
ar
X

iv
:1

70
5.

08
79

2v
1

 [
cs

.L
O

]
 2

4
M

ay
 2

01
7

On the Combination of the

Bernays–Schönfinkel–Ramsey Fragment

with Simple Linear Integer Arithmetic

Matthias Horbach

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Marco Voigt

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany,

Saarbrücken Graduate School of Computer Science

Christoph Weidenbach

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Abstract

In general, first-order predicate logic extended with linear integer arithmetic is undecidable.
We show that the Bernays–Schönfinkel–Ramsey fragment (∃∗∀∗-sentences) extended with a
restricted form of linear integer arithmetic is decidable via finite ground instantiation. The
identified ground instances can be employed to restrict the search space of existing automated
reasoning procedures considerably, e.g., when reasoning about quantified properties of array
data structures formalized in Bradley, Manna, and Sipma’s array property fragment. Typically,
decision procedures for the array property fragment are based on an exhaustive instantiation
of universally quantified array indices with all the ground index terms that occur in the
formula at hand. Our results reveal that one can get along with significantly fewer instances.

1 Introduction

The Bernays-Schönfinkel-Ramsey (BSR) fragment comprises exactly the first-order logic prenex
sentences with the ∃∗∀∗ quantifier prefix, resulting in a CNF where all occurring function symbols
are constants. Formulas may contain equality. Satisfiability of the BSR fragment is decidable and
NExpTime-complete [19]. Its extension with linear arithmetic is undecidable [23, 10, 13, 11].

We prove decidability of the restriction to arithmetic constraints of the form s ⊳ t, x ⊳ t, where
⊳ is one of the standard relations <,≤,=, 6=,≥, > and s, t are ground arithmetic terms, and x E y,
where E stands for ≤, =, or ≥. Underlying the result is the observation that similar to the finite
model property of BSR, only finitely many instances of universally quantified clauses with arith-
metic constraints need to be considered. Our construction is motivated by results from quantifier
elimination [20] and hierarchic superposition [4, 3, 18, 11, 5]. In particular, the insights gained
from the quantifier elimination side lead to instantiation methods that can result in significantly
fewer instances than known, more naive approaches for comparable logic fragments generate, such
as the original instantiation approach for the array property fragment [8, 6]. For example, consider
the following two clauses (∧ and ∨ bind stronger than →)

x2 6= 5 ∧ R(x1) → Q(u1, x2)
y1 < 7 ∧ y2 ≤ 2 → Q(d, y2) ∨R(y1)

where the variable u1 ranges over a freely selectable domain, xi, yi are variables over the integers,
and the constant d addresses an element of the same domain that u1 ranges over. All occurring
variables are implicitly universally quantified. Our main result reveals that this clause set is satisfi-
able if and only if a finite set of ground instances is satisfiable in which (i) u1 is being instantiated

1

http://arxiv.org/abs/1705.08792v1

with the constant d, (ii) x2 and y2 are being instantiated with the (abstract) integer values 5 + 1
and −∞, and (iii) x1 and y1 are being instantiated with −∞ only. The instantiation does not
need to consider the constraints y1 < 7, y2 ≤ 2, because it is sufficient to explore the integers
either from −∞ upwards—in this case upper bounds on integer variables can be ignored—or from
+∞ downwards—ignoring lower bounds—, as is similarly done in linear quantifier elimination over
the reals [20]. Moreover, instantiation does not need to consider the value 5 + 1 for x1 and y1,
motivated by the fact that the argument x1 of R is not affected by the constraint x2 6= 5.

The abstract values −∞ and +∞ are represented by Skolem constants over the integers, to-
gether with defining axioms. For the example, we introduce the fresh Skolem constant c−∞ to
represent −∞ (a “sufficiently small” value) together with the axiom c−∞ < 2, where 2 is the
smallest occurring constant. Eventually, we obtain the ground clause set

5 + 1 6= 5 ∧ R(c−∞) → Q(d, 5 + 1)
c−∞ 6= 5 ∧ R(c−∞) → Q(d, c−∞)

c−∞ < 7 ∧ 5 + 1 ≤ 2 → Q(d, 5 + 1) ∨R(c−∞)
c−∞ < 7 ∧ c−∞ ≤ 2 → Q(d, c−∞) ∨R(c−∞)

c−∞ < 2

which has the model A with cA−∞ = 1, RA = {1}, QA = {(d, 6), (d, 1)}.
After developing our instantiation methodology in Section 3, we show in Sections 4 that our

instantiation methods are also compatible with uninterpreted functions and additional background
theories under certain syntactic restrictions. These results are based on an (un)satifiability-
preserving embedding of uninterpreted functions into BSR clauses. There are interesting known
logic fragments that fall into this syntactic category: many-sorted clause sets over stratified vocab-
ularies [1, 16], the array property fragment [8], and the finite essentially uninterpreted fragment,
possibly extended with simple integer arithmetic [12]. Consequently, reasoning procedures for
these fragments that employ forms of instantiation may benefit from our findings. The paper ends
with a discussion in Section 5, where we consider the impact of our results on automated reasoning
procedures for our and similar logic fragments and outline possible further improvements.

In order to facilitate smooth reading, lengthy technical proofs are only sketched in the main
text and presented in full in the appendix. The present paper is an extended version of [14].

2 Preliminaries

Hierarchic combinations of first-order logic with background theories build upon sorted logic with
equality [4, 5]. We instantiate this framework with the BSR fragment and linear arithmetic over
the integers as the base theory. The base sort Z shall always be interpreted by the integers Z. For
simplicity, we restrict our considerations to a single free sort S, which may be freely interpreted
as some nonempty domain, as usual.

We denote by VZ a countably infinite set of base-sort variables. Linear integer arithmetic (LIA)
terms are build from integer constants 0, 1,−1, 2,−2, . . ., the operators +,−, and the variables from
VZ . We moreover allow base-sort constant symbols whose values have to be determined by an
interpretation (Skolem constants). They can be conceived as existentially quantified. The LIA
constraints we consider are of the form s ⊳ t, where ⊳ ∈ {<,≤,=, 6=,≥, >} and s and t are either
LIA variables or ground LIA terms.

In order to hierarchically extend the base theory by the BSR fragment, we introduce the free
sort S, a countably infinite set VS of free-sort variables, a finite set Ω of free (uninterpreted) con-
stant symbols of sort S and a finite set Π of free predicate symbols equipped with sort information.
Note that every predicate symbol in Π has a finite, nonnegative arity and can have a mixed sort
over the two sorts Z and S, e.g. P : Z×S×Z. We use the symbol ≈ to denote the built-in equality
predicate on S. To avoid confusion, we tacitly assume that no constant or predicate symbol is
overloaded, i.e. they have a unique sort.

Definition 1 (BSR with Simple Linear Integer Constraints–BSR(SLI)). A BSR(SLI) clause has
the form Λ ‖Γ → ∆, where Λ, Γ, ∆ are multisets of atoms satisfying the following conditions.

2

(i) Every atom in Λ is a LIA constraint of the form s ⊳ t or x ⊳ t or x E y where s, t are ground,
⊳∈{<,≤,=, 6=,≥, >}, and E ∈{≤,=,≥},

(ii) Every atom in Γ and ∆ is either an equation s ≈ s′ with s, s′ ∈ Ω∪ VS , or a non-equational
atom P (s1, . . . , sm), where every si of sort Z must be a variable x ∈ VZ , and every si of sort
S may be a variable u ∈ VS or a constant symbol c ∈ Ω.

We omit the empty multiset left of “→” and denote it by � right of “→” (where � at the same
time stands for falsity). The clause notation separates arithmetic constraints from the free (also:
uninterpreted) part. We use the vertical double bar “‖” to indicate this separation syntactically.
Intuitively, clauses Λ ‖Γ → ∆ can be read as

(∧
Λ∧

∧
Γ
)
→

∨
∆, i.e. the multisets Λ,Γ stand for

conjunctions of atoms and ∆ stands for a disjunction of atoms.
Requiring the free part Γ → ∆ of clauses to not contain any base-sort terms apart from

variables does not limit expressiveness. Every base-sort term t 6∈ VZ in the free part can safely
be replaced by a fresh base-sort variable xt when an atomic constraint xt = t is added to the
constraint part of the clause (a process known as purification or abstraction [4, 18]).

A hierarchic interpretation is an algebra A which interprets the base sort Z as ZA = Z,
assigns integer values to all occurring base-sort Skolem constants, and interprets all LIA terms
and constraints in the standard way. Moreover, A comprises a nonempty domain SA, assigns to
each free-sort constant symbol c in Ω a domain element cA ∈ SA, and interprets every sorted
predicate symbol P :ξ1 × . . .× ξm in Π by a set PA ⊆ ξA1 × . . .× ξAm, as usual.

Given a hierarchic interpretation A and a sort-respecting variable assignment β : VZ ∪ VS →
ZA ∪SA, we write A(β)(s) to address the value of the term s under A with respect to the variable
assignment β. The variables occurring in clauses are implicitly universally quantified. Therefore,
given a clause C, we call A a hierarchic model of C, denoted A |= C, if and only if A, β |= C holds
for every variable assignment β. For clause sets N , A |= N holds if and only if A |= C holds true
for every clause C ∈ N . We call a clause C (a clause set N) satisfiable if and only if there exists
a hierarchic model A of C (of N). Two clauses C,D (clause sets N,M) are equisatisfiable if and
only if C (N) is satisfiable whenever D (M) is satisfiable and vice versa.

Given a BSR(SLI) clause C, consts(C) denotes the set of all constant symbols occurring in C.
The set bconsts(N) (fconsts(N)) is the restriction of consts(N) to base-sort (free-sort) constant
symbols. By vars(C) we denote the set of all variables occurring in C. Similar notation is used
for other syntactic objects.

We define substitutions σ in the standard way as sort-respecting mappings from variables
to terms. The restriction of the domain of a substitution σ to a set V of variables is denoted
by σ|V and is defined such that vσ|V := vσ for every v ∈ V and vσ|V = v for every v 6∈ V .
While the application of a substitution σ to terms, atoms and multisets thereof is defined as
usual, we need to be more specific for clauses. Consider a BSR(SLI) clause C := Λ ‖Γ → ∆
and let x1, . . . , xk denote all base-sort variables occurring in C for which xiσ 6= xi. We then set
Cσ := Λσ, x1 = x1σ, . . . , xk = xkσ ‖Γσ|VS → ∆σ|VS .

A term, atom, etc. is called ground, if it does not contain any variables. A BSR(SLI) clause C
is called essentially ground if it does not contain free-sort variables and for every base-sort variable
x occurring in C there is a constraint x = t in C for some ground LIA term t. A clause set N is
essentially ground if all the clauses it contains are essentially ground.

Definition 2 (Normal Form of BSR(SLI) Clauses). A BSR(SLI) clause Λ ‖Γ → ∆ is in normal
form if

(1) all non-ground atoms in Λ have the form x E c or x ≤ y (or their symmetric variants) where
c is an integer or Skolem constant and E ∈{≤,=,≥},

(2) all base-sort variables that occur in Λ also occur in Γ → ∆, and

(3) Γ does not contain any equation of the form u ≈ t.

A BSR(SLI) clause set N is in normal form if all clauses in N are in normal form and pairwise
variable disjoint. Moreover, we assume that N contains at least one free-sort constant symbol.

3

Lemma 3. For every BSR(SLI) clause set N there is an equisatisfiable BSR(SLI) clause set N ′

in normal form.

Proof sketch. We go through the conditions of Definition 2.

Ad (1). Clauses of the form x 6= s,Λ′ ‖ Γ → ∆ can be equivalently replaced by two clauses
x < s,Λ′ ‖ Γ → ∆ and x > s,Λ′ ‖ Γ → ∆.

Clauses of the form x E s,Λ′ ‖ Γ → ∆, where s is ground but not a constant symbol and
where ⊳∈{≤,=,≥}, can be replaced—under preservation of (un)satisfiability—by two clauses
s 6= c ‖ → � and x E c,Λ′ ‖ Γ → ∆ for some fresh constant symbol c.

Similarly, clauses of the form x > s,Λ′ ‖ Γ → ∆ can be replaced—under preservation of
(un)satisfiability—by two clauses s+ 1 6= c ‖ → � and x ≥ c,Λ′ ‖ Γ → ∆ for some fresh constant
symbol c. An analogous solution exists for constraints of the form x < s.

Atoms of the form x = y can be eliminated by replacing every occurrence of y in the respective
clause with x—also in the free part of the clause.

Ad (2). Consider a clause Λ′,Λ ‖ Γ → ∆, where every atom in Λ′ contains a base-sort variable
x that does not occur in Λ ‖ Γ → ∆. We remove all atoms x 6= t as done above. Moreover, we
remove all trivial atoms x E x with E ∈{≤,=,≥} from Λ′ and partition the result into three
parts Λ′

1,Λ
′
2,Λ

′
3 such that Λ′

1 contains exclusively atoms of the form t < x and t ≤ x, Λ′
2 contains

exclusively atoms of the form x = t, Λ′
3 contains exclusively atoms of the form x < t and x ≤ t,

and t stands for some ground base-sort term or some base-sort variable. Let Λ′′ be the following
set of atoms

Λ′′ :=
{
t < t′

∣∣∣ (t < x) ∈ Λ′
1 and (x E t′) ∈ Λ′

2 ∪ Λ′
3 with E ∈{≤,=}

}

∪
{
t < t′

∣∣∣ (t E x) ∈ Λ′
1 ∪ Λ′

2 and (x < t′) ∈ Λ′
3 with E ∈{≤,=}

}

∪
{
t+ 1 < t′

∣∣∣ (t < x) ∈ Λ′
1 and (x < t′) ∈ Λ′

3

}

∪
{
t ≤ t′

∣∣∣ (t ≤ x) ∈ Λ′
1 and (x E t′) ∈ Λ′

2 ∪ Λ′
3 with E ∈{≤,=}

}

∪
{
t ≤ t′

∣∣∣ (x = t) ∈ Λ′
2 and (x ≤ t′) ∈ Λ′

3

}

∪
{
t = t′

∣∣∣ (x = t) ∈ Λ′
2 and (x = t′) ∈ Λ′

2

}
.

We replace the clause Λ′,Λ ‖ Γ → ∆ by the equivalent one Λ′′,Λ ‖ Γ → ∆.

Ad (3). Clauses of the form Λ ‖ u ≈ t,Γ → ∆ can be equivalently replaced by (Λ ‖ Γ → ∆)
[
u/t

]
,

where every occurrence of u is substituted with t.

3 Instantiation for BSR(SLI)

In this section, we present and prove our main technical result:

Theorem 4. Satisfiability of a finite BSR(SLI) clause set N is decidable.

In essence, one can show that N is equisatisfiable to a finite set of essentially ground clauses (cf.
Lemma 14). There are calculi, such as hierarchic superposition [4, 3, 18, 11, 5] or DPLL(T) [21],
that can decide satisfiability of ground clause sets. Our decidability result for BSR(SLI) does not
come as a surprise, given the similarity to other logic fragments that are known to be decidable,
such as the array property fragment by Bradley, Manna, and Sipma [8, 7] and Ge and de Moura’s
finite essentially uninterpreted fragment extended with simple integer arithmetic constraints [12].

More important than the obtained decidability result is the instantiation methodology that
we employ, in particular for integer-sort variables. Typically, decision procedures for the integer-
indexed array property fragment are based on an exhaustive instantiation of universally quantified

4

array indices with all the ground index terms that occur in the formula at hand (cf. the original
approach [8, 6] and standard literature [7, 17]). In more sophisticated approaches, only a relevant
portion of the occurring arithmetic terms is singled out before instantiation [12].

Our methodology will also be based on a concept of relevant terms, determined by connections
between the arguments of predicate symbols and instantiation points that are propagated along
these connections. This part of our method is not specific for the integers but can be applied to the
free part of our language as well. For integer variables, we investigate additional criteria to filter out
unnecessary instances, inspired by the Loos–Weispfenning quantifier elimination procedure [20].
We elaborate on this in Sections 3.1 – 3.4.

3.1 Instantiation of Integer Variables

We first summarize the overall approach for the instantiation of integer variables in an intuitive
way. To keep the informal exposition simple, we pretend that all LIA terms are constants from Z.
We even occasionally refer to the improper values −∞ / +∞ —“sufficiently small/large” integers.
A formal treatment with proper definitions will follow.

Given a finite BSR(SLI) clause set N in normal form, we intend to partition Z into a set P
of finitely many subsets p ∈ P such that satisfiability of N necessarily leads to the existence of a
uniform hierarchic model.

Definition 5 (Uniform Interpretations). A hierarchic interpretation A is uniform with respect to
a partition P of the integers if and only if for every free predicate symbol Q occurring in N , every
part p ∈ P , and all integers r1, r2 ∈ p we have 〈. . . , r1, . . .〉 ∈ QA if and only if 〈. . . , r2, . . .〉 ∈ QA.

As soon as we have found such a finite partition P , we pick one integer value rp ∈ p as
representative from each and every part p ∈ P . Given a clause C that contains a base-sort
variable x, and given constant symbols d1, . . . , dk whose values cover all these representatives, i.e.
{dA1 , . . . , d

A
k } = {rp | p ∈ P}, we observe

A |= C if and only if A |=
{
C
[
x/di

] ∣∣ 1 ≤ i ≤ k
}
.

This equivalence claims that we can transform universal quantification over the integer domain
into finite conjunction over all representatives of subsets in P . Formulated differently, we can
extrapolate a model for a universally quantified clause set, if we can find a model of finitely many
instances of this clause set. The formal version of this statement is given in Lemma 14. Uniform
hierarchic models play a key role in its proof.

When we extract the partition P from the given clause set N , we exploit three aspects to
increase efficiency:

(E-i) We group argument positions of free predicate symbols in such a way that the instantiation
points relevant for these argument positions are identical. This means the variables that
are associated to these argument positions, e.g. because they occur in such a place in some
clause, need to be instantiated only with terms that are relevant for the respective group of
argument positions. This is illustrated in Example 6.

(E-ii) Concerning the relevant integer constraints, i.e. the ones that produce instantiation points,
one can choose to either stick to lower bounds exclusively, use −∞ as a default (the lowest
possible lower bound), and ignore upper bounds. Alternatively, one can focus on upper
bounds, use +∞ as default, and ignore lower bounds. This idea goes back to the Loos–
Weispfenning quantifier elimination procedure over the reals [20]. Example 10 gives some
intuition.

(E-iii) The choice described under (E-ii) can be made independently for every integer variable that
is to be instantiated. See Examples 10 and 18.

Example 6. Consider the following clauses:
C1 := 1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2) ,
C2 := y3 ≤ 7, y1 ≤ y3 ‖ Q(y1, y2) → R(y3) ,
C3 := 6 ≤ z1 ‖ T (z1) → � .

5

The variables x1, x2, y1, y2, y3, and z1 are affected by the constraints in which they occur explicitly.
Technically, it is more suitable to speak of the argument position 〈T, 1〉 instead of variables x1 and
z1 that occur as the first argument of the predicate symbol T in C1 and C3, respectively. Speaking
in such terms, argument position 〈T, 1〉 is directly affected by the constraints 1 ≤ x1 and 6 ≤ z1,
argument position 〈Q, 1〉 is directly affected by 1 ≤ x1 and y1 ≤ y3, 〈Q, 2〉 is affected by x2 ≤ 0,
and, finally, 〈R, 1〉 is affected by y3 ≤ 7 and y1 ≤ y3. Besides such direct effects, there are also
indirect effects that have to be taken into account. For example, the argument position 〈Q, 1〉 is
indirectly affected by the constraint 6 ≤ z1, because C1 establishes a connection between argument
positions 〈T, 1〉 and 〈Q, 1〉 via the simultaneous occurrence of x1 in both argument positions and
〈T, 1〉 is affected by 6 ≤ z1. This is witnessed by the fact that C1 and C3 together logically entail
the clause D := 6 ≤ x, y ≤ 0 ‖ → Q(x, y). D can be obtained by a hierarchic superposition step
from C1 and C3, for instance. Another entailed clause is 6 ≤ z, z ≤ 7 ‖ → R(z), the (simplified)
result of hierarchically resolving D with C2. Hence, 〈R, 1〉 is affected by the constraints 6 ≤ z and
z ≤ 7. Speaking in terms of argument positions, this effect can be described as propagation of the
lower bound 6 ≤ y1 from 〈Q, 1〉 to 〈R, 1〉 via the constraint y1 ≤ y3 in C2.

One lesson learned from the example is that argument positions can be connected by variable
occurrences or constraints of the form x ≤ y. Such links in a clause set N are expressed by the
relation ⇒N .

Definition 7 (Connections Between Argument Positions and Argument Position Closures). Let
N be a BSR(SLI) clause set in normal form. We define ⇒N to be the smallest preorder (i.e. a
reflexive and transitive relation) over Π×N such that 〈Q, j〉 ⇒N 〈P, i〉 whenever there is a clause
Λ ‖Γ → ∆ in N containing free atoms Q(. . . , u, . . .) and P (. . . , v, . . .) in which the variable u
occurs at the j-th and the variable v occurs at the i-th argument position and

(1) either u = v,

(2) or u 6= v, both are of sort Z and there are constraints u = v or u ≤ v in Λ,

(3) or u 6= v, both are of sort S and there is an atom u ≈ v in Γ or in ∆.1

⇒N induces downward closed sets ⇓N 〈P, i〉 of argument positions, called argument position clo-
sures : ⇓N 〈P, i〉 :=

{
〈Q, j〉

∣∣ 〈Q, j〉 ⇒N 〈P, i〉
}
.

Consider a variable v that occurs at the i-th argument position of a free atom P (. . . , v, . . .)
in N . We denote the argument position closure related to v’s argument position in N by ⇓N (v),
i.e. ⇓N (v) := ⇓N 〈P, i〉. If v is a free-sort variable that exclusively occurs in equations, we set
⇓N (v) := ⇓〈Falsev, 1〉 (cf. footnote 1). To simplify notation a bit, we write ⇒, ⇓〈P, i〉, and ⇓(v)
instead of ⇒N , ⇓N 〈P, i〉, and ⇓N (v), when the set N is clear from the context.

Notice that ⇒ confined to argument position pairs of the free sort is always symmetric. Asym-
metry is only introduced by atomic constraints x ≤ y.

While the relation ⇒ indicates how instantiation points are propagated between argument
positions, the set ⇓〈P, i〉 comprises all argument positions from which instantiation points are
propagated to 〈P, i〉. For a variable v the set ⇓(v) contains all argument positions that may
produce instantiation points for v.

Remark 8. In order to make the propagation relation⇒ capture all relevant propagation channels
for integer-valued instantiation points, it is vital that the clause set under consideration is in normal
form. In particular, Condition (2) of Definition 2 guarantees that every variable x occurring in
the constraint part Λ of a BSR(SLI) clause Λ ‖Γ → ∆ is associated with an argument position
〈P, i〉, since Γ or ∆ must contain some non-equational atom P (. . . , x, . . .).

1For any free-sort variable v that occurs in a clause (Λ ‖Γ → ∆) ∈ N exclusively in equations, we pretend
that ∆ contains an atom Falsev(v), for a fresh predicate symbol Falsev : S. This is merely a technical assumption.
Without it, we would have to treat such variables v as a separate case in all definitions. The atom Falsev(v) is not
added “physically” to any clause.

6

Moreover, transitivity of ⇒ entails that two LIA constraints x ≤ y, y ≤ z lead to 〈P, i〉 ⇒

〈Q, j〉, 〈Q, j〉 ⇒ 〈R, k〉, and 〈P, i〉 ⇒ 〈R, k〉, where 〈P, i〉, 〈Q, j〉, and 〈R, k〉 are intended to be
the argument positions associated with x, y, and z, respectively. On the other hand, two LIA
constraints x ≤ c, c ≤ y, where c is a Skolem constant, do not entail propagation of instantiation
points from 〈P, i〉 to 〈Q, j〉. In such cases lower bounds do not have to be propagated for the
following reasons. If y is assigned any value smaller than the value assigned to c, the constraint
c ≤ y is violated and, therefore, the clause is satisfied. The constraint c ≤ y directly leads to an
instantiation point c for y, as we shall see in the following definition.

Next, we collect the instantiation points that are necessary to eliminate base-sort variables by
means of finite instantiation.

Definition 9 (Instantiation Points for Base-Sort Argument Positions). Let N be a BSR(SLI)
clause set in normal form and let P : ξ1 × . . .× ξm be a free predicate symbol occurring in N . For
every i with ξi = Z we define IP,i to be the smallest set satisfying the following condition. We
have d ∈ IP,i for any constant symbol d for which there exists a clause C in N that contains an
atom P (. . . , x, . . .) in which x occurs as the i-th argument and that contains a constraint x = d
or x ≥ d.

The most apparent peculiarity about this definition is that LIA constraints of the form x ≤ d
are completely ignored when collecting instantiation points for x’s argument position. This is one
of the aspects that makes this definition interesting from the efficiency point of view, because
the number of instances that we have to consider might decrease considerably in this way. The
following example may help to develop an intuitive understanding.

Example 10. Consider two clauses C := 3 ≤ x, x ≤ 5 ‖ → T (x) and D := x ≤ 0 ‖T (x) → �.
Recall that we are looking for a finite partition P of Z such that we can construct a uniform
hierarchic model A of {C,D}, i.e. for every subset p ∈ P and all integers r1, r2 ∈ p we want
r1 ∈ TA to hold if and only if r2 ∈ TA. A natural candidate for P is {(−∞, 0], [1, 2], [3, 5], [6,+∞)},
which takes every LIA constraint in C and D into account. Correspondingly, we find the candidate
model A with TA = [3, 5]. Obviously, A is uniform with respect to P .

But there are other interesting possibilities, for instance, the more coarse-grained partition
{(−∞, 2], [3,+∞)} together with the predicate TA = [3,+∞). This latter candidate partition com-
pletely ignores the constraints x ≤ 0 and x ≤ 5 that constitute upper bounds on x and in this way
induces a simpler partition. Dually, we could have concentrated on the upper bounds instead (com-
pletely ignoring the lower bounds). This would have led to the partition {(−∞, 0], [1, 5], [6,+∞)}
and the candidate predicate TA = [1, 5] (or TA = [1,+∞)). Both ways are possible, but the
former yields a coarser partition and is thus more attractive, as it will cause fewer instances in the
end.

The example reveals quite some freedom in choosing an appropriate partition of the integers.
A large number of parts directly corresponds to a large number of instantiation points—one for
each interval—, and therefore leads to a large number of instances that need to be considered by
a reasoning procedure. Hence, regarding efficiency, it is of great importance to keep the partition
P of Z coarse.

It remains to address the question of why it is sufficient to consider lower bounds only. At
this point, we content ourselves with an informal explanation. Let ϕ(x) be a satisfiable ∧-∨-
combination of upper and lower bounds on some integer variable x. For the sake of simplicity, we
assume that every atom in ϕ is of the form c ≤ x or x ≤ c with c ∈ Z. When we look for some value
of x that satisfies ϕ, we start from some “sufficiently small value” −∞. If −∞ yields a solution for
ϕ, we are done. If [x7→−∞] 6|= ϕ, there must be some lower bound in ϕ that prevents −∞ from
being a solution. In order to find a solution, we successively increase the value of x until a solution
is found. Interesting test points r ∈ Z for x are those where r− 1 violates some lower bound c ≤ x
in ϕ and r satisfies the bound, i.e. r = c. Consider two lower bounds c1 ≤ x and c2 ≤ x in ϕ such
that c1 < c2 and ϕ contains no further bound d ≤ x with c1 < d < c2. Any assignment [x7→r] with
c1 < r < c2 satisfies exactly the same lower bounds as the assignment [x7→c1] does. Moreover, any

7

such assignment satisfies at most the upper bounds that [x7→c1] satisfies. In fact, it may violate
some of them. Consequently, if neither [x7→c1] nor [x7→c2] satisfy ϕ, then [x7→r] with c1 < r < c2
cannot satisfy ϕ either. In other words, it suffices to test only values induced by lower bounds.
The abstract value −∞ serves as the default value, which corresponds to the implicit lower bound
−∞ < x.

Definition 11 (Instantiation Points for Base-Sort Argument Position Closures and Induced Par-
tition). Let N be a BSR(SLI) clause set in normal form and let A be a hierarchic interpretation.
For every base-sort argument position closure ⇓〈P, i〉 induced by ⇒ we define the following:

The set I⇓〈P,i〉 of instantiation points for ⇓〈P, i〉 is defined by
I⇓〈P,i〉 := {c−∞} ∪

⋃
〈Q,j〉∈⇓〈P,i〉 IQ,j ,

where we assume c−∞ to be a distinguished base-sort constant symbol that may occur in N .
Let the sequence r1, . . . , rk comprise all integers in the set

{
cA

∣∣ c ∈ I⇓〈P,i〉 \ {c−∞}
}
ordered

so that r1 < . . . < rk. The partition PA
⇓〈P,i〉 of the integers into finitely many intervals is defined

by
PA
⇓〈P,i〉 :=

{
(−∞, r1 − 1], [r1, r2 − 1], . . . , [rk−1, rk − 1], [rk,+∞)

}
.

Please note that partitions as described in the definition do always exist, and do not contain
empty parts.

Lemma 12. Let N be a BSR(SLI) clause set in normal form and let A be a hierarchic interpre-
tation. Consider two argument position pairs 〈Q, j〉, 〈P, i〉 for which 〈Q, j〉 ⇒ 〈P, i〉 holds in N .
Then I⇓〈Q,j〉 ⊆ I⇓〈P,i〉. Moreover, PA

⇓〈P,i〉 is a refinement of PA
⇓〈Q,j〉, i.e. for every p ∈ PA

⇓〈P,i〉 there

is some p′ ∈ PA
⇓〈Q,j〉 such that p ⊆ p′.

Lemma 13. Let N be a BSR(SLI) clause set in normal form and let A be a hierarchic interpre-
tation. For every part p ∈ PA

⇓〈P,i〉 of the form p = [rℓ, ru] or p = [rℓ,+∞) we find some constant

symbol c⇓〈P,i〉,p ∈ I⇓〈P,i〉 with cA⇓〈P,i〉,p = rℓ.

Note that the lemma did not say anything about the part (−∞, ru] which also belongs to every
PA
⇓〈P,i〉. Our intention is that the constant symbol c−∞ shall be interpreted by a value from this

interval. Hence, we add the set of clauses Ψ−∞
N :=

{
(c−∞ ≥ c ‖ → �)

∣∣ c ∈ bconsts(N) \ {c−∞}
}

whenever necessary. Note that if A is a hierarchic model of a given BSR(SLI) clause set N , then
A can be turned into a model of Ψ−∞

N just by changing the interpretation of c−∞. After this
modification A is still a model of N , if c−∞ does not occur in N .

The next lemma shows that we can eliminate base-sort variables x from clauses C in a finite
BSR(SLI) clause set N by replacing C with finitely many instances in which x is substituted
with the instantiation points that we computed for x. In addition, the axioms that stipulate the
meaning of c−∞ need to be added. Iterating this instantiation step for every base-sort variable in
N eventually leads to a clause set that is essentially ground with respect to the constraint parts of
the clauses it contains (free-sort variables need to be treated separately, of course, see Section 3.3).

Lemma 14 (Finite Integer-Variable Elimination). Let N be a finite BSR(SLI) clause set in
normal form such that, if the constant symbol c−∞ occurs in N , then Ψ−∞

N ⊆ N . Suppose

there is a clause C in N which contains a base-sort variable x. Let N̂x be the clause set N̂x :=(
N \ {C}

)
∪

{
C
[
x/c

] ∣∣ c ∈ I⇓N (x)

}
∪ Ψ−∞

N . N is satisfiable if and only if N̂x is satisfiable.

Proof sketch. The “only if”-part is trivial.
The “if”-part requires a more sophisticated argument. In what follows, the notations ⇒ and

⇓ always refer to the original clause set N . Let A be a hierarchic model of N̂x. We use A to
construct the hierarchic model B |= N as follows. For the domain SB we reuse A’s free domain
SA. For every base-sort or free-sort constant symbol c ∈ consts(N) we set cB := cA. For every
predicate symbol P : ξ1 × . . . × ξm that occurs in N , for every argument position i, 1 ≤ i ≤ m,
with ξi = Z, and for every interval p ∈ PA

⇓〈P,i〉 Lemma 13 and the extra clauses in Ψ−∞
N guarantee

the existence of a base-sort constant symbol c⇓〈P,i〉,p ∈ I⇓(x), such that cA⇓〈P,i〉,p ∈ p. Based on

8

this observation, we define the family of projection functions π⇓〈P,i〉 : Z ∪ SB → Z ∪ SA by

π⇓〈P,i〉(a) :=





cA⇓〈P,i〉,p if ξi = Z and p ∈ PA
⇓〈P,i〉

is the interval a lies in,

a if ξi = S.

Using the projection functions π⇓〈P,i〉, we define the sets PB in such a way that for all domain
elements a1, . . . , am of appropriate sorts〈

a1, . . . , am
〉
∈ PB if and only if

〈
π⇓〈P,1〉(a1), . . . , π⇓〈P,m〉(am)

〉
∈ PA.

We next show B |= N . Consider any clauseC′ := Λ′ ‖Γ′ → ∆′ inN and let β : VZ∪VS → Z∪SB

be some variable assignment. From β we derive a special variable assignment βπ for which we shall
infer A, βπ |= C′ as an intermediate step: βπ(v) := π⇓(v)(β(v)) for every variable v. If C′ 6= C,

then N̂x already contains C′, and thus A, βπ |= C′ must hold. In case of C′ = C, let p∗ be the
interval in PA

⇓(x) containing the value β(x), and let c∗ be an abbreviation for c⇓(x),p∗
. Due to

βπ(x) = cA∗ and since A is a model of the clause C
[
x/c∗

]
in N̂x, we conclude A, βπ |= C. Hence,

in any case we can deduce A, βπ |= C′. By case distinction on why A, βπ |= C′ holds, we may use
this result to infer B, β |= C′. It follows that B |= N .

3.2 Independent Bound Selection

By now we have mainly focused on lower bounds as sources for instantiation points. However, as
we have already pointed out (cf. (E-ii) and (E-iii) in Section 3.1 and Example 10), there is also a
dual approach in which upper bounds on integer variables play the central role. It turns out that
the choice between the two approaches can be made independently for every variable that is to
be instantiated. In the interest of efficiency, it makes sense to always choose the approach that
results in fewer non-redundant instances or, more abstractly speaking, a set of instances whose
satisfiability is easier to decide. Example 18 illustrates the overall approach.

Given a clause set N in normal form, the relation ⇒N is defined as before. Dually to the sets
⇓N 〈P, i〉, we define the sets ⇑N 〈P, i〉 :=

{
〈Q, j〉

∣∣ 〈P, i〉 ⇒N 〈Q, j〉
}
, which constitute upwards

closed sets with respect to ⇒N rather than downwards closed sets. Regarding instantiation points,
only LIA constraints x = d and x ≤ d lead to d ∈ I⇑N (x). In addition, c+∞ is by default
added to every set I⇑N 〈P,i〉. In order to fix the meaning of c+∞, we introduce the set of axioms

Ψ+∞
N :=

{
(c+∞ ≤ c ‖ → �)

∣∣ c ∈ bconsts(N) \ {c+∞}
}
.

The dual versions of Definitions 9 and 11 and Lemma 14 read as follows.

Definition 15 (Dual Instantiation Points for Base-Sort Argument Positions). Let N be a
BSR(SLI) clause set in normal form and let P : ξ1 × . . . × ξm be a free predicate symbol oc-
curring in N . For every i with ξi = Z we define Idual

P,i to be the smallest set satisfying the

following condition. We have d ∈ Idual
P,i for any constant symbol d for which there exists a clause C

in N that contains an atom P (. . . , x, . . .) in which x occurs as the i-th argument and that contains
a constraint x = d or x ≤ d.

Definition 16 (Dual Instantiation Points for Base-Sort Argument Position Closures and Induced
Partition). LetN be a BSR(SLI) clause set in normal form and let A be a hierarchic interpretation.
For every base-sort argument position closure ⇑〈P, i〉 induced by ⇒ we define the following:

The set I⇑〈P,i〉 of instantiation points for ⇑〈P, i〉 is defined by

I⇑〈P,i〉 := {c+∞} ∪
⋃

〈Q,j〉∈⇑〈P,i〉 I
dual
Q,j .

Let the sequence r1, . . . , rk comprise all integers in the set
{
cA

∣∣ c ∈ I⇑〈P,i〉 \ {c+∞}
}
ordered

so that r1 < . . . < rk. The partition PA
⇑〈P,i〉 of the integers into finitely many intervals is defined

by
PA
⇑〈P,i〉 :=

{
(−∞, r1], [r1 + 1, r2], . . . , [rk−1 + 1, rk], [rk + 1,+∞)

}
.

In the following lemma we refer to the set
Ψ+∞

N :=
{
(c+∞ ≤ c ‖ → �)

∣∣ c ∈ bconsts(N) \ {c+∞}
}
.

9

Lemma 17. Let N be a finite BSR(SLI) clause set in normal form such that, if the constant
symbol c+∞ occurs in N , then Ψ+∞

N ⊆ N . Suppose there is a clause C in N which contains a

base-sort variable x. Let N̂x :=
(
N \ {C}

)
∪

{
C
[
x/c

] ∣∣ c ∈ I⇑N (x)

}
∪ Ψ+∞

N . N is satisfiable if

and only if N̂x is satisfiable.

In both, Lemma 14 and its dual version, Lemma 17, the equisatisfiable instantiation can be
applied to the respective variable independently of the instantiation steps that have already been
done or are still to be done in the future. This means, we can choose independently, whether
to stick to the lower or upper bounds for instantiation. This choice can, for example, be made
depending on the number of non-redundant instances that have to be generated.

Example 18. Consider the following BSR(SLI) clause set N :
1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2)

y3 ≤ 7, y1 ≤ y3 ‖ Q(y1, y2) → R(y3)
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → �

We intend to instantiate the variables y3, y1, x1, z1 in this order. For y3 we can choose between
I⇓N (y3) = {c−∞, 1, 6} and I⇑N (y3) = {7, c+∞}. Using the latter option, we obtain the instances

7 ≤ 7, y1 ≤ 7, y3 = 7 ‖ Q(y1, y2) → R(y3)
c+∞ ≤ 7, y1 ≤ c+∞, y3 = c+∞ ‖ Q(y1, y2) → R(y3)

plus the clauses in Ψ+∞
N . The constraint 7 ≤ 7 can be removed, as it is redundant. The second

instance can be dropped immediately, since the constraint c+∞ ≤ 7 is false in any model satisfying
Ψ+∞

N . Dual simplifications can be applied to constraints with c−∞. Let N ′ contain the clauses in
Ψ+∞

N and the clauses
1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2)
y1 ≤ 7, y3 = 7 ‖ Q(y1, y2) → R(y3)
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → �

For y1 we use I⇓N′(y1) = {c−∞, 1, 6} rather than I⇑N′(y1) = {7, 9, c+∞} for instantiation and
obtain N ′′ (after simplification):

1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2)
y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3)

y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3)
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3)
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → �

plus the clauses in Ψ−∞
N and Ψ+∞

N and plus the clause c−∞ ≥ c+∞‖ → �. The sets of instantiation
points for x1 in N ′′ are I⇓N′′(x1) = {c−∞, 1, 6} and I⇑N′′ (x1) = {c−∞, 1, 6, 9, c+∞}. The latter set
nicely illustrates how instantiation sets for particular variables can evolve during the incremental
process of instantiation. We take the set with fewer instantiation points and obtain N ′′′:

x2 ≤ 0, x1 = 1 ‖ → T (x1), Q(x1, x2)
x2 ≤ 0, x1 = 6 ‖ → T (x1), Q(x1, x2)

y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3)
y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3)
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3)
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → �

plus Ψ−∞
N ∪Ψ+∞

N ∪ {c−∞ ≥ c+∞‖ → �}. We instantiate z1 using the set I⇓N′′′ (z1) = {c−∞, 1, 6}
and not I⇑N′′′ (z1) = {c−∞, 1, 6, 9, c+∞}:

x2 ≤ 0, x1 = 1 ‖ → T (x1), Q(x1, x2)
x2 ≤ 0, x1 = 6 ‖ → T (x1), Q(x1, x2)

y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3)
y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3)
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3)

z1 = 6 ‖ T (z1) → �

plus Ψ−∞
N ∪ Ψ+∞

N ∪ {c−∞ ≥ c+∞‖ → �}. Until now, we have introduced 6 non-redundant
instances. A completely naive instantiation approach where x1, y1, y3, z1 are instantiated with
all occurring constant symbols 0, 1, 6, 7, 9 leads to 17 non-redundant instances. This corresponds
to the originally proposed method for the array property fragment, cf. [8]. A more sophisticated
instantiation approach where x1, y1, y3, z1 are instantiated with 1, 6, 7, 9 (as there is no connection

10

from 0 to x1, y1, y3, z1) leads to 13 non-redundant instances. For instance, the methods described
in [12] produce this set of instances.

instantiation instantiation points non-redundant
method for y3, y1, x1, z1 instances

exhaustive [8] 4 times {0, 1, 3, 6, 9} 17

filtered by argu-
ment positions [12]

4 times {1, 6, 7, 9} 13

our approach
{7, c+∞}, {c−∞, 1, 6},
{c−∞, 1, 6}, {c−∞, 1, 6}

6

The example shows that our approach to instantiation can reduce the number of introduced
instances substantially. Our approach is particularly beneficial in cases where argument positions
are to a large degree independent (i.e. not connected via ⇒) and/or where there is a strong
imbalance between the number of upper and lower bounds that are connected to a certain argument
position. To illustrate the latter, consider a clause C in a BSR(SLI) clause set N with base-sort
variables x1, . . . , xn, which are all pairwise connected via ⇒, and which are subject (directly or
via ⇒) to ℓ lower bounds c1 ≤ z1, . . . , cℓ ≤ zℓ and k upper bounds z′1 ≤ d1, . . . , z

′
k ≤ dk. Assume

that the c1, . . . , cℓ, d1, . . . , dk are all pairwise distinct and different from c−∞. Moreover, suppose
ℓ < k. Instantiating the variables x1, . . . , xn in C with all constant symbols c1, . . . , cℓ, d1, . . . , dk
yields (ℓ + k)n instances. In constrast, by Lemma 17, it is sufficient to consider the instances of
C resulting from instantiating every xi with c−∞, c1, . . . , cℓ. Hence, only (ℓ + 1)n instances need
to be considered. In the extreme case where ℓ = 0 and k > 0, our approach only needs a single
instance instead of kn instances.

3.3 Instantiation of Free-Sort Variables

We can also follow an instantiation approach for free-sort variables. In a nutshell, we collect only
relevant instantiation points for a given argument position (cf. (E-i)). A similar approach is taken
in [12].

Definition 19 (Instantiation Points for Free-Sort Argument Positions). Let N be a BSR(SLI)
clause set in normal form and let P : ξ1 × . . .× ξm be a free predicate symbol occurring in N (we
pretend that P also reaches over the predicate symbols Falsev : S, cf. footnote 1). For every i with
ξi = S we define IP,i to be the smallest set satisfying the following conditions:

(a) d ∈ IP,i for any constant symbol d for which there exists an atom P (. . . , d, . . .) in N with d
in the i-th argument position,

(b) IP,i = fconsts(N) for any clause Λ‖Γ → ∆ in N such that Γ → ∆ contains P (. . . , u, . . .) in
which u occurs as the i-th argument and ∆ contains an atom of the form u ≈ t where t is
either a variable or a constant symbol.

Definition 20 (Instantiation Points for Free-Sort Argument Position Closures). Let N be a
BSR(SLI) clause set in normal form. For every free-sort argument position closure ⇓〈P, i〉 induced
by ⇒ we define the set I⇓〈P,i〉 of instantiation points for ⇓〈P, i〉 by I⇓〈P,i〉 :=

⋃
〈Q,j〉∈⇓〈P,i〉 IQ,j ,

if this results in a non-empty set. Otherwise, we set I⇓〈P,i〉 := {d} for an arbitrarily chosen
d ∈ fconsts(N).

Lemma 21. Let N be a finite BSR(SLI) clause set in normal form. Suppose there is a clause C

in N which contains a free-sort variable u. Let N̂u :=
(
N \ {C}

)
∪

{
C
[
u/c

] ∣∣ c ∈ I⇓N (u)

}
. N

is satisfiable if and only if N̂u is satisfiable.

Proof sketch. The proof of the “if”-part proceeds along similar lines as in the proof of Lemma 14.
The main difference is the family of projection functions π⇓〈P,i〉 : Z∪SB → Z∪SA, which we now

11

define by

π⇓〈P,i〉(a) :=





a if ξi = S and a = cA for some c ∈ I⇓〈P,i〉,

dA⇓〈P,i〉 if ξi = S and a 6= cA for every c ∈ I⇓〈P,i〉,

a if ξi = Z,

where for every argument position closure ⇓〈P, i〉 we fix some default instantiation point d⇓〈P,i〉 ∈
I⇓〈P,i〉, for which we choose an arbitrary constant symbol from I⇓〈P,i〉.

3.4 Avoiding Immediate Blowups

Compared to naive approaches to instantiation of integer-sort and free-sort variables, our methods
produce exponentially fewer instances in certain cases. Still, the number of instances can become
very large. Consider again the clause C := y3 ≤ 7, y1 ≤ y3 ‖Q(y1, y2) → R(y3) from Example 18.
Instantiating y3 with I⇑(y3) = {7, c+∞} first and then y1 with I⇓(y1) = {c−∞, 1, 6} leads to
|I⇑(y3)| · |I⇓(y1)| = 6 instances of C (before simplification):

7 ≤ 7, c−∞ ≤ 7, y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3) ,
7 ≤ 7, 1 ≤ 7, y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3) ,
7 ≤ 7, 6 ≤ 7, y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3) ,

c+∞ ≤ 7, c−∞ ≤ c+∞, y3 = c+∞, y1 = c−∞ ‖ Q(y1, y2) → R(y3) ,
c+∞ ≤ 7, 1 ≤ c+∞, y3 = c+∞, y1 = 1 ‖ Q(y1, y2) → R(y3) ,
c+∞ ≤ 7, 6 ≤ c+∞, y3 = c+∞, y1 = 6 ‖ Q(y1, y2) → R(y3) .

We refer to this set as M1. Although simplification will remove the last three clauses, as they are
redundant, we add instances to the clause set without knowing whether they are really necessary
for showing unsatisfiability, for instance.

We can, on the other hand, leave it to the theorem prover to decide when instantiation is
appropriate. In order to do so, we need to encode the information contained in the computed
sets of instantiation points into the clause set using a standard technique. Regarding the above
example, this leads to the set M2 containing |I⇑(y3)|+ |I⇓(y1)|+ 1 = 6 clauses:

y3 ≤ 7, y1 ≤ y3 ‖ Sy3(y3), Sy1(y1), Q(y1, y2) → R(y3) ,
y′

3 = 7 ‖ → Sy3(y
′

3) ,
y′′

3 = c+∞ ‖ → Sy3(y
′′

3) ,
y′

1 = c−∞ ‖ → Sy1(y
′

1) ,
y′′

1 = 1 ‖ → Sy1(y
′′

1) ,
y′′′

1 = 6 ‖ → Sy1(y
′′′

1) .
Hierarchic superposition, for instance, can generate the clauses in M1 from the clauses in M2

by resolving over the atoms Sy1(. . .). However, in order to derive the empty clause from an
unsatisfiable clause set, it is not always necessary to generate all instances. Instead, a refuting
theorem prover can use the information encoded in M2 to instantiate C on demand. This might
prevent a non-linear blowup caused by immediate instantiation with all instantiation points, since
we trade the multiplication in |M1| = |I⇑(y3)| · |I⇓(y1)| for addition in |M2| = |I⇑(y3)|+ |I⇓(y1)|+1.

4 Stratified Clause Sets

In this section we treat certain clause sets with uninterpreted non-constant function symbols. By a
transformation into an equisatisfiable set of BSR clauses, we show that our instantiation methods
are also applicable in such settings.

Definition 22. Let N be a finite set of variable-disjoint first-order clauses in which also non-
constant function symbols occur. By ΠN and ΩN we denote the set of occurring predicate symbols
and function symbols (including constants), respectively. N is considered to be stratified if we can
define a mapping lvlN : (ΠN ∪ΩN)×N → N that maps argument position pairs (of predicate and
function symbols) to nonnegative integers such that the following conditions are satisfied.

(a) For every function symbol f : ξ1 × . . . × ξm → ξm+1 and every i ≤ m we have lvlN 〈f, i〉 >
lvlN 〈f,m+ 1〉.

12

(b) For every (sub)term g(s1, . . . , sk−1, f(t1, . . . , tm), sk+1, . . . , sm′) occurring in N we have
lvlN 〈f,m+ 1〉 = lvlN 〈g, k〉. This includes the case where f is a constant symbol and m = 0.
Moreover, this also includes the case where g is replaced with a predicate symbol P .

(c) For every variable v that occurs in two (sub)terms f(s1, . . . , sk−1, v, sk+1, . . . , sm) and
g(t1, . . . , tk′−1, v, tk′+1, . . . , tm′) in N we have lvlN〈f, k〉 = lvlN〈g, k′〉. The same applies,
if f or g or both are replaced with predicate symbols.

(d) For every equation f(s1, . . . , sm) ≈ g(t1, . . . , tm′) we have lvlN 〈f,m + 1〉 = lvlN 〈g,m′ + 1〉.
This includes the cases where f or g or both are constant symbols (with m = 0 or m′ = 0
or both, respectively).

Several known logic fragments fall into this syntactic category: many-sorted clauses over strati-
fied vocabularies as described in [1, 16], and clauses belonging to the finite essentially uninterpreted
fragment (cf. Proposition 2 in [12]).

Lemma 23. Let C = Γ → ∆ be a first-order clause and let f1, . . . , fn be a list of all uninterpreted
non-constant function symbols occurring in C. Let R1, . . . , Rn be distinct predicate symbols that
do not occur in C and that have the sort Ri : ξ1 × . . .× ξm × ξm+1, if and only if fi has the sort
ξ1 × . . .× ξm → ξm+1. Let Φ1 and Φ2 be the following sets of sentences:

Φ1 :=
{
∀x1 . . . xmuv. Ri(x1, . . . , xm, u) ∧Ri(x1, . . . , xm, v) → u ≈ v

∣∣ 1 ≤ i ≤ n
}

and Φ2 :=
{
∀x1 . . . xm∃v. Ri(x1, . . . , xm, v)

∣∣ 1 ≤ i ≤ n
}
. There is a clause D that does not

contain non-constant function symbols and for which the set {D} ∪ Φ1 ∪ Φ2 is equisatisfiable to
C.

Proof sketch. We apply the following flattening rules. v stands for a fresh variable that has not
occurred yet. P ranges over predicate symbols different from ≈. s̄ and t̄ stand for tuples of
arguments.

Γ, fi(s̄) ≈ fj(t̄) → ∆
(fun-fun left)

Γ, Ri(s̄, v), Rj(t̄, v) → ∆

Γ → ∆, fi(s̄) ≈ fj(t̄)
(fun-fun right)

Γ, Ri(s̄, v) → ∆, Rj(t̄, v)

Γ, fi(s̄) ≈ c → ∆
(fun-const left)

Γ, Ri(s̄, c) → ∆

Γ → ∆, fi(s̄) ≈ c
(fun-const right)

Γ → ∆, Ri(s̄, c)

Γ, fi(s̄) ≈ x → ∆
(fun-var left)

Γ, Ri(s̄, x) → ∆

Γ → ∆, fi(s̄) ≈ x
(fun-var right)

Γ → ∆, Ri(s̄, x)

Γ, P (. . . , fi(s̄), . . .) → ∆
(fun left)

Γ, Ri(s̄, v), P (. . . , v, . . .) → ∆

Γ → ∆, P (. . . , fi(s̄), . . .)
(fun right)

Γ,Ri(s̄, v) → ∆,P (. . . , v, . . .)

Given a BSR clause Γ → ∆, we consider an atom Rj(t̄, v) in ∆ to be guarded, if there is also an
atom Ri(s̄, v) in Γ. With the exception of the rule (fun-var right) the flattening rules presented
in the proof of Lemma 23 preserve guardedness of atoms in ∆ and introduce atoms Rj(t̄, v) on
the right-hand side of a clause only if at the same time a corresponding guard is introduced on
the left-hand side of the clause.

Hence, if we are given a stratified clause set in which the atoms x ≈ t in the consequents of
implications are subject to certain restrictions (e.g. t 6= f(. . .) and guardedness of atoms u ≈ c and
u ≈ v), then the above flattening rules yield clauses that belong to the following class of BSR(SLI)
clauses—after necessary purification and normalization steps. In the definition we mark certain
predicate symbols that are intended to represent uninterpreted functions. By adding suitable
axioms later on, these will be equipped with the properties of function graphs.

Definition 24 (Stratified and Guarded BSR(SLI)). Consider a BSR(SLI) clause set N in normal
form. Let R1, . . . , Rn be a list of predicate symbols that we consider to be marked in N . We call

13

N stratified and guarded with respect to R1, . . . , Rn, if and only if the following conditions are
met.

(a) There is some function lvlN : Π× N → N that assigns to each argument position pair 〈P, i〉
a nonnegative integer lvlN 〈P, i〉 such that

(a.1) 〈P, i〉 ⇒N 〈Q, j〉 entails lvlN 〈P, i〉 = lvlN 〈Q, j〉, and

(a.2) for every marked predicate symbol Rj : ξ1 × . . . × ξm × ξm+1 we have lvlN 〈Rj , i〉 >
lvlN 〈Rj ,m+ 1〉 for every i ≤ m.

(b) In every clause Λ ‖Γ → ∆ in N any occurrence of an atom Rj(s1, . . . , sm, v) in ∆ entails
that Γ contains some atom Rℓ(t1, . . . , tm′ , v).

(c) For every atom u ≈ t in N , where t is either a free-sort variable v or a free-sort constant
symbol, at least one of two cases applies:

(c.1) u ≈ t, which must occur in the consequent of a clause, is guarded by some atom
Rj(t1, . . . , tm, u) occurring in the antecedent of the same clause.

(c.2) For every marked predicate symbol Rj : ξ1 × . . . × ξm × ξm+1 and every argument
position closure ⇓N 〈Rj , i〉 with 1 ≤ i ≤ m we have ⇓N 〈Rj , i〉 ∩ ⇓N (u) = ∅. If t = v, we
in addition have ⇓N 〈Rj , i〉 ∩ ⇓N (v) = ∅.

Notice that any atom u ≈ v over distinct variables requires two guards R(s̄, u) and R(t̄, v) in
order to be guarded in accordance with Condition (c.1).

Let N be a finite BSR(SLI) clause set in normal form that is stratified and guarded with
respect to R1, . . . , Rn. Let Ri : ξ1 × . . . × ξm × ξm+1 be marked in N and let P : ζ1 × . . . × ζm′

be any predicate symbol occurring in N (be it marked or not). We write Ri � P if and only if
lvlN 〈Ri,m+1〉 ≥ min1≤ℓ≤m′

(
lvlN 〈P, ℓ〉

)
. Without loss of generality, we assume R1 �N . . . �N Rn.

Let Φ1 := {∀x1 . . . xmuu′.(Ri(x1, . . . , xm, u) ∧Ri(x1, . . . , xm, u′)) → u ≃ u′ | Ri has arity m+ 1}
and Φ2 := {∀x1 . . . xm∃u.Ri(x1, . . . , xm, u) | Ri has arity m + 1}, where “≃” is a placeholder
for “≈” in free-sort equations and for “=” in base-sort equations.

Given a set M of BSR(SLI) clauses and an (m+ 1)-ary predicate symbol R that is marked in
M , we define the set Φ(R,M) :={
R(c1, . . . , cm, dRc1...cm)

∣∣ 〈c1, . . . , cm〉 ∈ I
[m]
⇓M 〈R,·〉

}

∪
{
∀x1 . . . xm.

∨
〈c1,...,cm〉∈I

[m]

⇓M 〈R,·〉

R(x1, . . . , xm, dRc1...cm)
}

∪
{
∀x1 . . . xmu. R(x1, . . . , xm, u) →

∨
〈c1,...,cm〉∈I

[m]

⇓M 〈R,·〉

u ≃ dRc1...cm

}

∪
{
∀x1 . . . xm. R(x1, . . . , xm, dRc1...cm), R(x1, . . . , xm, dRc′1...c

′
m
)

→ dRc1...cm ≃ dRc′1...c
′
m

∣∣ 〈c1, . . . , cm〉, 〈c′1, . . . , c
′
m〉 ∈ I

[m]
⇓M〈R,·〉

}

where I
[m]
⇓M 〈R,·〉 is used as an abbreviation for I⇓M 〈R,1〉 × . . . × I⇓M 〈R,m〉 and the dRc1...cm are

assumed to be fresh constant symbols. It is worth noticing that the clauses corresponding to
Φ(R,M) are stratified and guarded BSR(SLI) clauses.

We construct the sequence M0,M1, . . . ,Mn of finite clause sets as follows: M0 := N , every
Mℓ+1 with ℓ ≥ 0 is an extension of Mℓ by the BSR(SLI) clauses that correspond to the sentences
in Φ(Rℓ+1,Mℓ).

Lemma 25. The (finite) set N ∪ Φ1 ∪ Φ2 is satisfiable if and only if Mn is satisfiable.

Proof sketch. Any hierarchic model of Φ(R1,M0)∪ . . .∪Φ(Rn,Mn−1) is also a hierarchic model of
Φ1 ∪Φ2. Hence, any hierarchic model of Mn is also a hierarchic model of N ∪Φ1 ∪Φ2. Conversely,
from any hierarchic model A |= N ∪ Φ1 ∪ Φ2 we can construct a hierarchic interpretation B that
is a model of both sets N ∪ Φ1 ∪ Φ2 and Mn, and for which the following set is finite for any
R : ξ1 × . . .× ξm × ξm+1 that is marked in N :{

b ∈ ξBm+1 | there are a1, . . . , am such that 〈a1, . . . , am, b〉 ∈ RB
}
.

We develop the details of this construction in the proof of Lemma 30 in the appendix. Having B,
we show that B |= N ∪ Φ1 ∪ Φ2 (Lemma 30) and that B |= Mn (Lemma 31).

14

This lemma entails that all the instantiation methods developed in Section 3 can be used to
decide satisfiability of stratified and guarded BSR(SLI) clause sets.

Remark 26. In the definition of the sets Φ(R,M) we refrained from optimizing the number of
instantiation points by means of using I⇑M 〈P,i〉 instead of I⇓M 〈R,i〉 where this would lead to fewer
instances. It is clear however, that this sort of optimization is compatible with the taken approach.

We can add another background theory to the stratified and guarded fragment of BSR(SLI)
while preserving compatibility with our instantiation approach. Let ΠT and ΩT be finite sets of
sorted predicate symbols and sorted function symbols, respectively, and let T be some theory over
ΠT and ΩT . We assume that ΠT is disjoint from the set Π of uninterpreted predicate symbols.
For any set X of variables, let TT (X) be the set of all well-sorted terms constructed from the
variables in X and the function and constant symbols in ΩT .

Definition 27 (BSR(SLI+T)). A clause set N belongs to BSR(SLI+T) if it complies with the
syntax of a BSR(SLI) clause set that is stratified and guarded with respect to certain predicate
symbols R1, . . . , Rn with the following exceptions. Let C := Λ ‖Γ → ∆ be a clause in N . We allow
atoms P (s1, . . . , sm) with P ∈ ΠT and s1, . . . , sm ∈ TT (VZ ∪ VS)—including equations s1 ≈ s2—,
if for every variable u occurring in any of the si there is either a LIA guard of the form u = t in
Λ with t being ground, or there is a guard Rj(t1, . . . , tm′ , u) in Γ.

The instantiation methods presented in Section 3 are also applicable to BSR(SLI+T), since
Lemma 25 can be extended to cover finite BSR(SLI+T) clause sets. When computing instantiation
points for BSR(SLI+T) clause sets, we ignore T -atoms. For example, a clause ‖R(t, u), P (s, c) →
P (s′, u), Q(u) where P (s, c) and P (s′, u) are T -atoms, does not lead to an instantiation point c
for ⇓〈Q, 1〉. If we stick to this approach, the proof of Lemma 25 can easily be adapted to handle
additional T -atoms. The involved model construction remains unchanged. T -atoms are basically
treated like guarded free-sort atoms u ≈ d.

Proposition 28. BSR(SLI+T) allows an (un)satisfiability-preserving embedding of the array
property fragment with integer-indexed arrays and element theory T (cf. [8]) and of the finite
essentially uninterpreted fragment extended with simple integer arithmetic literals (cf. [12]) into
BSR(SLI+T).

Example 29. The following formula ϕ belongs to the array property fragment with integer indices
and the theory of bit vectors as the element theory. The operator ∼ stands for bitwise negation
of bit vectors and the relations � and ≈ are used as the “at most” and the equality predicate on
bit vectors, respectively. Moreover, a[i] denotes a read operation on the array a at index i.

ϕ := c ≥ 1 ∧ ∀ij. 0 ≤ i ≤ j → a[i] � a[j]
∧ ∀i. 0 ≤ i ≤ c− 1 → a[i] � ∼a[0]
∧ → a[c] ≈ ∼a[0]
∧ ∀i. i ≥ c+ 1 → a[i] � ∼a[0]

Translating ϕ into BSR(SLI+T) yields the following clause set N , in which we consider Pa to be
marked.

c < 1 ‖ → �

e 6= c− 1 ‖ → �

f 6= c+ 1 ‖ → �

0 ≤ i, i ≤ j ‖ Pa(i, u), Pa(j, v) → u � v
0 ≤ i, i ≤ e, y = 0 ‖ Pa(i, u), Pa(y, v) → u � ∼v

x = c, y = 0 ‖ Pa(x, u), Pa(y, v) → u ≈ ∼v
i ≥ f, y = 0 ‖ Pa(i, u), Pa(y, v) → u � ∼v

In order to preserve (un)satisfiability, functional axioms have to be added for Pa (cf. the sets Φ1

and Φ2 that we used earlier). Doing so, we leave BSR(SLI+T).
The clause set N induces the set I⇓〈Pa,1〉 = {c−∞, 0, c, f} of instantiation points for the index

of the array. An adaptation of Lemma 25 for BSR(SLI+T) entails that adding the clause set N ′

corresponding to the following set of sentences yields a BSR(SLI+T) clause set N ∪ N ′ that is
equisatisfiable to ϕ.{

Pa(c
′, dPac′)

∣∣ c′ ∈ {c−∞, 0, c, f}
}

∪
{
∀i.

∨
c′∈{c−∞,0,c,f} Pa(i, dPac′)

}

∪
{
∀iu. Pa(i, u) →

∨
c′∈{c−∞,0,c,f} u ≈ dPac′

}

∪
{
∀i. Pa(i, dPac′), Pa(i, dPac′′) → dPac′ ≈ dPac′′

∣∣ c′, c′′ ∈ {c−∞, 0, c, f}
}

15

Using the instantiation methods that we have developed in Sections 3.1 – 3.3, the set N∪N ′ can be
turned into an equisatisfiable quantifier-free clause set. One possible (uniform) model A |= N ∪N ′

assigns cA−∞ = −1, eA = 2, cA = 3, fA = 4, dAPac−∞
= 00, dAPa0

= 01, dAPae
= 01, dAPac

= 10,

dAPaf
= 11, and yields the array 〈01, 01, 01, 10, 11, 11, 11, . . .〉.

In the original array property fragment [8] no nestings of array read operations are allowed.
The stratification criterion in BSR(SLI+T) prevents nestings of the form a[a[i]], but it does not
prevent nestings of the form a[b[i]] with a 6= b. In this sense, but not only in this sense, our
fragment allows more freedom in formulating properties of arrays than the original array property
fragment.

5 Discussion

We have demonstrated how universally quantified variables in BSR(SLI) clause sets can be instan-
tiated economically. In certain cases our methods lead to exponentially fewer instances than a
naive instantiation with all occurring integer terms would generate. Moreover, we have sketched
how defining suitable finite-domain sort predicates instead of explicitly instantiating variables can
avoid immediate blow-ups caused by explicit instantiation. It is then left to the theorem prover
to actually instantiate variables as needed.

We have shown that our methods are compatible with uninterpreted, non-constant func-
tions under certain restrictions. Even another background theory T may be added, leading to
BSR(SLI+T). This entails applicability of our instantiation approach to known logic fragments,
such as the array property fragment [8], the finite essentially uninterpreted fragment with arith-
metic literals [12], and many-sorted first-order formulas over stratified vocabularies [1, 16].

The instantiation methodology that we have described specifically for integer variables can also
be adapted to work for universally quantified variables ranging over the reals [24]. Our computation
of instantiation points considers all argument positions in predicate atoms independently. This
can be further refined by considering dependencies between argument positions and clauses. For
example, this refinement idea was successfully applied in first-order logic [9, 16].

Once all the integer variables are grounded by successive instantiation, we are left with a clause
set where for every integer variable x in any clause there is a defining equation x = c for some
constant c. Thus, the clause set can actually be turned into a standard first-order BSR clause
set by replacing the integer constants with respective fresh uninterpreted constants. Then, as an
alternative to further grounding the free-sort variables, any state-of-the-art BSR decision procedure
can be applied to test satisfiability [22, 15, 2]. It is even sufficient to know the instantiation sets for
the base sort variables. Then, instead of explicit grounding, by defining respective finite-domain
sort predicates for the sets, the worst-case exponential blow-up of grounding can be prevented, as
outlined in Section 3.4.

References

[1] Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. Decidable Fragments of Many-
Sorted Logic. Journal of Symbolic Computation, 45(2):153–172, 2010.

[2] Gábor Alagi and ChristophWeidenbach. NRCL – AModel Building Approach to the Bernays–
Schönfinkel Fragment. In Frontiers of Combining Systems (FroCoS’15), pages 69–84, 2015.

[3] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition Modulo Linear
Arithmetic SUP(LA). In Frontiers of Combining Systems (FroCoS’09), pages 84–99, 2009.

[4] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational Theorem Proving for
Hierarchic First-Order Theories. Applicable Algebra in Engineering, Communication and
Computing, 5:193–212, 1994.

16

[5] Peter Baumgartner and Uwe Waldmann. Hierarchic Superposition with Weak Abstraction.
In Automated Deduction (CADE-24), pages 39–57, 2013.

[6] Aaron R. Bradley. Safety Analysis of Systems. PhD thesis, 2007.

[7] Aaron R. Bradley and Zohar Manna. The Calculus of Computation – Decision Procedures
with Applications to Verification. Springer, 2007.

[8] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decidable About Arrays? In
Verification, Model Checking, and Abstract Interpretation (VMCAI’06), pages 427–442, 2006.

[9] Koen Claessen, Ann Lillieström, and Nicholas Smallbone. Sort It Out with Monotonicity –
Translating between Many-Sorted and Unsorted First-Order Logic. In Automated Deduction
(CADE-23), pages 207–221, 2011.

[10] Peter J. Downey. Undecidability of Presburger Arithmetic with a Single Monadic Predicate
Letter. Technical report, Center for Research in Computer Technology, Harvard University,
1972.

[11] Arnaud Fietzke and Christoph Weidenbach. Superposition as a Decision Procedure for Timed
Automata. Mathematics in Computer Science, 6(4):409–425, 2012.

[12] Yeting Ge and Leonardo Mendonça de Moura. Complete Instantiation for Quantified For-
mulas in Satisfiabiliby Modulo Theories. In Computer Aided Verification (CAV’09), pages
306–320, 2009.

[13] Joseph Y. Halpern. Presburger Arithmetic with Unary Predicates is Π1
1 Complete. Journal

of Symbolic Logic, 56(2):637–642, 1991.

[14] Matthias Horbach, Marco Voigt, and Christoph Weidenbach. On the Combination of the
Bernays–Schönfinkel–Ramsey Fragment with Simple Linear Integer Arithmetic. In Automated
Deduction (CADE-26), 2017. To appear.

[15] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-Based Automated
Reasoning. In Andrei Voronkov and Christoph Weidenbach, editors, Programming Logics –
Essays in Memory of Harald Ganzinger, volume 7797 of Lecture Notes in Computer Science,
pages 239–270. Springer, 2013.

[16] Konstantin Korovin. Non-cyclic Sorts for First-Order Satisfiability. In Frontiers of Combining
Systems (FroCoS’13), pages 214–228, 2013.

[17] Daniel Kroening and Ofer Strichman. Decision Procedures. Texts in Theoretical Computer
Science. An EATCS Series. Springer, second edition, 2016.

[18] Evgeny Kruglov and Christoph Weidenbach. Superposition Decides the First-Order Logic
Fragment Over Ground Theories. Mathematics in Computer Science, 6(4):427–456, 2012.

[19] Harry R. Lewis. Complexity Results for Classes of Quantificational Formulas. Journal of
Computer and System Sciences, 21(3):317–353, 1980.

[20] Rüdiger Loos and Volker Weispfenning. Applying Linear Quantifier Elimination. The Com-
puter Journal, 36(5):450–462, 1993.

[21] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo The-
ories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal
of the ACM, 53:937–977, 2006.

[22] Ruzica Piskac, Leonardo Mendonça de Moura, and Nikolaj Bjørner. Deciding Effectively
Propositional Logic Using DPLL and Substitution Sets. Journal of Automated Reasoning,
44(4):401–424, 2010.

17

[23] Hilary Putnam. Decidability and Essential Undecidability. Journal of Symbolic Logic,
22(1):39–54, 1957.

[24] Marco Voigt and Christoph Weidenbach. Bernays-Schönfinkel-Ramsey with Simple Bounds
is NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO], 2015.

18

http://arxiv.org/abs/1501.07209

A Appendix

A.1 Details Concerning Section 3.1

Proof of Lemma 14

Lemma. Let N be a finite BSR(SLI) clause set in normal form such that, if the constant symbol
c−∞ occurs in N , then Ψ−∞

N ⊆ N . Suppose there is a clause C in N which contains a base-sort

variable x. Let N̂x be the clause set N̂x :=
(
N \ {C}

)
∪

{
C
[
x/c

] ∣∣ c ∈ I⇓N (x)

}
∪ Ψ−∞

N . N is

satisfiable if and only if N̂x is satisfiable.

Proof. The “only if”-part is trivial.
The “if”-part requires a more sophisticated argument. In what follows, the notations ⇒ and

⇓ always refer to the original clause set N . Let A be a hierarchic model of N̂x. We use A to
construct the hierarchic model B as follows. For the domain SB we reuse A’s free domain SA. For
all base-sort and free-sort constant symbols c ∈ consts(N), we set cB := cA. For every predicate
symbol P : ξ1 × . . . × ξm ∈ Π that occurs in N , for every argument position i, 1 ≤ i ≤ m, with
ξi = Z, and for every interval p ∈ PA

⇓〈P,i〉 Lemma 13 and the extra clauses in Ψ−∞
N guarantee the

existence of a base-sort constant symbol c⇓〈P,i〉,p ∈ I⇓(x), such that cA⇓〈P,i〉,p ∈ p. Based on this

observation, we define the family of projection functions π⇓〈P,i〉 : Z ∪ SB → Z ∪ SA by

π⇓〈P,i〉(a) :=





cA⇓〈P,i〉,p if ξi = Z and p ∈ PA
⇓〈P,i〉

is the interval a lies in,

a if ξi = S.

Using the projection functions π⇓〈P,i〉, we define the sets PB so that for all domain elements

a1, . . . , am of appropriate sorts
〈
a1, . . . , am

〉
∈ PB if and only if

〈
π⇓〈P,1〉(a1), . . . , π⇓〈P,m〉(am)

〉
∈

PA.
We next show B |= N . Consider any clause C′ := Λ′ ‖ Γ′ → ∆′ in N and let β : VZ ∪ VS →

Z∪SB be an arbitrary variable assignment. From β we derive a special variable assignment βπ for
which we shall infer A, βπ |= C′ as an intermediate step: βπ(v) := π⇓(v)(β(v)) for every variable

v. If C′ 6= C, then N̂x already contains C′, and thus A, βπ |= C′ must hold. In case of C′ = C,
let p∗ be the interval in PA

⇓(x) containing the value β(x), and let c∗ be an abbreviation for c⇓(x),p∗
.

Due to βπ(x) = cA∗ and since A is a model of the clause C
[
x/c∗

]
in N̂x, we conclude A, βπ |= C.

Hence, in any case we can deduce A, βπ |= C′. By case distinction on why A, βπ |= C′ holds, we
may use this result to infer B, β |= C′.

Case A, βπ 6|= s⊳t for some ground atomic constraint s⊳t in Λ′. Since B and A interpret constant
symbols in the same way and independently of a variable assignment, we immediately get
B, β 6|= s ⊳ t.

Case A, βπ 6|= (y E d) ∈ Λ′ for some base-sort variable y, some constant symbol d, and E ∈{≤,
=,≥}. This means βπ(y) 6E dA. Let p be the interval from PA

⇓(y) that contains β(y) and

therefore also βπ(y).

If dA lies outside of p, then βπ(y) E dA if and only if β(y) E dA, since βπ(y) ∈ p and
β(y) ∈ p. Thus, dB = dA entails B, β 6|= y E d.

If p is the point interval p = {dA}, then β(y) = βπ(y) = dA, and thus B, β 6|= y E d.

Suppose p = [rℓ, ru] and rℓ < dA ≤ ru, then E 6= ≤, since βπ(y) = cA⇓(y),p = rℓ < dA

(by Lemma 13). Moreover, we conclude d 6∈ I⇓(y), since otherwise p would be of the
form p = [dA, ru] by the construction of PA

⇓(y). Therefore, E 6∈{=,≥}, since otherwise
the instantiation point d would be in I⇓(y). But this contradicts our assumption that
E ∈{≤,=,≥}.

The case p = [rℓ,+∞) with rℓ < dA can be handled by similar arguments.

19

Suppose p = [dA, ru] and dA < ru, then βπ(y) = cA⇓(y),p = dA by Lemma 13. Consequently,

E 6∈{≤,=,≥}. This contradicts the assumptions we made regarding the syntax of the
constraint y E d.

The same applies in the case p = [dA,+∞).

Suppose p = (−∞, ru] with dA ≤ ru or p = (−∞,+∞). We know cA−∞ ∈ p due to the extra

clauses in N̂x.

If cA−∞ = dA, then d = c−∞. Since we also have βπ(y) = cA−∞, E cannot be one of the
relations ≤,=,≥.

If cA−∞ 6= dA, the fact that dA lies within p entails that d does not belong to I⇓(y).
Hence, ⊳ 6∈{=,≥}. Therefore, we observe βπ(y) > dA. But βπ(y) = cA−∞ then leads
to a contradiction with the clauses in Ψ−∞

N .

Case A, βπ 6|= (y ≤ z) ∈ Λ′ for some base-sort variables y, z. This means βπ(y) > βπ(z). Since N
is in normal form, we know that Γ → ∆ must contain atoms P (. . . , y, . . .) and R(. . . , z, . . .).
By Lemma 12, it follows that the partition PA

⇓(z) is a refinement of PA
⇓(y).

Let py = [ryℓ , r
y
u] ∈ PA

⇓(y) be the interval which contains β(y) and let pz = [rzℓ , r
z
u] ∈ PA

⇓(z) be

the interval which contains β(z). We distinguish several cases.

If βπ(z) lies outside of py, then rzℓ = βπ(z) < βπ(y) = ryℓ together with the fact that PA
⇓(z)

is a refinement of PA
⇓(y) implies rzu < ryℓ . Hence, β(z) ∈ [rzℓ , r

z
u] and β(y) ∈ [ryℓ , r

y
u] entail

β(z) < β(y) and thus B, β 6|= y ≤ z.

Suppose βπ(z) lies inside of py. Since PA
⇓(z) is a refinement of PA

⇓(y), we must have that

[rzℓ , r
z
u] ⊆ [ryℓ , r

y
u]. But then βπ(y) = ryℓ ≤ rzℓ = βπ(z) contradicts the observation that

βπ(y) > βπ(z).

Cases where py = [ryℓ ,+∞) or pz = [rzℓ ,+∞) can be handled similarly.

Suppose py is of the form (−∞, ryu] or (−∞,+∞). In this case we have βπ(y) = cA−∞. This
contradicts the observation βπ(y) > βπ(z).

Suppose pz is of the form (−∞, rzu] or (−∞,+∞). In this case we have βπ(z) = cA−∞. Since
PA
⇓(z) is a refinement of PA

⇓(y), we either have pz ⊆ py or py does not overlap with
pz. The former contradicts previous observations. Therefore, the latter must apply
and py must be of the form [ryℓ , r

y
u] or [ryℓ ,+∞). Moreover, pz has the form (−∞, rzu]

with rzu < ryℓ . But then we conclude β(z) ≤ rzu < ryℓ ≤ β(y). This observation entails
B, β 6|= y ≤ z.

Case A, βπ 6|= s ≈ s′ for some free atom s ≈ s′ ∈ Γ′. Hence, s and s′ are either free-sort variables
or constant symbols of the free sort, which means they do not contain subterms of the base
sort. Since B and A behave identical on free-sort constant symbols and β(u) = βπ(u) for
any variable u ∈ VS , it must hold B, β 6|= s ≈ s′.

Case A, βπ |= s ≈ s′ for some s ≈ s′ ∈ ∆′. Analogous to the above case, B, β |= s ≈ s′ holds.

Case A, βπ 6|= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ Γ′. This means〈
A(βπ)(s1), . . . ,A(βπ)(sm)

〉
6∈ PA.

Every si of the free sort is either a constant symbol or a variable. Thus, we haveA(βπ)(si) =
B(β)(si) = π⇓〈P,i〉(B(β)(si)), since free-sort constant symbols are interpreted in the
same way by A and B, and because βπ(u) = β(u) for every free-sort variable u.

Every si that is of the base sort must be a variable. Hence, A(βπ)(si) = cA⇓〈P,i〉,p =

π⇓〈P,i〉(B(β)(si)), where p is the interval in PA
⇓〈P,i〉 which contains β(si) (and thus also

βπ(si)) and where we have ⇓(si) = ⇓〈P, i〉.

20

Put together, this yields
〈
π⇓〈P,1〉(B(β)(s1)), . . . , π⇓〈P,m〉(B(β)(sm))

〉
6∈ PA. But then, by

construction of B, we have
〈
B(β)(s1), . . . ,B(β)(sm)

〉
6∈ PB, which entails B, β 6|= P (s1, . . . ,

sm).

Case A, βπ |= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ ∆′. Analogous to the above case
we conclude B, β |= P (s1, . . . , sm).

Altogether, we have shown B |= N .

A.2 Details Concerning Section 3.3

Proof of Lemma 21

Lemma. Let N be a finite BSR(SLI) clause set in normal form. Suppose there is a clause C in

N which contains a free-sort variable u. Let N̂u :=
(
N \ {C}

)
∪

{
C
[
u/c

] ∣∣ c ∈ I⇓N (u)

}
. N is

satisfiable if and only if N̂u is satisfiable.

Proof. The “only if”-part is trivial.
Consider the “if”-part. In what follows, the notations ⇒ and ⇓ always refer to the original

clause set N . Let A be a hierarchic model of N̂u. We use A to construct the hierarchic model B
as follows. For the domain SB we take the set {a ∈ SA | a = cA for some c ∈ fconsts(N)}. For
all base-sort and free-sort constant symbols c ∈ consts(N), we set cB := cA. For every argument
position closure ⇓〈P, i〉 we fix some default instantiation point d⇓〈P,i〉 ∈ I⇓〈P,i〉. To this end, we
choose an arbitrary constant symbol from I⇓〈P,i〉. We define the family of projection functions
π⇓〈P,i〉 : Z ∪ SB → Z ∪ SA by

π⇓〈P,i〉(a) :=





a if ξi = S and a = cA for some c ∈ I⇓〈P,i〉,

dA⇓〈P,i〉 if ξi = S and a 6= cA for every c ∈ I⇓〈P,i〉,

a if ξi = Z.

Using the projection functions π⇓〈P,i〉, we define the sets PB so that for all domain elements

a1, . . . , am of appropriate sorts
〈
a1, . . . , am

〉
∈ PB if and only if

〈
π⇓〈P,1〉(a1), . . . , π⇓〈P,m〉(am)

〉
∈

PA.
We next show B |= N . Consider any clause C′ := Λ′ ‖ Γ′ → ∆′ in N and let β : VZ ∪ VS →

Z ∪ SB be an arbitrary variable assignment. From β we derive a special variable assignment
βπ for which we shall infer A, βπ |= C′ as an intermediate step: for every variable v we set

βπ(v) := π⇓(v)(β(v)). If C′ 6= C, then N̂u already contains C′, and thus A, βπ |= C′ must hold.
In case of C′ = C, we know that there is some constant symbol c ∈ I⇓(u) such that βπ(u) = cA.

Since C
[
u/c

]
is a clause in N̂u, A is a model of C

[
u/c

]
and thus we conclude A, βπ |= C. Hence,

in any case we can deduce A, βπ |= C′. By case distinction on why A, βπ |= C′ holds, we may use
this result to infer B, β |= C′.

Case A, βπ 6|= s ⊳ t for some atomic constraint s ⊳ t in Λ′. Since B and A interpret constant
symbols in the same way and since β and βπ assign identical values to all base-sort variables,
we immediately get B, β 6|= s ⊳ t.

Case A, βπ 6|= s ≈ t for some free atom s ≈ s′ ∈ Γ′. Since C′ is in normal form, s and s′ must be
constant symbols. B and A interpret constant symbols in the same way and independently
of a variable assignment and thus we immediately get B, β 6|= s ≈ t.

Case A, βπ |= s ≈ t for some s ≈ t ∈ ∆′.

If s and t are constant symbols, we know that B, β |= s ≈ t holds, by analogy to the above
case.

If s is a free-sort variable v and t is a constant symbol d, we know that d ∈ I⇓(v) = fconsts(N)
and thus βπ(v) = dA = β(v). This entails B, β |= v ≈ d.

21

If s is a free-sort variable v and t is a free-sort variable w, we know that I⇓(v) = I⇓(w) =
fconsts(N) and thus β(v) = βπ(v) = βπ(w) = β(w). Consequently, we have B, β |= v ≈
w.

Case A, βπ 6|= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ Γ′. This means
〈
A(βπ)(s1), . . . ,

A(βπ)(sm)
〉
6∈ PA.

Every si that is of the base sort must be a variable. Hence, A(βπ)(si) = βπ(si) = β(si) =
π⇓〈P,i〉(β(si)) = π⇓〈P,i〉(B(β)(si)).

Every si of the free sort is either a constant symbol or a variable.

If si is a constant symbol d, then we have d ∈ I⇓〈P,i〉. Hence, we have A(βπ)(d) = dA =
π⇓〈P,i〉(d

A) = π⇓〈P,i〉(d
B) = π⇓〈P,i〉(B(β)(d)) .

If si is a variable v, then
A(βπ)(v) = βπ(v) = π⇓(v)(β(v)) = π⇓〈P,i〉(B(β)(v)).

Put together, this yields
〈
π⇓〈P,1〉(B(β)(s1)), . . . , π⇓〈P,m〉(B(β)(sm))

〉
6∈ PA. But then, by

construction of B, we have
〈
B(β)(s1), . . . ,B(β)(sm)

〉
6∈ PB, which entails B, β 6|= P (s1, . . . ,

sm).

Case A, βπ |= P (s1, . . . , sm) for some free atom P (s1, . . . , sm) ∈ ∆′. Analogously to the above
case we conclude B, β |= P (s1, . . . , sm).

Altogether, we have shown B |= N .

A.3 Details Concerning Section 4

Lemma 30. Let N be a clause set in normal form and let N be stratified and guarded with
respect to R1, . . . , Rn. Let N ′ be the clause set that we obtain from N by adding the clauses
corresponding to the following sets of sentences:

Φ1 :=
{
∀x1 . . . xmu.

(
R(x1, . . . , xm,u) ∧R(x1, . . . , xm, u′)

)
→ u ≈ u′

∣∣ R : ξ1 × . . .× ξm × ξm+1 is marked in N
}

and

Φ2 :=
{
∀x1 . . . xm∃u.R(x1, . . . , xm, u)

∣∣ R : ξ1 × . . .× ξm × ξm+1 is marked in N
}
.

If N ′ is satisfiable, then there is a model B of N ′ such that the following set is finite for any
R : ξ1 × . . .× ξm × ξm+1:

{b ∈ ξBm+1 | there are a1, . . . , am such that 〈a1, . . . , am, b〉 ∈ RB}.

Proof. Without loss of generality, we assume R1 �N R2 �N . . . �N Rn.
Let A be a model of N ′. For every R : ξ1 × . . . × ξm × ξm+1 among the R1, . . . , Rn let

τAR : ξA1 × . . . × ξAm → ξAm+1 be a mapping such that for every tuple 〈a1, . . . , am〉 of domain
elements we have 〈

a1, . . . , am, τAR (a1, . . . , am)
〉
∈ RA.

Due to A |= Φ1 ∪ Φ2, every τAR is uniquely determined.
In the rest of the proof ⇓ is an abbreviation for ⇓N and ⇒ stands for ⇒N .
Let P be any predicate symbol occurring in N . We introduce artificial instantiation points as

follows. Let Î⇓〈P,i〉 be the smallest set satisfying the following requirements.

(Î-a) I⇓〈P,i〉 ⊆ Î⇓〈P,i〉.

(Î-b) For every R : ξ1× . . .×ξm×ξm+1 that is marked in N and for which R � P and 〈R,m+1〉 ⇒

〈P, i〉 we have dRc1...cm ∈ Î⇓〈P,i〉 for all tuples 〈c1, . . . , cm〉 ∈ Î⇓〈R,1〉 × . . .× Î⇓〈R,m〉.

22

(Î-c) If there is some free-sort atom u ≈ t (t being ground or non-ground) in N that is not guarded

(cf. Condition (c) in Definition 24) and for which ⇓(u) = ⇓〈P, i〉, then Î⇓〈Q,j〉 ⊆ Î⇓〈P,i〉 for
every argument position pair 〈Q, j〉.

In other words, in this case Î⇓〈P,i〉 collects all artificial instantiation points that are intro-

duced into any set Î⇓〈Q,j〉.

The dRc1...cm are assumed to be fresh constant symbols that do not occur in N . Their intended
meaning is fixed by assuming dARc1...cm

:= τAR (cA1 , . . . , c
A
m) (without loss of generality). Moreover,

we assume that c−∞ does not occur in N (but may occur as instantiation point) and we set the
value of c−∞ so that cA−∞ < cA holds for every base-sort constant symbol c occurring in N and
any c that is an artificial instantiation point of the base sort.

Claim: For every argument position closure ⇓〈P, i〉 the set Î⇓〈P,i〉 is finite.

Proof: All the I⇓〈Q,j〉 are finite, since N and the clauses therein are assumed to be finite. Hence,

if Î⇓〈P,i〉 were infinite, then it would contain infinitely many artificial instantiation points.

Consider any artificial instantiation point dRc1...ck−1dR′c′
1
...c′

m′
ck+1...cm with R : ξ1 × . . . ×

ξm × ξm+1 and R′ : ζ1 × . . . × ζm′ × ζm′+1, both being marked in N . Hence, dR′c′1...c
′
m′

∈

Î⇓〈R,k〉 \ I⇓〈R,k〉.

Assume that dR′c′1...c
′
m′

has been added to Î⇓〈R,k〉 because of requirement (Î-c). Hence, there

is some free-sort variable u such that ⇓〈R, k〉 = ⇓(u) and there is some unguarded free-sort
atom u ≈ t in some clause in N . By Condition (c.2) of Definition 24, R cannot be marked
in N . This contradicts our assumptions.

Assume that dR′c′1...c
′
m′

has been added to Î⇓〈R,k〉 because of requirement (Î-b). Conse-

quently, we have R′ � R and 〈R′,m′+1〉 ⇒ 〈R, k〉. The latter fact entails lvlN 〈R′,m′+1〉 =
lvlN 〈R, k〉. Since N is stratified and R marked in N , we must have lvlN 〈R, k〉 > lvlN 〈R,
m+ 1〉. Hence, lvlN 〈R′,m′ + 1〉 > lvlN 〈R,m+ 1〉.

This means, the length of chains of the form d1 = dRj1 ...d2..., d2 = dRj2 ...d3..., . . ., dk =
dRjk

...dk+1..., . . . is upper bounded by the highest level that lvlN assigns to any argument
position pair in N .

Consequently, Î⇓〈P,i〉 must be finite. ♦

We next define a family of projections π⇓〈P,i〉 for every predicate symbol P : ζ1 × . . . × ζm
occurring in N :

π⇓〈P,i〉(a) :=





cA⇓〈P,i〉,p if ζi = Z and p ∈ P̂A
⇓〈P,i〉 is the interval a lies in,

a if ζi = S and a = cA for some c ∈ Î⇓〈P,i〉,

dA⇓〈P,i〉 if ζi = S and a 6= cA for every c ∈ Î⇓〈P,i〉,

where P̂A
⇓〈P,i〉 is defined based on Î⇓〈P,i〉 (cf. Definition 11), c⇓〈P,i〉,p is some constant symbol in

Î⇓〈P,i〉 such that cA⇓〈P,i〉,p ∈ p, and d⇓〈P,i〉 is some default instantiation point of sort S picked from

I⇓〈P,i〉 (not Î⇓〈P,i〉).
We are now ready to construct the hierarchic interpretation B:

• SB :=
{
cA

∣∣ c ∈ fconsts(N)
}

∪
{
dARc1...cm

∣∣ dRc1...cm is some free-sort artificial instantiation point
}
,

• cB := cA for every constant symbol occurring in N and also for every artificially introduced
instantiation point dRc1...cm , i.e. dBRc1...cm

:= τAR (cA1 , . . . , c
A
m),

• for every non-marked Q : ζ1 × . . . × ζm occurring in N and every tuple 〈a1, . . . , am〉 of
appropriate sort we set 〈a1, . . . , am〉 ∈ QB if and only if

〈
π⇓〈Q,1〉(a), . . . , π⇓〈Q,m〉(am)

〉
∈ QA,

23

• for every marked R : ξ1 × . . . × ξm × ξm+1 occurring in N , every tuple 〈a1, . . . , am〉 of
appropriate sort, and any domain element b we set 〈a1, . . . , am, b〉 ∈ RB if and only if〈
π⇓〈R,1〉(a), . . . , π⇓〈R,m〉(am), b

〉
∈ RA.

Notice that 〈a1, . . . , am, b〉 ∈ RB if and only if b = τAR (π⇓〈R,1〉(a1), . . . , π⇓〈R,m〉(am)) for every
marked R, because of A |= Φ1. Hence, the set

{b | there are a1, . . . , am such that 〈a1, . . . , am, b〉 ∈ RB}
is finite.

Next, we show B |= N ′. The first observation that we make is that, due to A |= Φ1 ∪ Φ2 and
due to the construction of B, B also satisfies Φ1 ∪ Φ2. It remains to show that B is a hierarchic
model of N .

Consider any clause C := Λ ‖ Γ → ∆ in N and let β : VZ ∪ VS → Z ∪ SB be some variable
assignment. From β we derive a special variable assignment βπ: for every variable v we set
βπ(v) := π⇓(v)(β(v)). By assumption, A is a model of C and thus we conclude A, βπ |= C. By
case distinction on why A, βπ |= C holds, we may use this result to infer B, β |= C.

Case A, βπ 6|= s ⊳ t for some ground LIA constraint s ⊳ t in Λ. Since B and A interpret constant
symbols in the same way and independently of a variable assignment, we immediately get
B, β 6|= s ⊳ t.

Case A, βπ 6|= (y E d) ∈ Λ for some base-sort variable y, some constant symbol d, and E ∈{≤,

=,≥}. This means βπ(y) 6E dA. Let p be the interval from P̂A
⇓(y) that contains β(y) and

therefore also βπ(y).

If dA lies outside of p, then βπ(y) E dA if and only if β(y) E dA, since βπ(y) ∈ p and
β(y) ∈ p. Thus, dB = dA entails B, β 6|= y E d.

If p is the point interval p = {dA}, then β(y) = βπ(y) = dA, and thus B, β 6|= y E d.

Suppose p = [rℓ, ru] and rℓ < dA ≤ ru, then E 6= ≤, since βπ(y) = cA⇓(y),p = rℓ < dA

(by Lemma 13). Moreover, we conclude d 6∈ Î⇓(y), since otherwise p would be of the

form p = [dA, ru] by the construction of P̂A
⇓(y). Therefore, E 6∈{=,≥}, since otherwise

the instantiation point d would be in Î⇓(y). But this contradicts our assumption that
E ∈{≤,=,≥}.

The case p = [rℓ,+∞) with rℓ < dA can be handled by similar arguments.

Suppose p = [dA, ru] and dA < ru, then βπ(y) = cA⇓(y),p = dA by Lemma 13. Consequently,

E 6∈{≤,=,≥}. This contradicts the assumptions we made regarding the syntax of the
constraint y E d.

The same applies in the case p = [dA,+∞).

Suppose p = (−∞, ru] with dA ≤ ru or p = (−∞,+∞). We know cA−∞ ∈ p due to our
earlier assumption on the value that is assigned to c−∞ by A. By the same assumption,
we know that cA−∞ < dA. The fact that dA lies within p entails that d does not belong to

Î⇓(y). Hence, ⊳ 6∈{=,≥}. Therefore, we conclude βπ(y) > dA. But βπ(y) = cA−∞ < dA

then leads to a contradiction.

Case A, βπ 6|= (y ≤ z) ∈ Λ for two base-sort variables y, z. This means βπ(y) > βπ(z).

Claim: Î⇓(y) ⊆ Î⇓(z).

Proof: Since N is in normal form, we know that Γ → ∆ must contain atoms P (. . . , y, . . .)
and Q(. . . , z, . . .) where y occurs in the i-th argument position and z in the j-th. Hence,
we have 〈P, i〉 ⇒ 〈Q, j〉 and thus also I⇓〈P,i〉 ⊆ I⇓〈Q,j〉, by Lemma 12.

Suppose that R : ξ1 × . . . × ξm × ξm+1 is some marked predicate symbol such that
R � P and 〈R,m + 1〉 ⇒ 〈P, i〉. Since we assume N to be stratified with respect to
R1, . . . , Rn, 〈R,m+1〉 ⇒ 〈P, i〉 ⇒ 〈Q, j〉 entails lvlN 〈R,m+1〉 = lvlN 〈P, i〉 = lvlN 〈Q, j〉.

24

Consequently, we observe R � Q and 〈R,m + 1〉 ⇒ 〈Q, j〉, by transitivity of ⇒. This

means any artificial instantiation points that are introduced into Î⇓〈P,i〉 because of R

are also introduced into Î⇓〈Q,j〉.

Therefore, we observe Î⇓〈P,i〉 ⊆ Î⇓〈Q,j〉. ♦

By virtue of the above claim, we conclude that P̂A
⇓(z) is a refinement of P̂A

⇓(y).

Let py = [ryℓ , r
y
u] ∈ P̂A

⇓(y) be the interval which contains β(y) and let pz = [rzℓ , r
z
u] ∈ P̂A

⇓(z) be

the interval which contains β(z). We distinguish several cases.

If βπ(z) lies outside of py, then rzℓ = βπ(z) < βπ(y) = ryℓ together with the fact that P̂A
⇓(z)

is a refinement of P̂A
⇓(y) implies rzu < ryℓ . Hence, β(z) ∈ [rzℓ , r

z
u] and β(y) ∈ [ryℓ , r

y
u] entail

β(z) < β(y) and thus B, β 6|= y ≤ z.

Suppose βπ(z) lies inside of py. Since P̂A
⇓(z) is a refinement of P̂A

⇓(y), we must have that

[rzℓ , r
z
u] ⊆ [ryℓ , r

y
u]. But then βπ(y) = ryℓ ≤ rzℓ = βπ(z) contradicts the observation that

βπ(y) > βπ(z).

Cases where py = [ryℓ ,+∞) or pz = [rzℓ ,+∞) can be handled similarly.

Suppose py is of the form (−∞, ryu] or (−∞,+∞). In this case we have βπ(y) = cA−∞. This
contradicts the observation βπ(y) > βπ(z).

Suppose pz is of the form (−∞, rzu] or (−∞,+∞). In this case we have βπ(z) = cA−∞. Since

P̂A
⇓(z) is a refinement of P̂A

⇓(y), we either have pz ⊆ py or py does not overlap with
pz. The former contradicts previous observations. Therefore, the latter must apply
and py must be of the form [ryℓ , r

y
u] or [ryℓ ,+∞). Moreover, pz has the form (−∞, rzu]

with rzu < ryℓ . But then we conclude β(z) ≤ rzu < ryℓ ≤ β(y). This observation entails
B, β 6|= y ≤ z.

Case A, βπ 6|= Q(s1, . . . , sm) for some free atom Q(s1, . . . , sm) ∈ Γ with Q being unmarked. This
means

〈
A(βπ)(s1), . . . ,A(βπ)(sm)

〉
6∈ QA.

Every si that is of the base sort must be a variable. Hence, A(βπ)(si) = βπ(si) =
π⇓〈P,i〉(β(si)) = π⇓〈P,i〉(B(β)(si)).

Every si of the free sort is either a constant symbol or a variable.

If si is a constant symbol c, then we have c ∈ I⇓〈P,i〉 ⊆ Î⇓〈P,i〉. Hence, we have
A(βπ)(c) = cA = π⇓〈P,i〉(c

A) = π⇓〈P,i〉(c
B) = π⇓〈P,i〉(B(β)(c)) .

If si is a variable v, then
A(βπ)(v) = βπ(v) = π⇓(v)(β(v)) = π⇓〈P,i〉(B(β)(v)).

Put together, this yields
〈
π⇓〈P,1〉(B(β)(s1)), . . . , π⇓〈P,m〉(B(β)(sm))

〉
6∈ PA. But then, by

construction of B, we have
〈
B(β)(s1), . . . ,B(β)(sm)

〉
6∈ PB, which entails B, β 6|= P (s1, . . . ,

sm).

CaseA, βπ |= Q(s1, . . . , sm) for some free atom q(s1, . . . , sm) ∈ ∆ with unmarked Q. Analogously
to the above case we conclude B, β |= P (s1, . . . , sm).

Case A, βπ 6|= R(s1, . . . , sm, t) for some free atom R(s1, . . . , sm, t) ∈ Γ with R being marked in
N . This means 〈

A(βπ)(s1), . . . ,A(βπ)(sm),A(βπ)(t)
〉
6∈ RA.

Moreover, it follows A(βπ)(t) 6= τAR
(
A(βπ)(s1), . . . ,A(βπ)(sm)

)
.

As in the previous case, we can show

(∗) A(βπ)(si) = π⇓〈R,i〉(B(β)(si)) for every si, 1 ≤ i ≤ m.

25

If t is a constant symbol d, then A(βπ)(d) = dA = dB = B(β)(d). Due to
dA 6= τAR

(
A(βπ)(s1), . . . ,A(βπ)(sm)

)

= τAR
(
π⇓〈R,1〉(B(β)(s1)), . . . , π⇓〈R,m〉(B(β)(sm))

)
,

we have
〈
B(β)(s1), . . . ,B(β)(sm),B(β)(d)

〉
6∈ RB.

If t is a variable v, then A(βπ)(v) = βπ(v) = π⇓(v)(β(v)). By definition of π⇓(v), there

must be some instantiation point d ∈ Î⇓(v) such that βπ(v) = dA. Similarly, by
definition of the π⇓〈R,i〉, (∗) entails the existence of a tuple of instantiation points

〈c1, . . . , cm〉 ∈ Î⇓〈R,1〉 × . . . × Î⇓〈R,m〉 such that for every i, 1 ≤ i ≤ m, we have
cAi = A(βπ)(si) = π⇓〈R,i〉(B(β)(si)). Hence, by reflexivity of the relations �N and ⇒,

we know that there is some artificial instantiation point dRc1...cm ∈ Î⇓〈R,m+1〉 such that
dARc1...cm

= τAR (cA1 , . . . , c
A
m).

Because of dA = A(βπ)(d) 6= τAR (cA1 , . . . , c
A
m) = dARc1...cm

, it follows that d 6= dRc1...cm .

Since π⇓〈R,m+1〉 projects β(v) onto some value different from dARc1...cm
, the original β(v)

must be different from dARc1...cm
. Hence,〈

π⇓〈R,1〉

(
B(β)(s1)

)
, . . . , π⇓〈R,m〉

(
B(β)(sm)

)
,B(β)(t)

〉
=

〈
cA1 , . . . , c

A
m, β(v)

〉
6∈ RA

and thus also
〈
B(β)(s1), . . .B(β)(sm),B(β)(t)

〉
6∈ RB.

Hence, we have B, β 6|= R(s1, . . . , sm, t).

Case A, βπ |= R(s1, . . . , sm, t) for some free atom R(s1, . . . , sm, t) ∈ ∆ with R being marked in
N . This means 〈

A(βπ)(s1), . . . ,A(βπ)(sm),A(βπ)(t)
〉
∈ RA.

Moreover, it follows A(βπ)(t) = τAR
(
A(βπ)(s1), . . . ,A(βπ)(sm)

)
.

As in the previous case, we can show

(∗) A(βπ)(si) = π⇓〈R,i〉(B(β)(si)) for every si, 1 ≤ i ≤ m.

If t is a constant symbol d, then A(βπ)(d) = dA = dB = B(β)(d). Due to
dA = τAR

(
A(βπ)(s1), . . . ,A(βπ)(sm)

)

= τAR
(
π⇓〈R,1〉(B(β)(s1)), . . . , π⇓〈R,m〉(B(β)(sm))

)
,

we have
〈
B(β)(s1), . . . ,B(β)(sm),B(β)(d)

〉
∈ RB.

If t is a variable v, then A(βπ)(v) = βπ(v) = π⇓(v)(β(v)). Since we assume N to be guarded
with respect to R, Γ must contain an atom of the form R′(t1, . . . , tm′ , v) with R′ being
marked in N . The case A, βπ 6|= R′(t1, . . . , tm′ , v) has been treated earlier, and thus we
assume A, βπ |= R′(t1, . . . , tm′ , v).

Similarly to (∗), we can prove

(∗∗) A(βπ)(ti) = π⇓〈R′,i〉(B(β)(ti)) for every ti, 1 ≤ i ≤ m′.

By (∗) and (∗∗) we have
βπ(v) = τAR

(
π⇓〈R,1〉(B(β)(s1), . . . , π⇓〈R,m〉(B(β)(sm))

)

= τAR′

(
π⇓〈R′,1〉(B(β)(t1), . . . , π⇓〈R′,m′〉(B(β)(tm′))

)
.

We distinguish two cases.

If β(v) = βπ(v), then
〈
π⇓〈R,1〉

(
B(β)(s1)

)
, . . . , π⇓〈R,m〉

(
B(β)(sm)

)
, β(v)

〉
∈ RA and

thus B, β |= R(s1, . . . , sm, v).

If β(v) 6= βπ(v), then
〈
π⇓〈R′,1〉

(
B(β)(t1),

)
. . . , π⇓〈R′,1〉

(
B(β)(tm′)

)
, β(v)

〉
6∈ R′A and

thus B, β 6|= R′(t1, . . . , tm′ , v).

In both cases we end up with B, β |= R′(t1, . . . , tm′ , v) → R(s1, . . . , sm, v).

Consequently, we can derive B, β |= C in all sub-cases.

Case A, βπ 6|= s ≈ t for some free atom s ≈ t ∈ Γ. Since C is in normal form, s and t must be
constant symbols. B and A interpret constant symbols in the same way and independently
of a variable assignment and thus we immediately get B, β 6|= s ≈ t.

26

Case A, βπ |= s ≈ t for some s ≈ t ∈ ∆.

If s and t are constant symbols, we know that B, β |= s ≈ t holds, by analogy to the above
case.

If s is a free-sort variable v and t is a constant symbol d, we have βπ(v) = dA.

Suppose v ≈ d is guarded by some atom R(t1, . . . , tm, v) in Γ with R being marked.
As done previously, we may assume that A, βπ |= R(t1, . . . , tm, v). Hence, we have
βπ(v) = τAR

(
A(βπ)(t1), . . . ,A(βπ)(tm)

)

= τAR
(
π⇓〈R,1〉

(
B(β)(t1)

)
, . . . , π⇓〈R,m〉

(
B(β)(tm)

))
.

If β(v) = βπ(v), then β(v) = dA = dB and thus B, β |= v ≈ d.

If β(v) 6= βπ(v), then
〈
π⇓〈R,1〉

(
B(β)(t1)

)
, . . . , π⇓〈R,m〉

(
B(β)(tm)

)
, β(v)

〉
6∈ RA and

thus B, β 6|= R(t1, . . . , tm, v).

In both cases we can derive B, β |= R(t1, . . . , tm, v) → v ≈ d.

Now suppose that v ≈ d is not guarded. In this case we know that Î⇓(v) contains all
free-sort constant symbol occurring in N and also all artificial instantiation points
dRc1...cm . Therefore and by the definition of SB, π⇓(v) can only project β(v) to dA,
if β(v) equals dA in the first place. Hence, βπ(v) = π⇓(v)(β(v)) = dA = β(v). This
entails B, β |= v ≈ d.

Suppose s is a free-sort variable v and t is a free-sort variable w.

If there are guards for both variables v and w, i.e. Γ contains two atoms R(s1, . . . , sm, v)
and R′(t1, . . . , tm′ , w) with marked R and R′, then we assume A, βπ |= R(s1, . . . ,
sm, v) and A, βπ |= R′(t1, . . . , tm′ , w), as in previous cases. Hence,
βπ(v) = τAR

(
A(βπ)(s1), . . . ,A(βπ)(sm)

)

= τAR
(
π⇓〈R,1〉

(
B(β)(s1)

)
, . . . , π⇓〈R,m〉

(
B(β)(sm)

))

and
βπ(w) = τAR′

(
A(βπ)(t1), . . . ,A(βπ)(tm)

)

= τAR′

(
π⇓〈R′,1〉

(
B(β)(t1)

)
, . . . , π⇓〈R′,m〉

(
B(β)(tm)

))

and βπ(v) = βπ(w).

Suppose β(v) = β(w). B, β |= v ≈ w follows immediately.

Suppose β(v) 6= β(w). Hence, we either have
β(v) 6= τAR

(
π⇓〈R,1〉

(
B(β)(s1)

)
, . . . , π⇓〈R,m〉

(
B(β)(sm)

))
, which entails B, β 6|=

R(s1, . . . , sm, v), or
β(w) 6= τAR′

(
π⇓〈R′,1〉

(
B(β)(t1)

)
, . . . , π⇓〈R′,m〉

(
B(β)(tm)

))
, which implies B, β 6|=

R′(t1, . . . , tm′ , w).

In both cases, we have B, β |= R(s1, . . . , sm, v) ∧ R′(t1, . . . , tm′ , w) → v ≈ w, and
thus also B, β |= C.

If at least one of the variables is unguarded, we know that both Î⇓(v) and Î⇓(w) contain
all free-sort constant symbol occurring in N and also all artificial instantiation
points dRc1...cm . In fact, it even holds Î⇓(v) = Î⇓(w). Analogously to previous cases,
we observe β(v) = βπ(v) = βπ(w) = β(w). Consequently, we have B, β |= v ≈ w.

Altogether, we have shown B |= N .

Lemma 31. The hierarchic interpretation B constructed in the proof of Lemma 30 is a model of
Mn.

Before we proceed with the proof, we need to update Definition 19 (instantiation points for
free-sort argument positions) in order to adapt it to the new situation with marked predicate
symbols and guarded free-sort atoms. To this end, we replace Condition (b) in Definition 19 with
the following condition.

(b) For any clause Λ ‖Γ → ∆ in N such that Γ → ∆ contains P (. . . , u, . . .) in which u occurs
as the i-th argument and ∆ contains an atom of the form u ≈ t where t is either a variable
or a constant symbol, we set

27

(b.1) d ∈ IP,i, if t is some constant symbol d and if there is a guard R(s1, . . . , sm, u) such
that R is marked in N .

(b.2) IP,i = fconsts(N), if u ≈ t is unguarded.

Proof sketch. We already know that B |= N . Hence, in order to proof the lemma, we have to show
two things:

(1) Î⇓N 〈P,i〉 = I⇓Mn
〈P,i〉 for every argument position pair and

(2) B |= Φ(R1,M0) ∪ Φ(R2,M1) ∪ . . . ∪ Φ(Rn,Mn−1).

Ad (1). The requirement (Î-c) regarding the artificial instantiation points in Î⇓〈P,i〉 does only
play a role for argument position pairs 〈P, i〉 in which either P is unmarked or i is the last argument

position in P . The reason is, on the one hand, that in (Î-c) the existence of an unguarded free-sort
atom u ≈ t with ⇓N (u) = ⇓N 〈P, i〉 is required. On the other hand, Condition (c.2) in Definition 24
states that ⇓N (u)∩⇓N〈R, j〉 = ∅ for every marked R : ξ1× . . .×ξm×ξm+1 and j = 1, . . . ,m. This

means, any set Î⇓N 〈P,i〉 that is subject to the requirement (Î-c) cannot participate as source in

the generation of new artificial instantiation points by means of the requirement (Î-b). However,

it could participate as target of requirement (Î-b). But this would not lead to new instantiation

points, as requirement (Î-c) already covers all possibilities.
Before we continue, we show a technical result.

Claim I: Consider two predicate symbols R : ξ1 × . . .× ξm × ξm+1 and R′ : ζ1 × . . .× ζm × ζm′+1

that are marked in N . For every i, 1 ≤ i ≤ m′, 〈R,m+ 1〉 ⇒N 〈R′, i〉 entails R′ 6�N R.

Proof: Since N is stratified with respect to R and R′ and because of
〈R,m+ 1〉 ⇒N 〈R′, i〉, we observe min1≤j≤m+1 lvlN 〈R, j〉 = lvlN 〈R,m+ 1〉 = lvlN 〈R′, i〉 >
lvlN 〈R′,m′ + 1〉. Suppose R′ �N R, i.e. lvlN 〈R′,m′ + 1〉 ≥ min1≤j≤m+1 lvlN 〈R, j〉. This
contradicts the above observation. ♦

Considering the sets of artificial instantiation points, it is clear that any point dRc1...cm can

only be generated by an application of requirement (Î-b).

Claim II: For every dRic1...cmi
that is generated because of requirement (Î-b), we have

dRic1...cmi
∈ I⇓Mi

〈Ri,m1+1〉.

Proof: We proceed by induction from R1 to Rn.

Consider R1 : ξ1 × . . . × ξm1 × ξm1+1. For j = 1, . . . ,m1 we observe Î⇓〈R1,j〉 = I⇓〈R1,j〉,

since neither requirement (Î-b) nor (Î-c) introduces artificial instantiation points into

Î⇓〈R1,j〉. Requirement (Î-b) generates exactly the instantiation points in
{
dR1c1...cm1

∣∣
c1 ∈ Î⇓N 〈R1,1〉, . . . , cm1 ∈ Î⇓N 〈R1,m1〉

}
for R1. On the other hand, the definition of

Φ(R1,M0) = Φ(R1, N) leads to
{
R1(c1, . . . , cm1 , dR1c1...cm1

)
∣∣ c1 ∈ I⇓N 〈R1,1〉, . . . , cm1 ∈

I⇓N 〈R1,m1〉

}
⊆ Φ(R1, N). Hence,

{
dR1c1...cm1

∣∣ c1 ∈ Î⇓N 〈R1,1〉, . . . , cm1 ∈ Î⇓N 〈R1,m1〉

}

=
{
dR1c1...cm1

∣∣ c1 ∈ I⇓N 〈R1,1〉, . . . , cm1 ∈ I⇓N 〈R1,m1〉

}
⊆ I⇓M1

〈R1,m1+1〉.

Consider Rℓ : ξ1× . . .×ξmℓ
×ξmℓ+1 with ℓ > 1. Moreover, consider any 〈Rℓ, j〉 with j ≤ mℓ.

We have pointed out earlier, that none of the artificial instantiation points in Î⇓N 〈Rℓ,j〉\

I⇓N 〈Rℓ,j〉 with j = 1, . . . ,mj belongs to Î⇓N 〈Rℓ,j〉 because of requirement (Î-c). For

any dRkc1...cmk
∈ Î⇓N 〈Rℓ,j〉 \ I⇓N 〈Rℓ,j〉 we must have 〈Rk,mk + 1〉 ⇒N 〈Rℓ, j〉, which,

by Claim I and our assumption R1 �N . . . �N Rn, entails k < ℓ. By induction, we
have Î⇓N 〈Rk,mk+1〉 ⊆ I⇓Mk

〈Rk,mk+1〉 ⊆ I⇓Mk
〈Rℓ,j〉 ⊆ I⇓Mℓ−1

〈Rℓ,j〉. Consequently, we

have Î⇓n〈Rℓ,j〉 ⊆ I⇓Mℓ−1
〈Rℓ,j〉.

28

Since requirement (Î-b) generates exactly the instantiation points in{
dRℓc1...cmℓ

∣∣ c1 ∈ Î⇓N 〈Rℓ,1〉, . . . , cmℓ
∈ Î⇓N 〈Rℓ,mℓ〉

}
for 〈Rℓ,mℓ + 1〉 and due to{

Rℓ(c1, . . . , cmℓ
, dRℓc1...cmℓ

)
∣∣ c1 ∈ I⇓N 〈Rℓ,1〉, . . . , cmℓ

∈ I⇓N 〈Rℓ,mℓ〉

}
⊆ Φ(Rℓ,Mℓ−1), we

obtain{
dRℓc1...cmℓ

∣∣ c1 ∈ Î⇓N 〈Rℓ,1〉, . . . , cmℓ
∈ Î⇓N 〈Rℓ,mℓ〉

}

⊆
{
dRℓc1...cmℓ

∣∣ c1 ∈ I⇓Mℓ−1
〈Rℓ,1〉, . . . , cmℓ

∈ I⇓Mℓ−1
〈Rℓ,mℓ〉

}
⊆ I⇓Mℓ

〈Rℓ,mℓ+1〉. ♦

Claim III: Let Ri := ξ1 × . . . × ξmi
× ξmi+1 be marked in N . For every dRic1...cmi

∈ I⇓Mn
〈Q,j〉

with 〈Ri,mi + 1〉 ⇒Mn
〈Q, j〉 we have dRic1...cmi

∈ Î⇓N 〈Q,j〉.

Proof: We proceed by induction from R1 to Rn.

ConsiderR1 : ξ1×. . .×ξm×ξm1+1. Whenever dR1c1...cm1
belongs to I⇓Mn

〈P,i〉, then the atom

R1(c1, . . . , cm1 , dR1c1...cm1
) must occur in Φ(R1, N). Hence, we have 〈c1, . . . , cm1〉 ∈

I⇓N 〈R1,1〉 × . . .×I⇓N 〈R1,m1〉. Because of requirement (Î-a) regarding artificial instanti-

ation points, 〈c1, . . . , cm1〉 must also belong to Î⇓N 〈R1,1〉 × . . .× Î⇓N 〈R1,m1〉.

Our assumption 〈R1,m1+1〉 ⇒Mn
〈Q, j〉 can only be satisfied if 〈R1,m1+1〉 ⇒N 〈Q, j〉

holds. This, in turn, entails R1 �N Q. Taken together, requirement (Î-b) leads to

dR1c1...cm1
∈ Î⇓N 〈Q,j〉.

Consider Rℓ : ξ1 × . . .× ξm × ξmℓ+1 with ℓ > 1. Whenever dRℓc1...cmℓ
belongs to I⇓Mn

〈P,i〉,

then the atom Rℓ(c1, . . . , cmℓ
, dRℓc1...cmℓ

) must occur in Φ(Rℓ,Mℓ−1). Hence, we have
〈c1, . . . , cmℓ

〉 ∈ I⇓Mℓ−1
〈Rℓ,1〉 × . . .× I⇓Mℓ−1

〈Rℓ,mℓ〉. Every instantiation point in any set

I⇓Mℓ−1
〈Rℓ,k〉 \ I⇓N 〈Rℓ,k〉, 1 ≤ k ≤ mℓ, has been propogated into the set I⇓Mℓ−1

〈Rℓ,k〉

via ⇒N , because our syntax does not allow any unguarded free-sort atom u ≈ t with
⇓N (u) = ⇓N 〈Rℓ, k〉. Thus, induction entails 〈c1, . . . , cmℓ

〉 ∈ Î⇓N 〈Rℓ,1〉× . . .×Î⇓N 〈Rℓ,mℓ〉.

Our assumption 〈Rℓ,mℓ + 1〉 ⇒Mn
〈Q, j〉 can only hold if 〈Rℓ,mℓ + 1〉 ⇒N 〈Q, j〉

holds. This, in turn, entails Rℓ �N Q. Taken together, requirement (Î-b) leads to

dRℓc1...cmℓ
∈ Î⇓N 〈Q,j〉. ♦

Let 〈P, i〉 be an argument position pair such that there is an unguarded free-sort atom u ≈ t in

N for which ⇓N (u) = ⇓N 〈P, i〉. Due to Claim II, we have Î⇓N 〈Q,j〉 ⊆ I⇓Mn
〈Q,j〉 for every argument

position pair 〈Q, j〉. Hence, Î⇓N 〈P,i〉 =
⋃

〈Q,j〉 Î⇓N 〈Q,j〉 ⊆ I⇓Mn
〈P,i〉.

Conversely, we have I⇓Mn
〈P,i〉 = fconsts(Mn) and we can split I⇓Mn

〈P,i〉 into I⇓N 〈P,i〉 and the

rest I⇓Mn
〈P,i〉\I⇓N 〈P,i〉. Every instantiation point in this rest is of the form dRc1...cm and it belongs

to I⇓Mn
〈R,m+1〉. In addition, we observe 〈R,m+1〉 ⇒Mn

〈R,m+1〉. Hence, Claim III implies that

I⇓Mn
〈R,m+ 1〉 ⊆ Î⇓N

〈R,m + 1〉. Moreover, by requirement (Î-a), we know I⇓N 〈P,i〉 ⊆ Î⇓N 〈P,i〉.

Taken together, this entails I⇓Mn
〈P,i〉 ⊆ Î⇓N 〈P,i〉.

Consequently, for every (arbitrary) argument position pair 〈P, i〉 in N , we may conclude

I⇓Mn
〈P,i〉 = Î⇓N 〈P,i〉 by Claim II, Claim III, the just made observations concerning the unguarded

free-sort atoms u ≈ t, and the requirement (Î-a) stating I⇓N 〈P,i〉 ⊆ Î⇓N 〈P,i〉.

Ad (2). Let Rℓ(c1, . . . , cmℓ
, dRℓc1...cmℓ

) ∈ Φ(Rℓ,Mℓ−1) for some ℓ, 1 ≤ ℓ ≤ n. By construction

of B, we known that dBRℓc1...cmℓ
= dARℓc1...cmℓ

= τARℓ
(cA1 , . . . , c

A
mℓ

) = τARℓ
(cB1 , . . . , c

B
mℓ

). Hence,

B |= Rℓ(c1, . . . , cmℓ
, dRℓc1...cmℓ

).

More generally, for every 〈a1, . . . , amℓ
, b〉 of domain elements we have 〈a1, . . . , amℓ

, b〉 ∈ RB
ℓ

if and only if b = τARℓ

(
π⇓N 〈Rℓ,m1〉(a1), . . . , π⇓N 〈Rℓ,mℓ〉(amℓ

)
)
. By definition of the projections

π⇓N 〈Rℓ,i〉, there must be a tuple 〈c1, . . . , cmℓ
〉 ∈ Î⇓N 〈Rℓ,1〉 × . . .× Î⇓N 〈Rℓ,mℓ〉 = I⇓Mn

〈Rℓ,1〉 × . . .×

I⇓Mn
〈Rℓ,mℓ〉 = I⇓Mℓ

〈Rℓ,1〉 × . . . × I⇓Mℓ
〈Rℓ,mℓ〉 (the last equation is valid, as the Î⇓N 〈Rℓ,i〉 with

29

i ≤ mℓ are not affected by (Î-c)), such that 〈π⇓N 〈Rℓ,m1〉(a1), . . . , π⇓N 〈Rℓ,mℓ〉(amℓ
)〉 = 〈cB1 , . . . , c

B
mℓ

〉

and, hence, b = τARℓ
(cB1 , . . . , c

B
mℓ

) = dBRℓc1...cmℓ
.

From this observation B |= Φ(Rℓ,Mℓ−1) follows.

30

	1 Introduction
	2 Preliminaries
	3 Instantiation for BSR(SLI)
	3.1 Instantiation of Integer Variables
	3.2 Independent Bound Selection
	3.3 Instantiation of Free-Sort Variables
	3.4 Avoiding Immediate Blowups

	4 Stratified Clause Sets
	5 Discussion
	A Appendix
	A.1 Details Concerning Section 3.1
	A.2 Details Concerning Section 3.3
	A.3 Details Concerning Section 4

