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Abstract. Partial evaluation (PE) is a powerful and general program optimization tech-
nique with many successful applications. However, it has never been investigated in the
context of expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and
ELAN, which support: 1) rich type structures with sorts, subsorts and overloading; 2)
equational rewriting modulo axioms such as commutativity,associativity–commutativity,
and associativity–commutativity–identity. In this extended abstract, we illustrate the
key concepts by showing how they apply to partial evaluationof expressive rule-based
programs written in Maude. Our partial evaluation scheme isbased on an automatic
unfolding algorithm that computes termvariantsand relies onequationalleast general
generalization for ensuring global termination. We demonstrate the use of the resulting
partial evaluator for program optimization on several examples where it shows signifi-
cant speed-ups.

1 Introduction

Partial evaluation (PE) is a semantics-based program transformation technique in which a
program is specialized to a part of its input that is known statically (at specializationtime)
[7,10]. Partial evaluation has currently reached a point where theory and refinements have
matured, substantial systems have been developed, and realistic applications can benefit from
partial evaluation in a wide range of fields that transcend byfar program optimization.

Narrowing-driven PE (NPE) [4,5] is a generic algorithm for the specialization of func-
tional programs that are executed bynarrowing [9,12], an extension of rewriting where
matching is replaced by unification. Essentially, narrowing consists of computing an appro-
priate substitution for a symbolic program call in such a waythat the program call becomes
reducible, and then reduce it: both the rewrite rule and the term can be instantiated. As in logic
programming, narrowing computations can be represented bya (possibly infinite) finitely
branching tree. Since narrowing subsumes both rewriting and SLD-resolution, it is complete
in the sense of both functional programming (computation ofnormal forms) and logic pro-
gramming (computation of answers). By combining the functional dimension of narrowing
with the power of logic variables and unification, the NPE approach has better opportunities
for optimization than the more standard partial evaluationof logic programs (also known as
partial deduction, PD) and functional programs [5].

To the best of our knowledge, partial evaluation has never been investigated in the context
of expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which
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support: 1) rich type structures with sorts, subsorts and overloading; and 2) equational rewrit-
ing modulo axioms such as commutativity, associativity–commutativity, and associativity–
commutativity–identity. In this extended abstract, we illustrate the key concepts by showing
how they apply to partial evaluation of expressive rule-based programs written in Maude.
The key NPE ingredients of [4] have to be further generalizedto corresponding (order–
sorted)equationalnotions (moduloaxioms): e.g.,equational unfolding, equational closed-
ness, equational embedding, and equational abstraction; and the associated partial evaluation
techniques become more sophisticated and powerful.

Let us motivate the power of our technique by reproducing theclassical specialization of
a program parser w.r.t. a given grammar into a very specialized parser [10].

Example 1.Consider the following rewrite theory (written in Maude3 syntax) that defines an
elementary parser for the language generated by simple, right regular grammars. We define
a symbol_|_|_ to represent the parser configurations, where the first underscore represents
the (terminal or non-terminal) symbol being processed, thesecond underscore represents the
current string pending to be recognised, and the third underscore stands for the considered
grammar. We provide two non-terminal symbolsinit and S and three terminal symbols
0, 1, and the finalizing markeps (for ε, the empty string). These are useful choices for
this example, but they can be easily extended to more terminal and non-terminal symbols.
Parsing a stringst according to a given grammarΓ is defined by rewriting the configuration
(init | st | Γ ) using the rules of the grammar (in the opposite direction) to incrementally
transformst until the final configuration (eps | eps | Γ ) is reached.

fmod Parser is

sorts Symbol NSymbol TSymbol String Production Grammar Parsing .

subsort Production < Grammar .

subsort TSymbol < String .

subsorts TSymbol NSymbol < Symbol .

ops 0 1 eps : -> TSymbol . ops init S : -> NSymbol . op mt : -> Grammar .

op __ : TSymbol String -> String [right id: eps].

op _->_ : NSymbol TSymbol -> Production .

op _->_._ : NSymbol TSymbol NSymbol -> Production .

op _;_ : Grammar Grammar -> Grammar [assoc comm id: mt] .

op _|_|_ : Symbol String Grammar -> Parsing .

var E : TSymbol . vars N M : NSymbol . var L : String . var G : Grammar .

eq (N | eps | ( N -> eps ) ; G) = (eps | eps | ( N -> eps ) ; G) [variant] .

eq (N | E L | ( N -> E . M ) ; G) = (M | L | ( N -> E . M ) ; G) [variant] .

endfm

Note that this Maude equational program theory contains several novel features that are
unknown landfor (narrowing-driven) partial evaluation: 1) a subsorting relationTSymbol
NSymbol < Symbol, and 2) an associative-commutative with identity symbol_;_ for rep-
resenting grammars (meaning that they are handled as a multiset of productions), together
with the symbol__ with right identity for the input string. The general case ofthe parser
is defined by the second equation that, given the configuration (N | E L | Γ ) where (E L)
is the string to be recognized, searches for the grammar production (N -> E . M) in Γ to
recognize symbolE, and proceeds to recognizeL starting from the non-terminal symbolM.

3 In Maude 2.7, only equations with the attributevariant are used by the folding variant narrowing
strategy, which is the only narrowing strategy considered in this paper.
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Note that the combination of subtypes and equational (algebraic) axioms allows for a very
compact definition.

For example, given the following grammarΓ generating the language(0)∗(1)∗:

init -> eps init -> 0 . init init -> 1 . S S -> eps S -> 1 . S

the initial configuration(init | 0 0 1 1eps | Γ) is deterministically rewritten as
(init | 0 0 1 1 eps | Γ) → (init | 0 1 1 eps | Γ) → (init | 1 1 eps | Γ) →

(S | 1 eps | Γ) → (S | eps | Γ)→ (eps | eps | Γ).

We can specialize our parsing program to the productions of the given grammarΓ by
partially evaluating the input term(init | L | Γ), whereL is a logical variable of sortString.
By applying our partial evaluator, we aim to obtain the specialized parsing equations:

eq init || eps = eps || eps . eq init || 1 = eps || eps .

eq init || 0 L = init || L . eq S || eps = eps || eps .

eq init || 1 1 L = S || L . eq S || 1 L = S || L .

which get rid of the grammarΓ (and hence of costlyACU-matchingoperations) while still
recognizing stringst by rewriting the simpler configuration (init || st) to the final configu-
ration (eps || eps). We have run some test on both the original and the specialized programs
with an impressive improvement in performance, see Section3.

Our contribution. In this extended abstract, we delve into the essential ingredients of a
partial evaluation framework for order sorted equational theories that is able to cope with
subsorts, subsort polymorphism, convergent rules (equations), and equational axioms. We
base our partial evaluator on a suitably extended version ofthe general NPE procedure of [4],
which is parametric w.r.t. theunfolding ruleused to construct finite computation trees and also
w.r.t. anabstraction operatorthat is used to guarantee that only finitely many expressionsare
evaluated. For unfolding we use(folding) variant narrowing[8], a novel narrowing strategy
for convergent equational theories that computesmost general variantsmodulo algebraic
axioms and is efficiently implemented in Maude. For the abstraction we rely on the(order-
sorted) equational least general generalizationrecently investigated in [2].

2 Specializing Equational Theories modulo Axioms

In this section, we introduce a partial evaluation algorithm for an equational theory decom-
posed as a triple(Σ ,B,

−→
E0), whereΣ is the signature,E0 is a set of convergent (equations that

are implicitly oriented as) rewrite rules andB is a set of commonly occurring axioms such
as associativity, commutativity, and identity. Let us start by recalling the key ideas of the
NPE approach. We assume the reader is acquainted with the basic notions of term rewriting,
Rewriting Logic, and Maude (see, e.g, [6]).

2.1 The NPE Approach

Given a setRof rewrite rules and a setQof program calls (i.e. input terms), the aim of NPE [4]
is to derive a new set of rulesR′ (called a partial evaluation ofRw.r.t.Q, or a partial evaluation
of Q in R) which computes the same answers and irreducible forms (w.r.t. narrowing) than

3



flip(flip(T))
{T7→N}

ww♦♦♦
♦♦
♦ {T7→L {N} R}

++❱❱❱❱
❱❱❱❱

❱❱

flip(N)

��

flip(flip(R) {N} flip(L))

��
N flip(flip(L)) N flip(flip(R))

Fig. 1. Folding variant narrowing tree for the goalflip(flip(T)).

R for any term thatt is inductively covered (closed) by the calls inQ. This means that every
subterm in the leaves of the execution tree fort in R that can be narrowed (moduloB) in R
can also be narrowed (moduloB) in R′. Roughly speaking,R′ is obtained by first constructing
a finite (possibly partial) narrowing tree for the input termt, and then gathering together the
set ofresultants tθ1→ t1,. . . , tθk→ tk that can be constructed by considering the leaves of
the tree, sayt1, . . . , tk, and the computed substitutionsθ1, . . . ,θk of the associated branches
of the tree (i.e., a resultant rule is associated to each root-to-leaf derivation of the narrowing
tree). Resultants perform what in fact is ann-step computation inR, with n > 0, by means
of a single step computation inR′. The unfolding process is iteratively repeated for every
narrowable subterm oft1, . . . , tk that is not covered by the root nodes of the already deployed
narrowing trees. This ensures that resultants form a complete description covering all calls
that may occur at run-time inR′.

Let us illustrate the classical NPE method with the following example that illustrates its
ability to performdeforestation[13], a popular transformation that neither standard partial
evaluation nor partial deduction can achieve [4]. Essentially, the aim of deforestation is to
eliminate useless intermediate data structures, thus reducing the number of passes over data.

Example 2.Consider the following Maude program that computes the mirror image of a
(non-empty) binary tree, which is built with the free constructor_{_}_ that stores an element
as root above two given (sub-)trees, its left and right children. Note that the program does not
contain any equational attributes either for_{_}_ or for the operationflip defined therein:

fmod FLIP-TREE is protecting NAT .

sort NatTree . subsort Nat < NatTree . vars R L : NatTree . var N : Nat .

op _{_}_ : NatTree Nat NatTree -> NatTree . op flip : NatTree -> NatTree .

eq flip(N) = N [variant] . eq flip(L {N} R) = flip(R) {N} flip(L) [variant] .

endfm

By executing the input termflip(flip(T)) this program returns the original tree back, but
it first computes an intermediate, mirrored treeflip(T) of T, which is then flipped again.

Let us partially evaluate the input termflip(flip(T)) following the NPE approach,
hence we compute the folding variant narrowing tree depicted4 in Figure 1 for the term
flip(flip(T))). This tree does not contain, altogether, uncovered calls inits leaves. Thus,
we get the following residual programR ′ after introducing the new symboldflip:

eq dflip(N) = N . eq dflip(L {N} R) = dflip(L) {N} dflip(R) .

which is completely deforested, since the intermediate tree constructed after the first appli-
cation offlip is not constructed in the residual program using the specialised definition of

4 We show narrowing steps in solid arrows and rewriting steps in dotted arrows.
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Fig. 2.Flipping a graph.

dflip. This is equivalent to the program generated by deforestation [13] but with a much bet-
ter performance, see Section 3. Note that the fact that folding variant narrowing [8] ensures
normalization of terms at each step is essential for computing the callsflip(flip(R)) and
flip(flip(L)) that appear in the rightmost leaf of the tree in Figure 1, which are closed
w.r.t. the root node of the tree.

When we specialize programs that contain sorts, subsorts, rules, and equational axioms,
things get considerably more involved, as discussed in the following section.

2.2 Partial evaluation of convergent rules modulo axioms

Let us motivate the problem by considering the following variant of theflip function of
Example 2 for (binary) graphs instead of trees.

Example 3.Consider the following Maude program for flipping binary graphs that are repre-
sented as multisets of nodes which may contain explicit, left and right, references (pointers)
to their child nodes in the graph. We use symbol♯ to denote an empty pointer. As expected,
theBinGraph (set) constructor_;_ obeys axioms of associativity, commutativity and identity
(ACU). We consider a fixed set of identifiers0 . . .4.

fmod GRAPH is sorts BinGraph Node Id Ref .

subsort Node < BinGraph . subsort Id < Ref .

op {___} : Ref Id Ref -> Node . op mt : -> BinGraph .

op _;_ : BinGraph BinGraph -> BinGraph [assoc comm id: mt] .

ops 0 1 2 3 4 : -> Id . --- Fixed identifiers

op # : -> Ref . --- Void pointer

var I : Id . vars R1 R2 : Ref . var BG : BinGraph .

endfm

We are interested in flipping a graph and define a functionflip that takes a reference and a
binary graph and returns the flipped graph.

op flip : BinGraph -> BinGraph .

eq [E1] : flip(mt) = mt [variant] .

eq [E2] : flip({R1 I R2} ; BG) = {R2 I R1} ; flip(BG) [variant] .

We can represent the graph shown on the left-hand side of Figure 2 as the following term
BG of sortBinGraph:

{ 1 0 2 } ; { # 1 # } ; { 3 2 4 } ; { # 3 4 } ; { # 4 0 }

By invokingflip(BG), the graph shown on the right-hand side of Figure 2 is computed.
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In order to specialize the previous program for the callflip(flip(BG)), we need sev-
eral PE ingredients that have to be generalized to the corresponding (order–sorted)equational
notions: (i)equational closedness, (ii) equational embedding, and (iii)equational generaliza-
tion. In the following, we discuss some subtleties about these new notions gradually, through
our graph-flipping running example.

2.3 Equational closedness and the generalized Partial Evaluation scheme

Roughly speaking, in order to compute a specialization fort in (Σ ,B,
−→
E0), we need to start by

constructing a finite (possibly partial)(
−→
E0,B)-narrowing tree fort using the folding variant

narrowing strategy [8], and then extracting the specialized rulestσ ⇒ r (resultants) for each
narrowing derivationt ❀σ ,

−→
E0,B

r in the tree. However, in order to ensure that resultants forma
complete description covering all calls that may occur at run-time in the final specialized the-
ory, partial evaluation must rely on a parametric general notion of equational Q-closedness
(moduloB) that is not a mere syntactic subsumption check (i.e., to be asubstitution instance
of some term inQ as in the partial deduction of logic programs), but recursesover the alge-
braicB-structure of the terms.

Definition 1 (Equational Closedness).Let (Σ ,B,
−→
E0) be an equational theory decomposi-

tion and Q be a finite set ofΣ -terms. Assume the signatureΣ splits into a setDE0 of de-

fined function symbols and a setCE0 of constructor symbols (i.e.,
−→
E0,B-irreducible), so that

Σ = DE0 ⊎CE0. We say that aΣ -term t is closedmoduloB (w.r.t. Q andΣ ), or B–closed, if
closedB(Q, t) holds, where the predicate closedB is defined as follows:

closedB(Q, t) ⇔















true if t is a variable
closedB(Q, t1)∧ . . .∧closedB(Q, tn) if t = c(tn), c∈ CE0, n≥ 0
∧

x7→t ′∈θ closedB(Q, t ′) if ∃q∈Q such that qθ =B t
for some substitutionθ

A set T of terms is closed modulo B (w.r.t. Q andΣ ) if closedB(Q, t) holds for each t in T. A
set R of rules is closed modulo B (w.r.t. Q andΣ ) if the set Rhs(R) consisting of the right-hand
sides of all the rules in R is closed modulo B (w.r.t. Q andΣ ).

Example 4.In order to partially evaluate the program in Example 3 w.r.t. the input term
flip(flip(BG)), we setQ = {flip(flip(BG))} and start by constructing the folding
variant narrowing tree that is shown5 in Figure 3.

When we consider the leaves of the tree, we identify two requirements forQ-closedness,
with B being ACU: (i) closedB(Q, t1) with t1 = mt and (ii) closedB(Q, t2) with
t2 = {R1 I R2} ; flip(flip(BG’)). The callclosedB(Q, t1) holds straightforwardly (i.e.,
it is reduced totrue) since themt leaf is a constant and cannot be narrowed. The sec-
ond oneclosedB(Q, t2) also returns true because{R1 I R2} is a flat constructor term and
flip(flip(BG’)) is a (syntactic) renaming of the root of the tree.

We now show an example that requires to useB-matching in order to ensure equational
closedness moduloB.

5 To ease reading, the arcs of the narrowing tree are decoratedwith the label of the corresponding
equation applied at the narrowing step.
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flip(flip(BG))

[E1]
{BG 7→ mt}

✉✉✉

zz✉✉
✉

[E2]
{BG 7→ {R1 I R2} ; BG’}

❚❚❚❚
❚

**❚❚❚
❚❚

mt flip({R2 I R1} ; flip(BG’))

[E1]
id

��
{R1 I R2} ; flip(flip(BG”))

Fig. 3. Folding variant narrowing tree for the goalflip(flip(BG)).
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Fig. 4.Fixing a graph.

Example 5.Let us introduce a new sortBinGraph? to encode bogus graphs that may contain
spurious nodes in a supersortId? and homomorphically extend the rest of symbols and sorts.
For simplicity, we just consider one additional constant symbole in sortId?.

sorts BinGraph? Id? Node? Ref? . subsort BinGraph Node? < BinGraph? .

subsort Node < Node? . subsort Id < Id? . subsort Ref Id? < Ref? .

op e : -> Id? . op {___} : Ref? Id? Ref? -> Node? .

op _;_ : BinGraph? BinGraph? -> BinGraph? [ctor assoc comm id: mt] .

vars I I1 : Id . var I? : Id? . vars R1 R2 : Ref . vars R1? R2? : Ref? .

vars BG : BinGraph . var BG? : BinGraph? .

Let us consider a functionfix that receives an extended graphBG?, an unwanted nodeI?,
and a new contentI, and traverses the graph replacingI? by I.

op fix : Id Id? BinGraph? -> BinGraph? .

eq [E3] : fix(I, I?, {R1? I? R2?} ; BG?) =

fix(I, I?, {R1? I R2?} ; BG?) [variant] .

eq [E4] : fix(I, I?, {I? I1 R2?} ; BG?) =

fix(I, I?, {I I1 R2?} ; BG?) [variant] .

eq [E5] : fix(I, I?, {R1? I1 I?} ; BG?) =

fix(I, I?, {R1? I1 I} ; BG?) [variant] .

eq [E6] : fix(I, I?, BG) = BG [variant] .

For example, consider the following termT of sortBinGraph?:

{# 1 e} ; {e 0 #} ; {e e 3} ; {e 3 #}

that represents the graph shown on the left-hand side of Figure 4. By invokingfix(2, e,

T), we can fix the graphT, by computing the corresponding transformed graph shown onthe
right-hand side of Figure 4, where the unwanted nodee has been replaced.

Now assume we want to specialize the above functionfix w.r.t. the input termfix(2,
e, {R1 I R2} ; BG?), that is, a bogus graph with at least one non-spurious node{R1 I

7



fix(2, e, {R1 I R2} ; BG?)

[E3]
{BG? 7→ {R1?’ e R2?’} ;

BG?’}

♣♣
♣♣
♣♣
♣♣

xx♣♣♣
♣♣
♣♣
♣

[E4]
{BG? 7→ {e I1 R2?’} ;

BG?’}

��

[E5]
{BG? 7→ {R1?’ I1 e} ;

BG?’}

◆◆
◆◆

◆◆
◆◆

&&◆◆
◆◆

◆◆
◆◆

[E6]
{BG? 7→ BG}

❲❲❲❲
❲

++❲❲❲❲❲
{R1 I R2} ; BG

fix(2, e, {R1?’ 2 R2?’} ;
BG?’ ; {R1 I R2})

fix(2, e, {2 I1 R2?’} ;
BG?’ ; {R1 I R2})

fix(2, e, {R1?’ I1 2} ;
BG?’ ; {R1 I R2})

Fig. 5.Folding variant narrowing tree for the goalfix(2, e, {R1 I R2} ; BG?).

flip(fix(2, e, flip(BG)))

[E1]
{BG 7→ mt}

❥❥❥❥

uu❥❥❥❥
[E2]

{BG 7→ BG’ ; {R1 I R2}}

❲❲❲❲

++❲❲❲❲
flip(fix(2, e, mt))

[E6]
id ��

flip(fix(2, e, flip(BG’) ; {R2 I R1}))

flip(mt)
[E1]
id

// mt

Fig. 6. Folding variant narrowing tree for the goalflip(fix(2, e, flip(BG))).

R2} (non-spurious because of the sort of variableI). Following the proposed methodology,
we setQ= {fix(2, e, {R1 I R2} ; BG?)} and start by constructing the folding variant
narrowing tree shown in Figure 5.

The right leaf{R1 I R2} ; BG is a constructor term and cannot be unfolded. The first
two branches to the left of the tree are closed moduloACU with the root of the tree in Figure 5.
For instance, for the left leaft = fix(2, e, {R1?’ 2 R2?’} ; BG?’ ; {R1 I R2}),
the conditionclosedB(Q, t) is reduced6 to true becauset is an instance (moduloACU) of
the root node of the tree, and the subtermt ′ = ({R1?’ 2 R2?’} ; BG?’) occurring in the
corresponding (ACU-)matcher is a constructor term. The other branches can be provedACU-
closed with the tree root in a similar way.

Example 6 (Example 5 continued).Now let us assume that the functionflip is extended
to (bogus graphs of sort)BinGraph?, by extending equationsE1 and E2 in the natural
way. We specialize the whole program containing functionsflip andfix w.r.t. input term
flip(fix(2, e, flip(BG))), that is, take a graphBG, flip it, then fix any occurrence of
nodese, and finally flip it again. The corresponding folding variantnarrowing tree is shown in
Figure 6. Unfortunately this tree does not represent all possible computations for (anyACU-
instances of) the input term, since the narrowable redexes occurring in the tree leaves are not
a recursive instance of the only partially evaluated call sofar. That is, the termflip(fix(2,
e, flip(BG’) ; {R2 I R1})) of the rightmost leaf is notACU-closed w.r.t. the root node
of the tree. As in NPE, we need to introduce a methodology thatrecurses (moduloB) over
the structure of the terms to augment the set of specialized calls in a controlled way, so as to
ensure that all possible calls are covered by the specialization.

We are now ready to formulate the backbone of our partial evaluation methodology for
equational theories that crystallize the ideas of the example above. Following the NPE ap-
proach, we define a generic algorithm (Algorithm 1) that is parameterized by:

6 Note that this is only true because pattern matching moduloACU is used for testing closedness.
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1. anarrowing relation(with narrowing strategyS ) that constructs search trees,
2. anunfolding rule, that determines when and how to terminate the constructionof the

trees, and
3. anabstraction operator, that is used to guarantee that the set of terms obtained during

partial evaluation (i.e., the set of deployed narrowing trees) is kept finite.

Algorithm 1 Partial Evaluation for Equational Theories
Require:

An equational theoryE = (Σ ,B,
−→
E0) and a set of termsQ to be specialized inE

Ensure:
A setQ′ of terms s.t. UNFOLD(Q′,E ,S ) is closed moduloB w.r.t. Q′

1: function EQNPE(R,Q,S )
2: Q := Q↓−→

E0,B
3: repeat
4: Q′ := Q
5: L ← UNFOLD(Q′,E ,S )
6: Q← ABSTRACT(Q′,L ,B)
7: until Q′ =B Q
8: return Q′

Informally, the algorithm proceeds as follows. Given the input theoryE and the set of
termsQ, the first step consists in applying the unfolding rule UNFOLD(Q,E ,S ) to compute
a finite (possibly partial) narrowing tree inE for each termt in Q, and return the setL
of the (normalized) leaves of the tree. Then, instead of proceeding directly with the partial
evaluation of the terms inL , an abstraction operator ABSTRACT(Q,L ,B) is applied that
properly combines each uncovered term inL with the (already partially evaluated) terms of
Q, so that the infinite growing ofQ is avoided. The abstraction phase yields a new set of terms
which may need further specialization and, thus, the process is iteratively repeated while new
terms are introduced.

The PE algorithm does not explicitly compute a partially evaluated theoryE ′=(Σ ,B,E′).
It does so implicitly, by computing the set of partially evaluated termsQ′ (that unambiguously
determineE′ as the set of resultantstσ⇒ r associated to the root-to-leaf derivationst ❀σ ,

−→
E0,B

r in the tree, witht in Q′), such that the closedness condition forE′ moduloB w.r.t. Q′ is
satisfied.

Example 7 (Example 5 continued).Now let us assume that the functionflip is extended to
(bogus graphs of sort)BinGraph?, updating equationsE1 andE2 in the natural way. We spe-
cialize the whole program containing functionsflip andfix w.r.t. input termflip(fix(2,
e, flip(BG))), that is, take a graphBG, flip it, then fix any occurrence of nodese, and fi-
nally flip it again. The corresponding folding variant narrowing tree is shown in Figure 6.
Unfortunately this tree does not represent all possible computations for (anyACU-instances
of) the input term, since the narrowable redexes occurring in the tree leaves are not a recur-
sive instance of the only partially evaluated call so far. That is, the termflip(fix(2, e,

flip(BG’) ; {R2 I R1})) of the rightmost leaf is notACU-closed w.r.t. the root node of
the tree. As in NPE, we need to introduce a methodology that recurses (moduloB) over the
structure of the terms to augment in a controlled way the set of specialized calls, so as to
ensure that all possible calls are covered by the specialization.
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2.4 Equational homeomorphic embedding

Partial evaluation involves two classical termination problems: the so-calledlocal termina-
tion problem (the termination of unfolding, or how to control and keep the expansion of the
narrowing trees finite, which is managed by an unfolding rule), and theglobal termination
(which concerns termination of recursive unfolding, or howto stop recursively constructing
more and more narrowing trees).

For local termination, we need to defineequational homeomorphic embeddingby ex-
tending the standard notion of homeomorphic embedding withorder-sorted information and
reasoning modulo axioms. Embedding is a structural preorder under which a termt is greater
than, i.e., it embeds, another termt ′, written ast ⊲ t ′, if t ′ can be obtained fromt by deleting
some parts.

Embedding relations are very popular to ensure terminationof symbolictransformations
because, provided the signature is finite, for every infinitesequence of termst1, t2, . . . , there
exist i < j such thatti E t j . Therefore, when iteratively computing a sequencet1, t2, . . . , tn,
finiteness of the sequence can be guaranteed by using the embedding as a whistle [11]: when-
ever a new expressiontn+1 is to be added to the sequence, we first check whethertn+1 em-
beds any of the expressions already in the sequence. If that is the case, we say thatE whis-
tles, i.e., it has detected (potential) non-termination and the computation has to be stopped.
Otherwise,tn+1 can be safely added to the sequence and the computation proceeds. For in-
stance, if we work modulo commutativity (C), we must stop a sequence where the term
u =s(s(X+Y)∗(s(X)+0)) occurs afterv =s(X)∗s(X+Y), sincev embedsu modulo com-
mutativity of∗.

Definition 2 ((order-sorted) equational homeomorphic embedding). Let (Σ ,B,
−→
E0) be an

equational theory decomposition. Consider the TRS Emb(Σ ) that consists of all rewrite rules
f (X1 : A1, . . . ,Xn : An)→ Xi : Ai with f : A1, . . . ,An→ A in Σ and i∈ {1, . . . ,n}. For terms u
and v we write u⊲B v if u→+

Emb(Σ)/B v′ and v′ is equal to v up to B-renaming (i.e. v
ren
=Bv′ iff

there is a renaming substitutionσ such that v=B v′σ ). The relationEB is called B–embedding
(or embedding modulo B).

By using this notion, we stop a brancht ❀ t ′ of a folding variant narrowing tree, if any
narrowing redex of the leaft ′ is embedded (moduloB) by the narrowing redex of a preceding
termu in the branch, i.e.,u|p EB t ′|q.

Example 8 (Example 7 continued).Consider again the (partial) folding variant narrowing tree
of Figure 6. The narrowing redext = flip(fix(2, e, flip(BG’) ; {R2 I R1}) in the
right branch of the tree embeds moduloACU the tree root
u = flip(fix(2, e, flip(BG))). Since the whistleu EB t blows, the unfolding of this
branch is stopped.

2.5 Equational abstraction via equational least general generalization

For global termination, PE evaluation relies on an abstraction operation to ensure that the iter-
ative construction of a sequence of partial narrowing treesterminates while still guaranteeing
that the desired amount of specialization is retained and that the equational closedness condi-
tion is reached. In order to avoid constructing infinite sets, instead of just taking the union of
the setL of non-closed terms in the leaves of the tree and the setQ of specialized calls, the
setsQ andL aregeneralized. Hence, the abstraction operation returns a safe approximation
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A of Q∪L so that each expression in the setQ∪L is closed w.r.t.A. Let us show how
we can define a suitable abstraction operator by using the notion of equational least general
generalization (lggB) [2]. Unlike the syntactical, untyped case, there is in general no unique
lggB in the framework of [2], due to both the order-sortedness andto the equational axioms.
Instead, there is a finite, minimal and complete set oflggB’s for any two terms, so that any
other generalizer has at least one of them as aB-instance.

More precisely, given the current set of already specialized calls Q, in order to add a
setT of new terms, the function ABSTRACT	(Q,T,B) of Algorithm 1 is instantiated with
the following function, which relies on the notion ofbest matching terms(BMT), a proper
generalization of [1] that is aimed at avoiding loss of specialization due to generalization.
Roughly speaking, to determine the best matching terms fort in a set of termsU w.r.t., B,
BMTB(U, t), for eachui in U , we compute the setWi of lggB’s of t andui, and select the subset
M of minimal upper bounds of the union

⋃

i Wi . Then, the termu j belongs toBMTB(Q, t) if at
least one lgg element in the correspondingWj belongs toM.

Example 9.Let t ≡ g(1)⊕ 1⊕ g(Y), U ≡ {1⊕ g(X),X⊕ g(1),X⊕Y}, and considerB to
consist of the associative-commutative (AC) axioms for⊕. To compute the best matching
terms fort in U , we first compute the sets oflggB’s of t with each of the terms inU :

W1 = lggAC({g(1)⊕1⊕g(Y),1⊕g(X)}) = {〈{Z⊕1,{Z/g(1)⊕g(Y)},{Z/g(X)}〉,
〈Z⊕g(W)},{Z/1⊕g(1),W/Y},{Z/1,W/X}〉

W2 = lggAC({g(1)⊕1⊕g(Y),X⊕g(1)}) = {〈{Z⊕g(1)},{Z/g(1)⊕g(Y)},{Z/X}〉}
W3 = lggAC({g(1)⊕1⊕g(Y),X⊕Y)}) = 〈{Z⊕W},{Z/1,W/g(1)⊕g(Y)},{Z/X,W/Y}〉

Now, the setM of minimal upper bounds of the setW1∪W2∪W3 is M = {Z⊕1,Z⊕g(1)}
and thus we have:BMTAC(S, t) = {1⊕g(X),X⊕g(1)}.

Definition 3 (equational abstraction operator).Let Q,T be two sets of terms. We define
abstract	(Q,T,B) = abs	B (Q,T), where:















abs	B (. . .abs	B (Q, t1), . . . , tn) if T ≡ {t1, . . . , tn},n> 0
Q if T ≡Ø or T ≡ {X},with X ∈X

abs	B (Q,{t1, . . . , tn}) if T ≡ {t},with t≡ c(t1, . . . , tn), c∈ CE0

generalizeB(Q,Q′, t) if T ≡ {t},with t≡ f (t1, . . . , tn), f ∈DE0

where Q′ = {t ′ ∈Q | root(t) = root(t ′) and t′ EB t}, and the functiongeneralizeis:

generalizeB(Q,Ø, t) = Q∪{t}
generalizeB(Q,Q′, t) = Q if t is Q−closed
generalizeB(Q,Q′, t) = abs	B (Q\BMTB(Q′, t),Q′′ ↓−→E0,B

)

where Q′′ = {l | q∈ BMTB(Q′, t),〈w,{θ1,θ2}〉 ∈ lggB({q, t}),x∈Dom(θ1)∪Dom(θ2), l ∈
{w,xθ1,xθ2}}.

Example 10 (Example 8 continued).Consider again the (partial) folding variant narrowing
tree of Figure 6 with the leaft = flip(fix(2, e, flip(BG’) ; {R2 I R1})) in the
right branch of the tree and the tree rootu = flip(fix(2, e, flip(BG))). We apply
the abstraction operator withQ = {u} and T = {t}. Sincet is operation-rooted, we call
generalizeB(Q,Q′, t) with Q′ = Q, which in turn callsabs	ACU(Q\BMTACU(Q′, t),Q′′), with
BMTACU(Q′, t) = Q andQ′′ = {w,v}, wherew= flip(fix(2, e, flip(Bg) ; Bg’)) is
the onlyACU least general generalization ofu andt andv= {R2’ I’ R1’}. Then the call

11



flip(fix(2, e, flip(Bg) ; Bg’))

[E1]
{Bg 7→ mt,Bg’ 7→ Bg”}

❦❦❦
❦❦

uu❦❦❦❦
❦

[E2]
{Bg 7→ Bg” ; {R1 I R2}, Bg’ 7→ Bg”’}

❲❲❲❲
❲❲

++❲❲❲❲
❲❲

flip(fix(2, e, Bg”))

[E6]
id

��

flip(fix(2, e, Bg”’ ; flip(Bg”) ; {R2 I R1}))

flip(Bg”)

[E1]
{Bg” 7→ mt}

��

[E2]
{Bg” 7→ Bg”’ ; {R1 I R2}}

❙❙❙
❙❙

))❙❙❙
❙❙

mt {R2 I R1} ; flip(Bg”’)

Fig. 7.Folding variant narrowing tree for the goalflip(fix(2, e, flip(Bg) ; Bg’)).

flip(Bg”’)

[E1]
{Bg”’ 7→ mt}

��
[E2]

{Bg”’ 7→ Bg”” ; {R1 I R2}}

❯❯❯

**❯❯❯
mt {R2 I R1} ; flip(Bg””)

Fig. 8. Folding variant narrowing tree for the goalflip(Bg”’).

returns the set{w}. However, this means that the previous folding narrowing tree of Figure 6
is now discarded, since the previous set of input termsQ= {u} is now replaced byQ′ = {w}.

We start from scratch and the tree resulting for the new callw is showed in Figure 7. The
right leaf embeds the root of the tree and isB-closed w.r.t. it. The left leafmt is a constructor
term. For the middle leaft ′′ = {R2 I R1} ; flip(Bg”’) the whistleflip(Bg”)EACU t ′′

blows and we stop the derivation. However, it is notB-closed w.r.t.w and we have to add it to
the setQ′, obtaining the new set of input termsQ′′ = {w,flip(Bg”’)}. The specialization of
the callflip(Bg”’) amounts constructing the narrowing tree of Figure 8, which is trivially
ACU-closed w.r.t. its root.

Example 11 (Example 10 continued).Since the two trees in Figures 7 and 8 do represent all
possible computations for (anyACU-instance of)u = flip(fix(2, e, flip(BG))), the
partial evaluation process ends. Actuallyu is an instance of the root of the tree in Figure 7
with {Bg’ 7→ mt} because of the identity axiom. The computed specializationis the setQ′′′.
Now we can extract the set of resultantstσ ⇒ r associated to the root-to-leaf derivations
t ❀σ ,

−→
E0,B

r in the two trees, which yields:

eq flip(fix(2, e, flip(mt))) = mt .

eq flip(fix(2, e, flip({R1 I R2} ; BG’))) =

flip(fix(2, e, flip(BG’) ; {R2 I R1})) .

eq flip(fix(2, e, flip(mt) ; mt)) = mt .

eq flip(fix(2, e, flip(mt) ; Bg ; {R1 I R2})) = {R2 I R1} ; flip(Bg) .

eq flip(fix(2, e, flip({R1 I R2} ; Bg) ; Bg’)) =

flip(fix(2, e, flip(Bg) ; {R2 I R1} ; Bg’)) .

eq flip(mt) = mt .

eq flip(Bg ; {R1 I R2}) = {R2 I R1} ; flip(Bg) .

The reader may have realized that the specialization callflip(fix(2,e,flip(BG)))

should really return the same termBG, since the variableBG is of sortBinGraph instead of
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flip(fix(2, e, flip(BG)))

[E6]
id ��

flip(flip(BG))

[E1]
{BG 7→ mt}

❦❦❦

uu❦❦❦❦
❦

[E2]
{BG 7→ {R1 I R2} ; BG’}

❲❲❲❲

++❲❲❲❲
mt flip({R2 I R1} ; flip(BG’))

[E1]
id ��

{R1 I R2} ; flip(flip(BG’))

Fig. 9. Folding variant narrowing tree for the goalflip(fix(2, e, flip(BG))).

BinGraph?, i.e.,flip(fix(2,e,flip(BG)))= BG. The resultants above traverse the given
graph and return the same graph. Though the code may seem inefficient, we have considered
this example to illustrate the different stages of partial evaluation. The following example
shows how a better specialization program can be obtained.

Example 12.Let us now consider a variant of functionfix where its sort is declared as:
op fix : Id Id? BinGraph? -> BinGraph .

instead of
op fix : Id Id? BinGraph? -> BinGraph? .

Then, if we now specialize the callt = flip(fix(2,e,flip(BG))) in the resulting mutated
program, the narrowing tree fort is shown in Figure 9. The narrowing tree isB-closed w.r.t.
the set of calls{flip(fix(2, e, flip(BG))), flip(flip(BG’))} (normalized) root
of the tree and leads to the following, optimal specialized program:

eq flip(fix(2,e,flip(mt))) = mt .

eq flip(fix(2,e,flip({R1 I R2} ; BG))) = {R1 I R2} ; flip(flip(BG)) .

eq flip(flip(mt)) = mt .

eq flip(flip({R1 I R2} ; BG)) = {R1 I R2} ; flip(flip(BG)) .

2.6 Post-processing renaming

The resulting partial evaluations might be further optimized by eliminating redundant func-
tion symbols and unnecessary repetition of variables. Essentially, we introduce a new function
symbol for each specialized term and then replace each call in the specialized program by a
call to the corresponding renamed function.

Example 13 (Example 12 continued).Consider the following independent renaming for the
specialized calls: {flip(flip(BG)) 7→ dflip(BG),flip(fix(2,e,flip(BG))) 7→
dflip-fix(BG)}. The post-processing renaming derives the renamed program

eq dflip-fix(mt) = mt . eq dflip-fix({R1 I R2} ; BG) = {R1 I R2} ; dflip(BG) .

eq dflip(mt) = mt . eq dflip({R1 I R2} ; BG’) = {R1 I R2} ; dflip(BG’) .

Example 14.Consider again the elementary parser defined in Example 1 andthe initial con-
figurationinit | L | Γ. Following the PE algorithm, we construct the two folding variant
narrowing trees that are shown in Figures 10 and 11. Now all leaves in the tree are closed
w.r.t. Q, and by applying the post-partial evaluation transformation with the independent re-
namingρ = {init | L | Γ 7→ finit(L),S | L | Γ 7→ fS(L),eps | eps | Γ 7→ feps}, we get
the following specialized program
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init | L | Γ

{L7→eps}tt✐✐✐✐
✐✐✐

✐✐
{L7→0 L’} ��

{L7→1 L’}
**❯❯❯

❯❯❯
❯❯❯

eps | eps | Γ init | L’ | Γ S | L’ | Γ

{L’7→eps}tt✐✐✐✐
✐✐✐

✐✐

{L’7→1 L”} ))❚❚❚
❚❚❚

❚❚

eps | eps | Γ S | L” | Γ

Fig. 10.Folding variant narrowing tree for the goalinit | L | Γ .

S | L” | Γ

{L”7→eps}uu❦❦❦❦
❦❦❦

❦

{L”7→1 L”’} ))❘❘❘
❘❘❘

❘

eps | eps | Γ S | L”’ | Γ

Fig. 11.Folding variant narrowing tree for the goalS | L” | Γ .

eq finit(eps) = feps . eq finit(1) = feps .

eq finit(0 L) = finit(L) . eq fS(eps) = feps .

eq finit(1 1 L) = fS(L) . eq fS(1 L) = fS(L) .

that is even more efficient and readable than the specializedprogram shown in the Introduc-
tion. Note that we obtainfinit(1 eps) = feps but it is simplified tofinit(1) = feps

modulo identity.

3 Experiments and Conclusions

We have implemented the transformation framework presented in this paper. We do not yet
have an automated tool where you can give both a Maude programand an initial call, and the
tool returns the specialized program. However, all the independent components are already
available and we have performed some experiments in a semi-automated way, i.e., we make
calls to the different components already available without having a real interface yet: equa-
tional unfolding (by using folding variant narrowing already available in Maude; see [6]),
equational closedness (we have implemented Definition 1 as aMaude program), equational
embedding (we have implemented Definition 2 as a Maude program), and equational general-
ization and abstraction (we have implemented Definition 3 asa Maude program that invokes
a Maude program defining the least general generalization of[2]).

Table 1 contains the experiments that we have performed using a MacBook Pro with an
Intel Core i7 (2.5Ghz) processor and 8GB of memory and considering the average of ten exe-
cutions for each test. These experiments are available athttp://safe-tools.dsic.upv.es/victoria.
We have considered the three Maude programs discussed in thepaper: Parser (Example 1),
Double-flip (Example 2), and Flip-fix (Example 3), and three sizes of input data: one hun-
dred thousand elements, one million elements, and five million elements. Note that ele-
ments here refer to graph nodes for Double-flip and Flip-fix, and list elements for Parser. We
have benchmarked three versions of each program on these data: original program, partially
evaluated program (before post-processing renaming), andfinal specialization (with post-
processing renaming). The relative speedups that are achieved thanks to specialization are
given in theImprovement column(s) and computed as the percentage100× (OriginalTime−
PETime)/OriginalTime. For all the examples, the partially evaluated program has asignif-
icant improvement in the execution time when compared to theoriginal program, both with
and without renaming, but more noticeable after renaming. Actually, matching modulo ax-
ioms such as associativity, commutativity, and identity are pretty expensive operations that
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Original PE before renaming PE after renaming
Benchmark Data Time (ms) Time (ms) Improvement Time (ms) Improvement
Parser 100k 156 40 74,36 35 77,56
Parser 1M 12.599 418 96,68 361 97,13
Parser 5M 299.983 2.131 99,29 1.851 99,38
Double-flip 100k 177 155 12,43 86 51,41
Double-flip 1M 1.790 1.584 11,51 871 51,34
Double-flip 5M 8.990 8.006 10,95 4.346 51,66
Flip-fix 100k 212 188 11,32 151 28,77
Flip-fix 1M 2.082 1.888 9,32 1.511 27,43
Flip-fix 5M 10.524 9.440 10,30 7.620 27,59

Table 1.Experiments

are massively used in Maude, and can be drastically reduced after specialization (i.e., the
Parser example moves from a program with ACU and Ur operatorsto a program without
axioms).

Developing a complete partial evaluator for the entire Maude language requires to deal
with some features not considered in this work, and to experiment with refined heuristics that
maximize the specialization power. Future implementationwork will focus on automating
the entire PE process for a large subset of the language including conditional rules, member-
ships, and conditional equations. This, in turn, will necessitate some new developments in the
Maude narrowing infrastructure. In this sense, advancing the present PE research ideas will
be a significant driver of new symbolic reasoning features inMaude.
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