Skip to main content

Energy Consumption Forecast of Photo-Voltaic Comfort Cooling Using UPPAAL Stratego

  • Chapter
  • First Online:
Models, Algorithms, Logics and Tools

Abstract

To balance the fluctuations of renewable energies, greater flexibility on the consumption side is required. Moreover, solutions are required to handle the uncertainty related to both production and consumption. In this paper, we propose a probabilistic extension to FlexOffers to capture both the interval in which a given energy resource can be operated and the uncertainty that surrounds it. Probabilistic FlexOffers serve as a support for a method to forecast energy production and consumption of stochastic hybrid systems. We then show how to generate a consumption strategy to match a given consumption assignment within a given flexibility interval. The method is illustrated on a building equipped with solar cells, a heat pump and an ice bank used to feed the air conditioning system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.mirabel-project.eu.

  2. 2.

    www.arrowhead.eu.

  3. 3.

    www.totalflex.dk.

  4. 4.

    https://flexiblepower.github.io/.

  5. 5.

    Note that the Y-axis on Fig. 2 only shows relative values. The scale should not be compared between the success function and the distribution functions.

  6. 6.

    Available at www.uppaal.org.

  7. 7.

    Syntax for Uppaal-stratego commands can be seen in [6].

  8. 8.

    Note that in the case that the evolution of energy is not monotonous, modeling tricks are required, that will be described in Sect. 4.

References

  1. Agesen, M.K., Larsen, K.G., Mikučionis, M., Muñiz, M., Olsen, P., Pedersen, T., Srba, J., Skou, A.: Toolchain for user-centered intelligent floor heating control. In: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pp. 5296–5301. IEEE (2016)

    Google Scholar 

  2. Agesen, M., Skou, A., Pedersen, K.: Preliminary report: controller prototyping and validation for photo-voltaic comfort cooling (2016)

    Google Scholar 

  3. Bai, J., Gooi, H., Xia, L., Strbac, G., Venkatesh, B.: A probabilistic reserve market incorporating interruptible load. IEEE Trans. Power Syst. 21(3), 1079–1087 (2006)

    Article  Google Scholar 

  4. Boehm, M., Dannecker, L., Doms, A., Dovgan, E., Filipič, B., Fischer, U., Lehner, W., Pedersen, T.B., Pitarch, Y., Šikšnys, L., Tušar, T.: Data management in the MIRABEL smart grid system. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, EDBT-ICDT 2012, pp. 95–102. ACM, New York (2012)

    Google Scholar 

  5. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G., Taankvist, J.H.: On time with minimal expected cost!. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 129–145. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6_10

    Google Scholar 

  6. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal Stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_16

    Google Scholar 

  7. Dorini, G., Pinson, P., Madsen, H.: Chance-constrained optimization of demand response to price signals. IEEE Trans. Smart Grid 4(4), 2072–2080 (2013)

    Article  Google Scholar 

  8. Ferreira, L.L., Siksnys, L., Pedersen, P., Stluka, P., Chrysoulas, C., le Guilly, T., Albano, M., Skou, A., Teixeira, C., Pedersen, T.: Arrowhead compliant virtual market of energy. In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pp. 1–8, September 2014

    Google Scholar 

  9. Kreutzkamp, P., Gammoh, O., De Brabandere, K., Rekinger, M.: PV forecasting confidence intervals for reserve planning and system operation. In: Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, EU PVSEC 2013, pp. 4527–4534 (2013). doi:10.4229/28thEUPVSEC2013-6CO.14.6

  10. Larsen, K.G., Mikučionis, M., Muñiz, M., Srba, J., Taankvist, J.H.: Online and compositional learning of controllers with application to floor heating. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 244–259. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9_14

    Chapter  Google Scholar 

  11. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). doi:10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  12. Le Guilly, T., Siksnys, L., Stluka, P., Pedersen, T.B., Olsen, P., Pedersen, P.D., Skou, A., Ferreira, L.L., Albano, M.: An energy flexibility framework on the internet of things. In: The Success of European Projects using New Information and Communication Technologies, pp. 17–37 (2015). doi:10.5220/0006163400170037

  13. Molina-Garcia, A., Kessler, M., Fuentes, J.A., Gomez-Lazaro, E.: Probabilistic characterization of thermostatically controlled loads to model the impact of demand response programs. IEEE Trans. Power Syst. 26(1), 241–251 (2011)

    Article  Google Scholar 

  14. Neupane, B., Pedersen, T.B., Thiesson, B.: Evaluating the value of flexibility in energy regulation markets. In: Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, e-Energy 2015, pp. 131–140. ACM, New York (2015). https://doi.org/10.1145/2768510.2768540

  15. van der Waaij, B., Wilco Wijbrandi, M.K.: White paper energy flexibility platform and interface (EF-PI). Technical report, TNO, June 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Mariegaard .

Editor information

Editors and Affiliations

Appendices

A Thermodynamics

Constants from Sect. 4.

$$\begin{aligned}&A_s = \left\{ \begin{array}{ll} 80 &{} \text { if } s \le 25\\ (s-25) \cdot 120 &{} \text { o.w} \end{array} \right. \\&B_s = \left\{ \begin{array}{ll} 0 \cdot s &{} \text { if } s \le 25\\ 2000 &{} \text { o.w } \end{array} \right. \\&COP _s = \left\{ \begin{array}{ll} 0.16 \cdot s &{} \text { if } s \le 25\\ 4 &{} \text { o.w } \end{array} \right. \\&H_{ HVAC } = \dot{M}_{ air } \cdot C_{ air }\\&T_{ HVAC } = 18\,^{\circ }\text {C}\\&D = \frac{1}{M_{ air } \cdot C_{ air }}\\&A_{ eff }= \frac{6\,\text {m}^2}{10}\\&H_{ env } = \frac{1}{0.0093}\\&IB _{ full } = 55 \\&IB _{ empty } = 0 \end{aligned}$$

where

  • \(\dot{M}_{ air } = 1 \frac{\text {kg}}{\text {s}}\) is the HVAC air flow rate.

  • \(C_{ air } = 1005.4 \frac{\text {J}}{\text {kg}\cdot \text {K}}\) is the specific heat capacity of air.

  • \(M_{ air } = 7113.5\,\text {kg}\) is the mass of air in the building.

  • \(M_{ ice } = 1500\,\text {kg}\) is the total mass of ice within ice bank.

  • \(C_{ ice } = 2108\,\frac{\text {J}}{\text {kg}\cdot \text {K}}\) is the specific heat capacity of ice.

B Model Specifics

Figure 8 depicts the Uppaal-stratego model used for on-line controller synthesis. It consists of two location Choose_speed and Wait. The solid edge from Choose_speed to Wait encodes a non-deterministic choice between the available heat pump settings i.e. the controllable modes in the stochastic hybrid game. When the next controllable mode is set, update_irr() computes the next uncontrollable mode, i.e. the irradiance forecast. apply_flow() then updates each variable according to the flow functions of the corresponding stochastic hybrid game, as seen in Listing 1.1. To this end, numeric integration using the Euler method is implemented in each update_X() function call, for numSteps number of steps. Finally, update_kWh() updates the energy consumption/production for this period. Invariant \(x \le 1\) in the Wait location and guard \(x == 1\) on the clock x together encode the period. The dotted edge encodes a reset to a new period and is considered uncontrollable by Uppaal-stratego for control strategy synthesis.

Fig. 8.
figure 8

Uppaal-stratego model for on-line controller synthesis.

figure h

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Agesen, M.K., Enevoldsen, S., Le Guilly, T., Mariegaard, A., Olsen, P., Skou, A. (2017). Energy Consumption Forecast of Photo-Voltaic Comfort Cooling Using UPPAAL Stratego. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds) Models, Algorithms, Logics and Tools. Lecture Notes in Computer Science(), vol 10460. Springer, Cham. https://doi.org/10.1007/978-3-319-63121-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63121-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63120-2

  • Online ISBN: 978-3-319-63121-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics