Skip to main content

Theorem Proving for Metric Temporal Logic over the Naturals

  • Conference paper
  • First Online:
Automated Deduction – CADE 26 (CADE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10395))

Included in the following conference series:

Abstract

We study translations from Metric Temporal Logic (MTL) over the natural numbers to Linear Temporal Logic (LTL). In particular, we present two approaches for translating from MTL to LTL which preserve the ExpSpace complexity of the satisfiability problem for MTL. In each of these approaches we consider the case where the mapping between states and time points is given by (1) a strict monotonic function and by (2) a non-strict monotonic function (which allows multiple states to be mapped to the same time point). Our translations allow us to utilise LTL solvers to solve satisfiability and we empirically compare the translations, showing in which cases one performs better than the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We write \(\mathsf{min}(l+k,2\cdot C)\) for the minimum between \(l+k\) and \(2\cdot C\). If the minimum is \(2\cdot C\) then \( s^{j+1}_{2\cdot C} \) means that the sum of the last \(j+1\) variables is greater or equal to \(2\cdot C\).

References

  1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS) 12(2s), 95: 1–95: 30 (2013)

    Google Scholar 

  2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proceedings of LICS 2007, pp. 109–120. IEEE (2007)

    Google Scholar 

  7. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0_29

    Chapter  Google Scholar 

  8. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70, 281–306 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dixon, C., Fisher, M., Konev, B.: Temporal logic with capacity constraints. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS, vol. 4720, pp. 163–177. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74621-8_11

    Chapter  Google Scholar 

  10. Fisher, M.: A normal form for temporal logics and its applications in theorem-proving and execution. J. Logic Comput. 7(4), 429–456 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proceedings of POPL 1980, pp. 163–173. ACM (1980)

    Google Scholar 

  12. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif. Intell. 173(5—-6), 619–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and CPDL. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 26–45. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6_3

    Google Scholar 

  14. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Tech. J. 45(9), 1563–1581 (1966)

    Article  MATH  Google Scholar 

  15. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9_21

    Chapter  Google Scholar 

  16. Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 274–278. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45085-6_21

    Chapter  Google Scholar 

  17. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications. In: Proceedings of CDC 2008, pp. 3953–3958. IEEE (2008)

    Google Scholar 

  18. LS4. https://github.com/quickbeam123/ls4

  19. NuSMV. http://nusmv.fbk.eu/

  20. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85778-5_1

    Chapter  Google Scholar 

  21. pltl. http://users.cecs.anu.edu.au/rpg/PLTLProvers/

  22. Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS 1977, pp. 46–57. IEEE (1977)

    Google Scholar 

  23. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24372-1_28

    Chapter  Google Scholar 

  24. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_42

    Chapter  Google Scholar 

  26. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electronic Notes Theoret. Comput. Sci. 113, 145–162 (2005)

    Article  Google Scholar 

  27. TRP++. http://cgi.csc.liv.ac.uk/konev/software/trp++/

  28. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., et al. (eds.) Automation of Reasoning, pp. 466–483. Springer, Heidelberg (1983)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ullrich Hustadt or Ana Ozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hustadt, U., Ozaki, A., Dixon, C. (2017). Theorem Proving for Metric Temporal Logic over the Naturals . In: de Moura, L. (eds) Automated Deduction – CADE 26. CADE 2017. Lecture Notes in Computer Science(), vol 10395. Springer, Cham. https://doi.org/10.1007/978-3-319-63046-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63046-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63045-8

  • Online ISBN: 978-3-319-63046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics