and F ′ = {P (a)∨Q(a),¬P (a)∨R(a), R(a)∨S(a), ¬S(a)∨Q(a)}
a finite set of ground instances of F (in fact, F ′ is even a ground instance
of F ). Clearly, F ′ \ {C ′} is propositionally satisfied by the assignment α =
¬P (a)R(a)¬S(a)¬Q(a), but α falsifies C ′. However, we can turn α into a sat-
isfying assignment of C ′ by flipping the truth value of P (a)—the instance of
the literal upon which C is implied modulo resolution. The resulting assignment
α′ = P (a)R(a)¬S(a)¬Q(a) could possibly falsify the clause ¬P (a) ∨R(a) since
it contains ¬P (a) which is not satisfied anymore. But, the clause stays true since
R(a) is satisfied by α′. Therefore, α′ satisfies F ′. ut

In the above example, it is not a coincidence that ¬P (a) ∨R(a) is still satisfied
after flipping the truth value of P (a). The intuitive explanation is as follows:
The clause Q(a) ∨R(a) is a ground instance of the P (x)-resolvent Q(x) ∨R(x)
(of C and ¬P (y)∨R(y)) which is implied by F \{C}. Therefore, since α satisfies
all the ground instances of F \{C}, it should also satisfy Q(a)∨R(a). But, since
α does not satisfy Q(a) (because α falsifies C ′ = P (a) ∨ Q(a)), it must satisfy
R(a), and so it satisfies ¬P (a)∨R(a). Finally, since α′ disagrees with α only on
P (a), it also satisifies R(a). The following lemma formalizes this observation:

Lemma 2. Let C be a clause that is implied modulo resolution upon L by F .
Let furthermore α be an assignment that propositionally satisfies all ground in-
stances of clauses in F \ {C} but falsifies a ground instance Cλ of C. Then, the
assignment α′, obtained from α by flipping the truth value of Lλ, still satisfies
all ground instances of clauses in F \ {C}.

Proof. Let Dτ be a ground instance of a clause D ∈ F \ {C} and suppose α
satisfies Dτ . If Dτ does not contain L̄λ, it is trivially satisfied by α′. Assume
therefore that L̄λ ∈ Dτ and let N1, . . . , Nl be all the literals in D such that
Niτ = L̄λ for 1 ≤ i ≤ l. Then, the substitution λτ = λ ∪ τ (note that C
and D are variable disjoint by assumption) is a unifier of L, N̄1, . . . , N̄l. Hence,
R = (C \ {L})σ ∨ (D \ {N1, . . . , Nl})σ, with σ being an mgu of L, N̄1, . . . , N̄l, is
an L-resolvent of C and thus implied by F \ {C}.



As σ is most general, it follows that there exists a substitution γ such that
σγ = λτ . Therefore,

(C \ {L})σγ ∨ (D \ {N1, . . . , Nl})σγ
= (C \ {L})λτ ∨ (D \ {N1, . . . , Nl})λτ
= (C \ {L})λ ∨ (D \ {N1, . . . , Nl})τ

is a ground instance of R and so it must be satisfied by α. Thus, since α falsifies
Cλ, it must satisfy a literal L′τ ∈ (D \ {N1, . . . , Nl})τ . But, as all the literals in
(D \ {N1, . . . , Nl})τ are different from L̄λ, flipping the truth value of Lλ does
not affect the truth value of L′τ . It follows that α′ satisfies L′τ and thus it
satisfies Dτ . ut

We can therefore satisfy a ground instance Cλ of C without falsifying ground
instances of clauses in F \ {C}, by flipping the truth value of Lλ—the ground
instance of the literal L upon which C is implied modulo resolution. Still, as
the following example shows, there could be other ground instances of C that
contain the complement L̄λ of Lλ:

Example 4. Suppose some formula F implies the clause C = ¬P (x) ∨ P (f(x))
modulo resolution upon the literal P (f(x)) and consider two possible ground
instances C1 = ¬P (a) ∨ P (f(a)) and C2 = ¬P (f(a)) ∨ P (f(f(a))) of C. The
assignment P (a)¬P (f(a))¬P (f(f(a))) falsifies C1, but we can satisfy C1 by
flipping the truth value of P (f(a))—the ground instance of P (f(x))—to obtain
the assignment P (a)P (f(a))¬P (f(f(a))). However, by flipping the truth value
of P (f(a)), we falsified the other ground instance C2 of C. ut

That this is not a serious problem is shown in the proof of our main result below.
The key idea is to repeatedly satisfy ground instances of the literal upon which
the clause is implied modulo resolution. In the above example, for instance, we
can continue by also flipping the truth value of P (f(f(a)) to obtain a satisfying
assignment of both C1 and C2.

Theorem 3. If a clause C is implied modulo resolution by a formula F , it is
redundant w.r.t. F .

Proof. Assume that F implies C modulo resolution upon L ∈ C and that
F \ {C} is satisfiable. We show that F is satisfiable. By Herbrand’s theorem
(Theorem 1), it suffices to show that every finite set of ground instances of
clauses in F is propositionally satisfiable. Let therefore F ′ and FC be finite sets
of ground instances of clauses in F \{C} and {C}, respectively. Since F \{C} is
satisfiable, there exists an assignment α that propositionally satisfies all ground
instances of clauses in F \ {C} and thus it clearly satisfies F ′. Assume now that
α falsifies some ground instances of C that are contained in FC .

By Lemma 2, for every falsified ground instance Cλ of C, we can turn α into
a satisfying assignment of Cλ by flipping the truth value of Lλ, and this flipping
does not falsify any ground instances of clauses in F \ {C}. The only clauses
that could possibly be falsified are other ground instances of C that contain the



literal L̄λ. But, once an instance Lτ of L is true in a ground instance Cτ of C, Lτ
cannot (later) be falsified by making other instances of L true. As there are only
finitely many clauses in FC , we can therefore turn α into a satisfying assignment
of F ′∪FC by repeatedly making ground instances of C true by flipping the truth
values of their instances of L. Hence, all finite sets of ground instances of clauses
in F are propositionally satisfiable and so F is satisfiable. ut

For example, the clause C in Example 2 is redundant w.r.t. F since it is implied
modulo resolution by F . In what follows, we use Theorem 3 to prove soundness of
several first-order preprocessing techniques. We start with blocked-clause elim-
ination, as both resolution asymmetric tautologies and covered clauses (which
we introduce later) can be seen as generalizations of blocked clauses.

4 Blocked Clauses

Blocked clauses have been introduced by Kullmann [14], and their elimination
significantly improves the performance of SAT [9] and QSAT solvers [15, 16].
Also the first-order variant of blocked-clause elimination speeds up automatic
theorem provers, especially on satisfiable formulas [8]. In propositional logic, a
clause C is blocked in a formula F if it contains a literal L such that all binary
resolvents of C upon L, with clauses in F \ {C}, are tautologies. In first-order
logic, the notion of binary resolvents is replaced by L-resolvents [8]:

Definition 4. A clause C is blocked by a literal L ∈ C in a formula F if all
L-resolvents of C, with clauses in F \ {C}, are tautologies.

Example 5. Let C = P (x) ∨ ¬Q(x) and F = {P (x) ∨ ¬Q(x), ¬P (y) ∨ Q(y)}.
There is only one P (x)-resolvent of C, namely the tautology ¬Q(x) ∨ Q(x),
obtained by using the mgu σ = {y 7→ x}. Therefore, C is blocked in F . ut

Since tautologies are trivially implied by every formula, blocked clauses are im-
plied modulo resolution. The redundancy of blocked clauses, and therefore the
soundness of blocked-clause elimination, is thus a consequence of the fact that
implication modulo resolution ensures redundancy (Theorem 3):

Theorem 4. If a clause is blocked in a formula F , it is redundant w.r.t. F .

5 Asymmetric Tautologies and RATs

In this section, we first discuss the propositional notions of asymmetric tau-
tologies and resolution asymmetric tautologies before lifting them to first-order
logic. We start with asymmetric tautologies, which we use later to define res-
olution asymmetric tautologies. An asymmetric tautology is a clause that can
be turned into a tautology by repeatedly adding so-called asymmetric literals to
it. In propositional logic, a literal L is an asymmetric literal w.r.t. a clause C
in a formula F if there exists a clause D ∨ L̄ ∈ F \ {C} such that D subsumes



C, i.e., D ⊆ C. The addition of an asymmetric literal L to a clause C yields a
clause that is logically equivalent in the sense that F \ {C} |= (C ≡ C ∨ L) [6].
Consider, for instance, the following example:

Example 6. Let C = P ∨Q and F = {P ∨Q, Q∨R, ¬R∨S, P ∨¬R∨¬S}. Since
the subclause Q of Q ∨ R subsumes C, the literal ¬R is an asymmetric literal
w.r.t. C. We thus add it to C to obtain C1 = P ∨Q ∨ ¬R. We then use ¬R ∨ S
to add ¬S to C1 and obtain C2 = P ∨Q∨¬R∨¬S. Finally, we use P ∨¬R∨¬S
to add ¬P to C2, and so we end up with C3 = P ∨ Q ∨ ¬R ∨ ¬S ∨ ¬P , which
is a tautology. It follows that C is an asymmetric tautology in F . Moreover, by
transitivity, F \ {C} |= (C ≡ C3) and thus C is redundant w.r.t. F . ut

In first-order logic, a clause C subsumes a clause D if there exists a substitu-
tion λ such that Cλ ⊆ D. This motivates the following first-order variants of
asymmetric literals and asymmetric tautologies.

Definition 5. A literal L is an asymmetric literal w.r.t. a clause C in a for-
mula F if there exist a clause D ∨ L̄′ ∈ F \ {C} and a substitution λ such that
Dλ ⊆ C and L = L̄′λ.

Example 7. Consider the clause C = P (x) ∨Q(x) ∨ R(x) and the formula F =
{P (x)∨Q(x)∨R(x), P (y)∨Q(y)∨¬S(y)}. Then, S(x) is an asymmetric literal
w.r.t. C in F since, for λ = {y 7→ x}, (P (y)∨Q(y))λ ⊆ C and S(x) = S(y)λ. ut

First-order asymmetric-literal addition is harmless, because the original clause
C can be obtained from C ∨ L and D ∨ L̄′ via resolution, as shown in the proof
of the following lemma:

Lemma 5. Let F be a formula, C a clause, and L an asymmetric literal w.r.t.
C in F . Then, F \ {C} |= (C ≡ C ∨ L).

Proof. Clearly, C → C∨L is valid. It therefore suffices to prove that C is implied
by (F \ {C}) ∪ {C ∨ L}. Since L is an asymmetric literal w.r.t. C in F , there
exist a clause D ∨ L′ ∈ F \ {C} and a substitution λ such that Dλ ⊆ C and
L̄′λ = L. But then C is a binary resolvent of C ∨ L and Dλ ∨ L′λ upon L. It
follows that C is implied by (F \ {C}) ∪ {C ∨ L}. ut

An asymmetric tautology is now a clause that can be turned into a tautology
by repeatedly adding asymmetric literals (asymmetric-literal addition, ALA):

Definition 6. A clause C is an asymmetric tautology in a formula F if there
exists a sequence L1, . . . , Ln of literals such that each Li is an asymmetric literal
w.r.t. C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology.

Example 8. Consider the clause C = Q(x) ∨ R(x) and the following formula
F = {Q(x)∨R(x), R(z)∨S(z), ¬S(u)∨Q(u)}. The subclause R(z) of R(z)∨S(z)
subsumes R(x) via {z 7→ x} and so ¬S(x) is an asymmetric literal w.r.t. C. We
add it and obtain the clause Q(x) ∨ R(x) ∨ ¬S(x). After this, ¬S(u) subsumes
¬S(x) via {u 7→ x} and thus ¬Q(x) can be added to obtain the tautology
Q(x) ∨R(x) ∨ ¬S(x) ∨ ¬Q(x). Thus, C is an asymmetric tautology in F . ut



Note that in automatic theorem proving, we prefer short clauses over long
ones, since the short clauses are usually stronger. Therefore, when perform-
ing asymmetric-tautology elimination, the asymmetric-literal additions are not
meant to be permanent: We first add the literals and then test whether the re-
sulting clause is a tautology. If so, we remove the clause; if not, we undo the
asymmetric-literal additions to shrink the clause back to its original size. We
next show that asymmetric tautologies are implied:

Theorem 6. If C is an asymmetric tautology in F , it is implied by F \ {C}.

Proof. Suppose C is an asymmetric tautology in F , i.e., there exists a sequence
L1, . . . , Ln of literals such that each Li is an asymmetric literal w.r.t. the clause
C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology. By the
repeated application of Lemma 5 (an easy induction argument), it follows that
F \{C} |= (C ≡ C∨L1∨· · ·∨Ln). But then, since C∨L1∨· · ·∨Ln is a tautology,
it trivially holds that F \ {C} |= C ∨L1 ∨ · · · ∨Ln. Therefore, F \ {C} |= C. ut

Unlike in propositional logic, the first-order variant of asymmetric-literal addi-
tion is not guaranteed to terminate. Consider the following example:

Example 9. Let C = P (a) and F = {P (x) ∨ ¬P (f(x))}. Then, since P (x) sub-
sumes P (a) via λ = {x 7→ a}, we can add the asymmetric literal P (f(a)) to
obtain P (a) ∨ P (f(a)). After this, we can add P (f(f(a)) via λ = {x 7→ f(a)},
then P (f(f(f(a)))) and so on. This can be repeated infinitely many times. ut

A resolution asymmetric tautology in first-order logic is then a clause C that
contains a literal L such that all L-resolvents of C are asymmetric tautologies:

Definition 7. A clause C is a resolution asymmetric tautology (RAT) on a
literal L ∈ C w.r.t. a formula F if all L-resolvents of C, with clauses in F \{C},
are asymmetric tautologies in F \ {C}.

Example 10. Consider the clause C = P (x) ∨ Q(x) and the following formula
F = {P (x)∨Q(x), ¬P (y)∨R(y), R(z)∨S(z), ¬S(u)∨Q(u)} (cf. Example 2).
There is one P (x)-resolvent of C, namely Q(x)∨R(x). The formula F ∪{Q(x)∨
R(x)} is a superset of the formula from Example 8 in which Q(x) ∨ R(x) is an
asymmetric tautology. Thus, Q(x)∨R(x) is also an asymmetric tautology here:
The literal R(z) subsumes R(x) via {z 7→ x} and so ¬S(x) is an asymmetric
literal w.r.t. Q(x) ∨R(x). We add it to obtain Q(x) ∨R(x) ∨ ¬S(x). After this,
¬S(u) subsumes ¬S(x) via {u 7→ x} and so ¬Q(x) can be added to obtain the
tautology Q(x)∨R(x)∨¬S(x)∨¬Q(x). It follows that C is a RAT w.r.t. F . ut

Theorem 7. If a clause C is a RAT w.r.t. a formula F , then it is redundant
w.r.t. F .

Proof. Assume that C is a RAT w.r.t. F . Then, every L-resolvent of C with
clauses in F \ {C} is an asymmetric tautology in F \ {C} and therefore, by
Theorem 6, implied by F \ {C}. It follows that C is implied modulo resolution
upon L by F and thus, by Theorem 3, C is redundant w.r.t. F . ut



6 Covered Clauses

In this section, similar to the preceding one, we first recapitulate the notions of
covered literals and covered clauses from propositional logic and then lift them to
the first-order level. Informally, a clause C is covered in a propositional formula
F , if the addition of so-called covered literals to C turns C into a blocked clause.
A clause C covers a literal L′ in F if C contains a literal L such that all non-
tautological resolvents of C upon L contain L′. The crucial property of covered
literals is, that they can be added to C without affecting satisfiability [5]. More
precisely, given a formula F , a clause C ∈ F , and a literal L′ that is covered by
C in F , it holds that F and the formula F ′, obtained from F by replacing C
with C ∨ L′, are equisatisfiable.

Example 11. Consider the clause C = P and the propositional formula F =
{P, ¬P ∨¬Q∨R, ¬P ∨¬Q∨S}. There are two resolvents of C upon P , namely
¬Q ∨ R and ¬Q ∨ S. As ¬Q is contained in both resolvents, it is covered by C
in F . Therefore, replacing C with C ∨¬Q in F does not affect satisfiability. ut

We next introduce a first-order variant of covered literals. Our definition guar-
antees that covered-literal addition (CLA) has no effect on satisfiability:

Definition 8. A clause C covers a literal L′ in a formula F if C contains a
literal L such that all non-tautological L-resolvents of C, with clauses in F ∪{C},
contain L′.

Note that resolvents of C with itself are required to contain the literal L′. More-
over, when talking about resolvents of C with itself, we mean resolvents of C
with an instance Cτ of C, where τ is a renaming that maps the variables in C
to fresh variables that do not occur in F .

Example 12. Consider the clause C = P (f(x)) and the formula

F = {¬P (y) ∨Q(y) ∨R(y), ¬P (z) ∨Q(z) ∨ S(z)}.

There are two P (f(x))-resolvents of C: Q(f(x))∨R(f(x)), obtained by using the
mgu {y 7→ f(x)}, and Q(f(x))∨S(f(x)), obtained by using the mgu {z 7→ f(x)}.
Since Q(f(x)) is contained in both resolvents, it is covered by C in F . ut

As we will show below, the addition of a covered literal to the clause that covers it
has no effect on satisfiability. The following example illustrates that this would
not be the case if we did not require the covered literal to be contained in
resolvents of the clause with itself:

Example 13. Consider the clause C = ¬P (x) ∨ P (f(x)) and the formula F =
{¬P (x) ∨ P (f(x)), ¬P (y) ∨ Q(y), P (a), ¬Q(f(f(a))}. The literal Q(f(x)) is
contained in the (only) P (f(x))-resolvent ¬P (x) ∨ Q(f(x)) of C with clauses
in F that are different from C itself. However, F is unsatisfiable whereas the
formula F ′, obtained from F by replacing C with C ∨Q(f(x)), is satisfiable. ut



Lemma 8. If a clause C covers a literal L′ in a formula F , then F and the
formula F ′, obtained from F by replacing C with C ∨ L′, are equisatisfiable.

Proof. Assume that C covers L′ in F , i.e., L′ is contained in all non-tautological
L-resolvents of C with clauses in F . First, we add Cτ ∨ L′τ to F , with τ being
a renaming that replaces the variables in C ∨L′ by fresh variables not occurring
in F . Since Cτ ∨ L′τ is subsumed by C, the formulas F and F ∪ {Cτ ∨ L′τ}
are equisatisfiable. We next show that C is redundant w.r.t. F ∪{Cτ ∨L′τ} and
that it can therefore by removed. To do so, we show that C is implied modulo
resolution upon L by F ∪ {Cτ ∨L′τ}. As F ∪ {Cτ ∨L′τ} and F ∪ {C ∨L′} are
clearly equivalent, the claim then follows.

We show that all L-resolvents of C with clauses in F are implied by the
formula (F \{C})∪{Cτ∨L′τ}. Showing that the L-resolvents of C with Cτ∨L′τ
are also implied is done in a similar way. Since tautological L-resolvents are
trivially implied, we consider only non-tautological ones. Let C ′σ∨D′σ be a non-
tautological L-resolvent of C = C ′∨L with a clause D = D′∨N1∨· · ·∨Nk ∈ F ,
where σ is an (idempotent) mgu of the literals L, N̄1, . . . , N̄k. Since L′ is covered
by C in F , the resolvent C ′σ ∨ D′σ contains L′, and L′ is of the form Pσ for
some literal P ∈ C ′ ∨D′.

To prove that C ′σ ∨ D′σ is implied by (F \ {C}) ∪ {Cτ ∨ L′τ}, we show
that it can be obtained from clauses in (F \ {C}) ∪ {Cτ ∨ L′τ} via resolution,
instantiation, and factoring: Consider the clauses Cτ ∨ L′τ = C ′τ ∨ Lτ ∨ L′τ
and D = D′ ∨ N1 ∨ · · · ∨ Nk. Since the literals L, N̄1, . . . , N̄k are unified by σ
and since dom(τ−1)∩ var(D) = ∅, it follows that Lτ and N̄1, . . . , N̄k are unified
by τ−1σ. Therefore, there exists an mgu σ′ of Lτ and N̄1, . . . , N̄k. Hence, the
clause (C ′τ ∨L′τ ∨D′)σ′ is an Lτ -resolvent. Now, since σ′ is most general, there
exists a substitution γ such that σ′γ = τ−1σ. But then,

(C ′τ ∨ L′τ ∨D′)σ′γ
= (C ′τ ∨ L′τ ∨D′)τ−1σ
= C ′σ ∨ L′σ ∨D′σ,

from which we obtain C ′σ ∨D′σ by factoring, since L′ ∈ C ′σ ∨D′σ and L′σ =
Pσσ = Pσ = L′. ut

Similar to asymmetric-literal addition, the addition of covered literals in first-
order logic is also not guaranteed to terminate. Consider the following example:

Example 14. Let C = P (a) and F = {P (a),¬P (x) ∨ P (f(x))}. Then, there
exists one P (a)-resolvent of C, namely P (f(a)). Therefore, P (f(a)) is covered
by C and thus it can be added to C to obtain C ′ = P (a)∨ P (f(a)). Now, there
is one P (f(a))-resolvent of C ′, namely P (f(f(a))), and thus P (f(f(a))) can be
added. This addition of covered literals can be repeated infinitely often. ut

Now, a clause C is covered in a formula F if the repeated addition of covered
literals can turn it into a blocked clause. In the following, we denote by F [C/D]
the formula obtained from F by replacing the clause C with the clause D:



Definition 9. A clause C is covered in a formula F if there exists a sequence
L1, . . . , Ln of literals such that each Li is covered by Ci−1 = C ∨L1 ∨ · · · ∨Li−1
in F [C/Ci−1] and Cn is blocked in F [C/Cn].

Example 15. Consider the clause C = P (a) ∨ ¬Q(a) which is contained in the
formula F = {P (a) ∨ ¬Q(a), ¬P (y) ∨ R(y), ¬R(z) ∨ Q(z)}. Although C is
not blocked in F , we can add the literal R(a) since it is contained in its only
P (a)-resolvent, obtained by resolving with ¬P (y) ∨ R(y). The resulting clause
P (a)∨¬Q(a)∨R(a) is then blocked by R(a) since there is only the tautological
R(a)-resolvent P (a) ∨ ¬Q(a) ∨Q(a), obtained by resolving with ¬R(z) ∨Q(z).
Therefore, C is covered in F . ut

As in the case of asymmetric tautologies, the covered-literal additions used dur-
ing covered-clause elimination are not meant to be permanent: We first add some
covered literals and then test whether the resulting clause is blocked (and there-
fore covered). If so, we remove the clause; if not, we undo the literal additions.

Theorem 9. If a clause C is covered in a formula F , it is redundant w.r.t. F.

Proof. Assume that C is covered in F , i.e., we can add covered literals to C
to obtain a clause C ′ that is blocked in F . Now, let F ′ be obtained from F by
replacing C with C ′. Then, by Lemma 8, F and F ′ are equisatisfiable. Moreover,
since C ′ is blocked in F ′, it follows that F ′ \{C ′} and F ′ are equisatisfiable. But
then, as F \ {C} = F ′ \ {C ′}, it follows that F and F \ {C} are equisatisfiable
and so C is redundant w.r.t. F . ut

7 Resolution Subsumption and More

The redundancy notion of resolution subsumption (RS) from SAT [7] can also
be straightforwardly lifted to first-order logic, where redundancy is again an
immediate consequence of Theorem 3 since subsumption ensures implication:

Definition 10. A clause C is resolution subsumed (RS) on a literal L ∈ C in
a formula F if all non-tautological L-resolvents of C, with clauses in F \ {C},
are subsumed in F \ {C}.

Theorem 10. If a clause is resolution subsumed in a formula F , then it is
redundant w.r.t. F .

With the methods presented in this paper, we can define even more types of
redundant clauses that have been considered in the SAT literature. We can
do so by combining asymmetric-literal addition or covered-literal addition with
tautology or subsumption checks. These checks can be performed either directly
on the clause or for all resolvents of the clause upon one of its literals. The latter
can be seen as some kind of “look-ahead” via resolution. Fig. 1 illustrates possible
combinations of techniques. Every path from the left to the right gives rise to a
particular redundancy notion. We remark that ALA stands for asymmetric-literal
addition and CLA stands for covered-literal addition.



ALA Resolution Look-Ahead Tautology CheckCLA ALA Subsumption Check

Fig. 1. Combination of Techniques to Obtain Redundancy Notions.

For instance, to detect whether a clause is an asymmetric tautology, we first
perform some asymmetric-literal additions and then check whether the resulting
clause is a tautology. Another example are blocked clauses, where we ask whether
all L-resolvents of the clause are tautologies. Similarly, we can obtain covered
clauses, resolution subsumed clauses, and resolution asymmetric tautologies via
such combinations. This gives rise to various other types of clauses like asym-
metric blocked clauses, asymmetric subsumed clauses [7], or asymmetric covered
clauses [3]. The redundancy of these clauses follows from the results in this
paper, most importantly from the principle of implication modulo resolution.

8 Predicate Elimination

In this section, we show how the principle of implication modulo resolution allows
us to construct a short soundness proof for the predicate elimination technique
of Khasidashvili and Korovin [2]. Predicate elimination is a first-order variant
of variable elimination, which is successfully used during preprocessing and in-
processing in SAT solving [17]. The elimination of a predicate P from a formula
F is computed as follows: First, we add all the non-tautological binary resol-
vents upon literals with predicate symbol P to F . After this, all original clauses
containing P are removed. To guarantee that this procedure does not affect sat-
isfiability, the original definition requires P to be non-recursive, meaning that it
must not occur more than once per clause.

Theorem 11. If a formula F ′ is obtained from a formula F by eliminating a
non-recursive predicate P , then F and F ′ are equisatisfiable.

Proof. Let FP be obtained from F by adding all non-tautological resolvents
upon P . Clearly, FP and F are equivalent. Now, let C be a clause that contains
a literal L with predicate symbol P . Since all non-tautological L-resolvents of
C with clauses in FP \ {C} are contained in FP \ {C}, C is implied modulo
resolution by FP and so it is redundant w.r.t. FP . Thus, after removing from
FP all clauses containing P , the resulting formula F ′ and FP are equisatisfiable.
Therefore, F ′ and F are equisatisfiable. ut

We want to highlight that Khasidashvili and Korovin [2] proved soundness of
predicate elimination for first-order logic with equality while we restrict ourselves
to first-order logic without equality.



9 Confluence Properties

In this section, we analyze confluence properties of the clause-elimination and
literal-addition techniques discussed in this paper. Intuitively, confluence of a
technique tells us that the order in which we perform the clause eliminations or
the literal additions is not relevant to the final outcome of the technique.

To analyze confluence formally, we interpret our techniques as abstract reduc-
tion systems [18]. For instance, to analyze the confluence of a clause-elimination
technique CE, we define the (reduction) relation →CE over formulas as follows:
F1 →CE F2 if and only if the technique CE allows us to obtain F2 from F1 by
removing a clause. Likewise, for a literal-addition technique LA, we define the
relation→LA over clauses as C1 →LA C2 if and only if the technique LA allows us
to obtain C2 from C1 by adding a literal. Hence, when we ask whether a certain
preprocessing technique is confluent, what we actually want to know is whether
its corresponding reduction relation is confluent [18]:

Definition 11. Let → be a relation and →∗ its reflexive transitive closure.
Then, → is confluent if, for all x, y1, y2 with x →∗ y1 and x →∗ y2, there
exists an element z such that y1 →∗ z and y2 →∗ z.

In our context, this means that whenever the elimination of certain clauses from
a formula F yields a formula F1, and the elimination of certain other clauses
from F yields another formula F2, then there is still a formula Fz that we can
obtain from both F1 and F2. Likewise for the addition of literals to a clause.
Therefore, we do not need to worry about “missed opportunities” caused by a
bad choice of the elimination order. For some techniques in this paper, we can
show the stronger diamond property which implies confluence [18]:

Definition 12. A relation → has the diamond property if, for all x, y1, y2 with
x→ y1 and x→ y2, there exists a z such that y1 → z and y2 → z.

Next, we present the confluence results. We start with blocked-clause elimination,
for which confluence is easily shown. Define F1 →BCE F2 iff the formula F2 can
be obtained from the formula F1 by removing a clause that is blocked in F1.

Theorem 12. Blocked-clause elimination is confluent, i.e., →BCE is confluent.

Proof. If a clause C is blocked in a formula F , it is also blocked in every subset
F ′ of F , since the L-resolvents of C with clauses in F ′ \ {C} are a subset of
the L-resolvents with clauses in F \ {C}. Therefore, if all L-resolvents of C with
clauses in F \ {C} are tautologies, so are those with clauses in F ′ \ {C}. Hence,
the relation →BCE has the diamond property and thus it is confluent. ut

As in the propositional case, where covered-clause elimination is confluent [3],
we can prove the confluence of its first-order variant. Define F1 →CCE F2 iff the
formula F2 can be obtained from F1 by removing a clause that is covered in F1.

Theorem 13. Covered-clause elimination is confluent, i.e., →CCE is confluent.



Proof. We show that→CCE has the diamond property. Let F be a formula and let
F \ {C} and F \ {D} be obtained from F by respectively removing the covered
clauses C and D. It suffices to prove that C is covered in F \ {D} and D is
covered in F \ {C}. We show that C is covered in F \ {D}. The other case is
symmetric. Since C is covered in F , we can perform a sequence of covered-literal
additions to turn C into a clause Cn = C ∨ L1 ∨ · · · ∨ Ln that is blocked in
Fn, where by Fi we denote the formula obtained from F by replacing C with
Ci = C ∨ L1 ∨ · · · ∨ Li (0 ≤ i ≤ n).

Now, if in F \ {D}, the clause Cn can be obtained from C by performing the
same sequence of covered-literal additions, then Cn is also blocked in Fn \ {D}
and thus C is covered in F \{D}. Assume now to the contrary that there exists a
literal Li that is not covered by Ci−1 in Fi−1 \ {D} and suppose w.l.o.g. that Li

is the first such literal. It follows that there exists a non-tautological L-resolvent
of Ci−1 (with a clause in Fi−1 \ {D}) that does not contain Li. But then Li is
not covered by Ci−1 in Fi−1, a contradiction. ut

Covered-literal addition is confluent. Let F be a formula and define C1 →CLA C2

iff C2 can be obtained from C1 by adding a literal L that is covered by C1 in F .

Theorem 14. Covered-literal addition is confluent, i.e., →CLA is confluent.

Proof. We show that the relation →CLA has the diamond property. Let F be
formula and C a clause. Let furthermore C1 = C ∨ L1 and C2 = C ∨ L2 be
obtained from C by respectively adding literals L1 and L2 that are both covered
by C in F . We have to show that C1 covers L2 and, analogously, that C2 covers
L1. Since C covers L2, it follows that C contains a literal L such that L2 is
contained in all non-tautological L-resolvents of C. But, as L ∈ C1, every non-
tautological L-resolvent of C1 must also contain L2. It follows that C1 covers
L2. The argument for L1 being covered by C2 is symmetric. ut

Asymmetric-literal addition is also confluent. Let F be a formula and define
C1 →ALA C2 iff C2 can be obtained from C1 by adding a literal L that is an
asymmetric literal w.r.t. C1 in F .

Theorem 15. Asymmetric-literal addition is confluent, i.e., the relation →ALA

is confluent.

Proof. If L1 is an asymmetric literal w.r.t. a clause C in a formula F , then there
exists a clause D ∨ L̄ ∈ F \ {C} and a substitution λ such that Dλ ⊆ C and
L1 = L̄λ. Thus, Dλ ⊆ C∨L2 for each C∨L2 that was obtained from C by adding
some asymmetric literal L2, and so L1 is an asymmetric literal w.r.t. every such
clause. Hence, →ALA has the diamond property and so it is confluent. ut

For asymmetric-tautology elimination, the non-confluence result from proposi-
tional logic [3] implies non-confluence of the first-order generalization. Finally,
the following example shows that RS and RAT elimination are not confluent:



Example 16. Let F = {¬Q ∨ P, ¬R ∨ Q, ¬P ∨ R, ¬Q ∨ R}. Then, ¬Q ∨ R is
a RAT and RS on the literal R as there is only one R-resolvent, namely the
tautology ¬Q ∨ Q, obtained by resolving with Q ∨ ¬R. If we remove ¬Q ∨ R,
none of the remaining clauses of F is a RAT or RS. In contrast, suppose we start
by removing ¬Q∨P , which is a RAT and RS on P , then all the other clauses can
be removed, because they become RAT and RS: The clause ¬R∨Q becomes both
RAT and RS on the literal Q as there is only a tautological resolvent upon Q,
namely ¬R∨R. For ¬P ∨R, there are no resolvents upon ¬P and so it trivially
becomes RAT and RS on ¬P . Finally, ¬Q ∨R becomes RAT and RS on both R
and ¬Q as there are only tautological resolvents upon these two literals. ut

A summary of the confluence results is given in Table 1. Note that for all the
confluent techniques, we could show that they also have the diamond property.

Technique Confluent

Blocked-Clause Elimination yes
Covered-Clause Elimination yes
Asymmetric-Tautology Elimination no
Resolution-Asymmetric-Tautology Elimination no
Resolution-Subsumed-Clause Elimination no
Covered-Literal Addition yes
Asymmetric-Literal Addition yes

Table 1. Confluence Properties of the First-Order Preprocessing Techniques.

10 Conclusion

We introduced the principle of implication modulo resolution for first-order logic
and showed that if a clause C is implied modulo resolution by a formula F , then
C is redundant with respect to F . Using implication modulo resolution, we lifted
several SAT-preprocessing techniques to first-order logic, proved their soundness,
and analyzed their confluence properties. We furthermore demonstrated how
implication modulo resolution yields short soundness proofs for the existing first-
order techniques of predicate elimination and blocked-clause elimination.

For now, we have only considered first-order logic without equality. A variant
of implication modulo resolution that guarantees redundancy in first-order logic
with equality requires a refined notion of L-resolvents, possibly based on flat
resolvents [2] as in the definition of equality-blocked clauses [8]. The focus of this
paper is mainly theoretical, laying the groundwork for practical applications of
the new first-order techniques. We plan to implement and empirically evaluate
the preprocessing techniques proposed in this paper within the next year, since
we expect them to improve the performance of first-order theorem provers.
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