Skip to main content

Comparing Source Sets and Persistent Sets for Partial Order Reduction

  • Chapter
  • First Online:
Models, Algorithms, Logics and Tools

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10460))

Abstract

Partial order reduction has traditionally been based on persistent sets, ample sets, stubborn sets, or variants thereof. Recently, we have presented a strengthening of this foundation, using source sets instead of persistent/ample/stubborn sets. Source sets subsume persistent sets and are often smaller than persistent sets. We introduced source sets as a basis for Dynamic Partial Order Reduction (DPOR), in a framework which assumes that processes are deterministic and that all program executions are finite. In this paper, show how to use source sets for partial order reduction in a framework which does not impose these restrictions. We also compare source sets with persistent sets, providing some insights into conditions under which source sets and persistent sets do or do not differ.

This work was carried out within the Linnaeus centre of excellence UPMARC (Uppsala Programming for Multicore Architectures Research Center), partly supported by the Swedish Research Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.: Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_28

    Google Scholar 

  2. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction. In: Proceeedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp. 373–384. ACM, New York (2014)

    Google Scholar 

  3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Bengtsson, J., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998). doi:10.1007/BFb0055643

    Chapter  Google Scholar 

  5. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL — a tool suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). doi:10.1007/BFb0020949

    Chapter  Google Scholar 

  6. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logics specification: a practical approach. In: Conference Record of the Tenth Annual ACM Symposium on Principles of Programming Languages, pp. 117–126. ACM Press (1983). http://doi.acm.org/10.1145/567067.567080

  7. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order techniques. Int. J. Softw. Tools Technol. Transf. 2(3), 279–287 (1999). http://dx.doi.org/10.1007/s100090050035

    Article  MATH  Google Scholar 

  8. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, pp. 110–121 (2005). http://doi.acm.org/10.1145/1040305.1040315

  9. Godefroid, P.: Partial-order methods for the verification of concurrent systems: an approach to the state-explosion problem. Ph.D. thesis, University of Liège (1996). Also, vol. 1032 of LNCS, Springer

    Google Scholar 

  10. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock freedom and safety properties. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 332–342. Springer, Heidelberg (1992). doi:10.1007/3-540-55179-4_32

    Chapter  Google Scholar 

  11. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. SE-23(5), 279–295 (1997)

    Google Scholar 

  12. Huang, J.: Stateless model checking concurrent programs with maximal causality reduction. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2015, pp. 165–174. ACM, New York (2015). http://doi.acm.org/10.1145/2737924.2737975

  13. Kähkönen, K., Saarikivi, O., Heljanko, K.: Unfolding based automated testing of multithreaded programs. Autom. Softw. Eng. 22(4), 475–515 (2015). http://dx.doi.org/10.1007/s10515-014-0150-6

    Article  Google Scholar 

  14. Lauterburg, S., Karmani, R.K., Marinov, D., Agha, G.: Evaluating ordering heuristics for dynamic partial-order reduction techniques. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 308–322. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12029-9_22

    Chapter  Google Scholar 

  15. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi:10.1007/3-540-17906-2_30

    Chapter  Google Scholar 

  16. McMillan, K.L., Probst, D.K.: A technique of a state space search based on unfolding. Form. Methods Syst. Des. 6(1), 45–65 (1995)

    Article  MATH  Google Scholar 

  17. Overman, W.: Verification of concurrent systems: function and timing. Ph.D. thesis, UCLA, August 1981

    Google Scholar 

  18. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). doi:10.1007/3-540-56922-7_34

    Chapter  Google Scholar 

  19. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi:10.1007/3-540-11494-7_22

    Chapter  Google Scholar 

  20. Rodríguez, C., Sousa, M., Sharma, S., Kroening, D.: Unfolding-based partial order reduction. In: 26th International Conference on Concurrency Theory, CONCUR 2015. LIPIcs, vol. 42, pp. 456–469. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.456

  21. Saarikivi, O., Kähkönen, K., Heljanko, K.: Improving dynamic partial order reductions for concolic testing. In: 12th International Conference on Application of Concurrency to System Design (ACSD), pp. 132–141. IEEE, Los Alamitos, June 2012

    Google Scholar 

  22. Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg (2006). doi:10.1007/11817949_31

    Chapter  Google Scholar 

  23. Sen, K., Agha, G.: Automated systematic testing of open distributed programs. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS, vol. 3922, pp. 339–356. Springer, Heidelberg (2006). doi:10.1007/11693017_25

    Chapter  Google Scholar 

  24. Sen, K., Agha, G.: A race-detection and flipping algorithm for automated testing of multi-threaded programs. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 166–182. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70889-6_13

    Chapter  Google Scholar 

  25. Şerbănuţă, T.F., Chen, F., Roşu, G.: Maximal Causal Models for Sequentially Consistent Systems. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 136–150. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35632-2_16

    Chapter  Google Scholar 

  26. Tasharofi, S., Karmani, R.K., Lauterburg, S., Legay, A., Marinov, D., Agha, G.: TransDPOR: a novel dynamic partial-order reduction technique for testing actor programs. In: Giese, H., Rosu, G. (eds.) FMOODS/FORTE -2012. LNCS, vol. 7273, pp. 219–234. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30793-5_14

    Chapter  Google Scholar 

  27. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). doi:10.1007/3-540-53863-1_36

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for comments and suggestions that have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Jonsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K. (2017). Comparing Source Sets and Persistent Sets for Partial Order Reduction. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds) Models, Algorithms, Logics and Tools. Lecture Notes in Computer Science(), vol 10460. Springer, Cham. https://doi.org/10.1007/978-3-319-63121-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63121-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63120-2

  • Online ISBN: 978-3-319-63121-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics