arXiv:1608.05617v1 [cs.PL] 19 Aug 2016

CurryCheck: Checking Properties of Curry Programs

Michael Hanus

Institut fir Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. We present CurryCheck, a tool to automate the testing ofrprmg written
in the functional logic programming language Curry. CuingCk executes unit tests as
well as property tests which are parameterized over one oe mg@uments. In the lat-
ter case, CurryCheck tests these properties by systeithagcamerating test cases so
that, for smaller finite domains, CurryCheck can actuallgvper properties. Unit tests
and properties can be defined in a Curry module without beipgréed. Thus, they are
also useful to document the intended semantics of the smade. Furthermore, Cur-
ryCheck also supports the automated checking of specditaind contracts occurring
in source programs. Hence, CurryCheck is a useful tool thatributes to the property-
and specification-based development of reliable and wetktkdeclarative programs.

1 Motivation

Testing is an important step to get confidence in the funatignof a program. The advantage
of testing compared to program verification is its poteritahutomation. If we do not execute
test cases only manually for some inputs but encode thenpasto test frameworks, we can
automatically run and repeat them when the software iséudbveloped, which is also known
as regression testing.

A difficulty in testing is to find appropriate inputs for thedinidual tests. For this purpose,
property-based testing has been proposed, well known ifuttetional language Haskell with
the QuickCheck too[[16]. Basically, properties are pratks parameterized over one or more
arguments. QuickCheck automates the test execution byiaggiroperties to randomly gen-
erated test inputs. Since this idea is particularly reaslerfar declarative languages, it is been
adapted in different forms to functional and logic programgranguages. For instance, Small-
Check[33] and GAST [28] focus on a systematic enumeratigesifinputs for functional pro-
grams, PropEr [30] adapts ideas of QuickCheck to the coantifunctional language Erlang,
PrologCheck([1] transfers and extends ideas of QuickChedkrdlog, and EasyCheck [15]
exploits functional logic programming features to propdsased testing of Curry programs.

CurryCheck follows the same ideas. Actually, it is based asyEheck to define properties.
However, CurryCheck is intended as a comprehensive toairtpligy the automation of test
execution. To use CurryCheck, properties are interspénsethe program as top-level defini-
tions. Thus, properties are used to document the intendedrges of the source code, which
also supports test-driven program development known aseiee programming.” When Cur-
ryCheck is applied to a (set of) Curry modules, it extractpadperties, generates a program
to test these properties, executes this generated prograhieports any errors. Furthermore,
CurryCheck also analyzes possible contrdcts [8] providesburce programs and generates
properties to test these contracts. Thanks to this automafiurryCheck is a useful tool for
continuous integration and deployment processes. Agtutilk used for this purpose in the
Curry implementations PAKCS [24] and KiCS2[14].

In this paper we present the ideas and usage of CurryChetdr. Afreview of the main
features of Curry in the next section, we introduce propsiith Sect 13 and explain how they

http://arxiv.org/abs/1608.05617v1

are tested in Sedil 4. The support of CurryCheck to defindrtpats is presented in SeEl. 5.
CurryCheck’s support for contract checking is describe@éct[6. Some initial features of
CurryCheck to combine testing and verification are sketéhegect[T. We report about our
practical experience with CurryCheck in Sédt. 8 before wagare CurryCheck to some re-
lated tools and conclude.

2 Functional Logic Programming and Curry

Functional logic languagesi[6,23] integrate the most irtgparfeatures of functional and logic
languages in order to provide a variety of programming cpted hey support functional con-
cepts like higher-order functions and lazy evaluation al aglogic programming concepts
like non-deterministic search and computing with partibimation. This combination led to
new design patterns][7] as well as better abstractions fgicgtion programming. The declar-
ative multi-paradigm language Curfy]20] is a modern fumaéil logic language with advanced
programming concepts. In the following, we briefly reviewrsofeatures of Curry relevant for
this paper. More details can be found in recent surveys ottifumal logic programming 6,23]
and in the language report [25].

The syntax of Curry is close to Haskell [31]. In addition todHall, Curry allowsfree
(logic) variablesin rules and initial expressions. Function calls with freeables are evaluated
by a possibly non-deterministic instantiation of demanaegiments.

Example 1.The following simple program shows the functional and Idgetures of Curry. It
defines the well-known list concatenation and an operatiahreturns some element of a list
having at least two occurrences:

(++) :: [a]l] — [a]l — [al someDup :: [a] — a

[] ++ ys = ys someDup xs | xs == _++ [x] ++_++ [x] ++_

(x:xs) ++ ys X : (xs ++ ys) = x where x free
The (optional) type declaration {%") of the operation %+” specifies that ++” takes two lists
as input and produces an output list, where all list elemart®f the same (unspecified) type.
Since “++” can be called with free variables in arguments, the cooditi the rule ok omebdup
is solved by instantiating and the anonymous free variables to appropriate values before
reducing the function calls. This corresponds to narrowWB#j32], but Curry narrows with
possibly non-most-general unifiers to ensure the optignafitcomputations [2].

Note thatsomeDup is anon-deterministic operatiosince it might deliver more than one result
for a given argument, e.g., the evaluationsa@fneDpup [1, 2,2, 1] Yyields the values and
2. Non-deterministic operations, which can formally be iipteted as mappings from values
into sets of values [19], are an important feature of contaawy functional logic languages.
Hence, Curry has also a predefirdiceoperation:

X ?_ = X

_?2y =¥
Thus, the expression” 2 1” evaluates t@ and1 with the value non-deterministically chosen.

Functional patternd3] are useful to define some operations more easily. A foneti

pattern is a pattern occurring in an argument of the leftdhgide of a rule containing defined
operations (and not only data constructors and variabBgh a pattern abbreviates the set
of all standard patterns to which the functional pattern lbarevaluated (by narrowing). For
instance, we can rewrite the definitionfmeDup as

someDup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to expressrarpiselections in tree structures, e.g.,
in XML documents[[22]. Details about their semantics and astwictive implementation of
functional patterns by a demand-driven unification procedan be found iri [3].

Curry has also features which are useful for applicatiogmmming, likeset function$s]
to encapsulate non-deterministic computatiaiefault ruleqd9] to deal with partially specified
operations and negation, and standard features from &mattprogramming, like modules or
monadic I/O[[36]. Other features are explained when theyiseel in the following.

3 Properties

In this section we briefly discuss which kind of program pmties to be tested are supported
by CurryCheck. Since CurryCheck extends the functionalfigyasyCheck [15], it supports all
kinds of EasyCheck’s properties which we review first.

Properties are defined top-level entities with a distinpetysee below). Thus, their syntax
and type-correctness can be checked by the standard frdof @ny Curry system. Properties
do not require a specific naming convention but CurryCheckgrizes them by their type.
Moreover, the name and position of the property in the sofilcare used by CurryCheck to
identify properties when errors are reported.

For instance, consider the list concatenation operatiofi tiefined in Exampl€ll. Before
discussing general properties, we define some unit testiéal arguments, like

concNulll2 = [] ++ [1,2] —=- [1,2]
concCurry = "Cu" ++ "rry" —-=- "Curry"
The infix operator “=-" specifies a test which is successful if both sides have singlues

which are identical (we will later see tests for non-deteiistic operations). Since the expres-
sions can be of any type (of course, the two arguments mudtthe same type), the operator
is polymorphic and has the type

(—=—-) ::a — a — Prop
Hence, all entities defined above have typep.

The power of CurryCheck and similar property-based testémsorks comes from the fact
that we can also test properties which are parameterizedsovee input data. For instance,
we can check whether the concatenation operation is asisediy:

concIsAssociative xs ys zs = (xs++ys)+t+zs —=- xs++ (yst++zs)
This property is parameterized over three input valaesys, andzs. To test this property,
CurryCheck guesses values for these parameters (see bmionofe details) and tests the
property for these values:

concIsAssociative_ON_BASETYPE (module ConcDup, line 18):

OK, passed 100 tests.

Indicated by the suffixon_BasETYPE, we see another feature of CurryCheck. If properties are
polymorphic in their input values (the above property haeetya] — [a] — [a] — Prop),
CurryCheck specializes the type to some base type, since theno concrete value of a
polymorphic type (and EasyCheck would fail on such propsjtiAs a default, CurryCheck
uses the predefined typer-dering having the three valuesr, EQ, T (another more in-
volved method to instantiate polymorphic types in purelgdiional programs can be found
in [12]). This default type can be changed to other base tyjp&sBoo1, Int, Ofr Char, with

a command-line option. One could also provide an expligetgeclaration for the property.
For instance, we can test the commutativity of the list ctereation on lists of integers by the

property

concIsCommutative :: [Int] — [Int] — Prop
concIsCommutative xs ys = (xs ++ ys) —=— (ys ++ xs)

Of course, this property does not hold so that CurryCheckrtepn error together with a
counter-example:

concIsCommutative (module ConcDup, line 20) failed
Falsified by 8th test.

Arguments: [-1] [-3]

Results: ([-1,-31,[-3,-11)

Note that the arguments of a test are ordinary expressiotisasmne can use any defined
operation in the tests. For instance, we can (sucessfuigglcwhether the list concatenation
is the addition on their lengths:

concAddLengths xs ys = length xs + length ys —=- length (xs++ys)

Since Curry covers also logic programming features, CunggR supports the testing of non-
deterministic properties. For instance, one can checkivenetn expression reduces to some
given value with the operator is-%":

someDupl = someDup [1,2,1,2] ~> 1

Another important operator is<*>" which denotes a test which succeeds if both arguments
have the same set of values. We can write unit tests by entingeedl expected values with
the choice operator?”:

someDupl2 = someDup [1,2,1,2,1] <~> (122)

It should be noted that the operater*" really compares sets and not multi-sets: Although the
evaluation okomeDup [1, 2,1, 2, 1] returnsthe value three times in a typical Curry system,
the propertysomebup12 holds. This is intended since CurryCheck tests declaratioperties
which are independent of specific compiler optimizatiohss(is in contrast to PrologCheck
which tests operational properties like multiplicity ofsavers and mode5s|[1]).
As another example, consider the following definition of enpetation of a list by exploit-

ing a functional pattern to select some element in the argtifist

perm (xs++[x]++ys) = x : perm (xs++ys)

perm [] =[]
An important property of a permutation is that the lengthhef list is not changed. Hence, we
check it by the property

permLength xs = length (perm xs) <~> length xs

Note that the use of<~>" (instead of “~=-") is relevant since non-deterministic values are
compared. Actually, the left argument evaluates to margntidal) values.

We might also want to check whether our definitiorref-m computes the correct number
of solutions. Since we know that a list of lengtthasn! permutations, we write the following
property, wherefac is the factorial function and the property # n is satisfied ifx hasn
different values:

permCount :: [Int] — Prop
permCount xs = perm xs # fac (length xs)

However, this test will be falsified with the test input, 11, since this list has only one per-
muted value (actually, both computed values are identivdd) can obtain a correct property
if we add the condition that all elements in the input kst are pairwise different. For this
purpose, we useeonditional propertythe property ==> p is satisfied ifp is satisfied for all

values wheré evaluates tarue. If the predicatex11pifferent is satisfied iff its argument

list does not contain duplicated elements, then we canmeflate our property as follows:
permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Furthermore, we want to check the existence of distingdigieemutations. For this purpose,

consider a predicate to check whether a list is sorted:

sorted :: [Int] — Bool

sorted [] = True

sorted [_] = True

sorted (x:y:zs) = x<=y && sorted (y:zs)

Then we can check whether there are sorted permutationpitiperty ‘eventually z” is
satisfied if some value af is True):

permIsEventuallySorted :: [Int] — Prop

permIsEventuallySorted xs = eventually (sorted (perm xs))
Property-based testing is appropriate for declarativguages since the absence of side effects
allows the execution of tests on any number of test data witinfluencing the individual tests.
Nevertheless, real programming languages have to deathvatteal world so that they support
also 1/0 operations. Clearly, such operations should adested. Although there are methods
to test monadic codé [17], Curry supports only I/O monadierafions where testing with
arbitrary data seems not reasonable. Therefore, CurnkGhaaports only non-parameterized
unit tests for I/O operations. For instance, the test‘returns z) is satisfied if the I/O
actiona returns the value:. For instance, we can test whether writing a file and reading i
yields the same contents:

writeReadFile = (writeFile "TEST" "Hello" >> readFile "TEST")

‘returns' "Hello"

Since CurryCheck executes the tests written in a sourceqmoin their textual order, one can
write also several I/0O tests whose side effects depend dnather. For instance, we can split
the previous I/O test into two consecutive tests:

writeTestFile = (writeFile "TEST" "Hello") ‘returns‘ ()

readTestFile = (readFile "TEST") ‘returns' "Hello"

4 Testing Properties

After having seen several methods to define properties, etelskn this section how they are
actually tested. Our motivation for the development of @Gtreck is manifold:

1. Properties are an executable documentation for thedetésemantics of operations.

2. Properties increase the confidence in the quality of theldped software.

3. Properties can be used for software verification by pptieir validity for all possible
input data.

The first point is supported by interspersing properties the source code of the program
instead of putting them into separate files. Thus, propepiay the same role as comments
or type annotations: they document the intended semakt&sce, they can be extracted and
put into the program documentation by automatic documiemtaools [21,26]. In order to
avoid that properties influence the interface of a modukey tto not need to be exported. As
an example, consider the following simple module definirgdlassical list reverse operation
(the imported moduleest . EasyCheck contains the definitions of the property combinators
introduced in Seckl]3):

module Rev(rev) where

import Test.EasyCheck

rev :: [a] — [a]

rev [] =[]

rev (x:xs) = rev xs ++ [x]

revlength xs = length (rev xs) —=- length xs
revRevIsId xs = rev (rev xs) —-=- XS

We can run all tests of this module by invoking the CurryChex&cutable with the name of
the modulél

> currycheck Rev
Analyzing module ’"Rev’ ...

Executing all tests...

revlength ON_BASETYPE (module Rev, line 9):
OK, passed 100 tests.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Although modulerev only exports the operatiotev, all properties defined in the top-level of
Rev are passed to the underlying EasyCheck library for teskogthis purpose, CurryCheck
creates a copy of this module where all entities are exp@niete that the original module can-
not be modified since it might be imported to other modulessttelsted). For each property a
corresponding call to an operation of EasyCheck is gengveltéch actually performs the gen-
eration of test data, runs the test, and collects all resuiish are passed back to CurryCheck.
Furthermore, polymorphic properties are not checked boti@sponding new property on the
default base type is generated which calls the polymorploiggrty. For instance, if the default
base type ignt, CurryCheck generates the new property

revRevIsId_ON_BASETYPE :: [Int] — Prop

revRevIsId_ON_BASETYPE = revRevIsId

which is actually checked instead efvrRevIs1d. Note that it might lead to a failure if the type
of revRevIsIdis directly specialized, since the polymorphic propefyRrevisid might be
used in other property definitions with a different speeidi type.

After these preparations, EasyCheck tests the propenfiegeberating test data as de-
scribed in[15]. EasyCheck does not use random generater®liickCheck or PrologCheck,
but it exploits functional logic programming features taererate possible input values. Since
logic variables are equivalent to non-deterministic gatwes [4], one can evaluate a logic
variable of a particular type in order to get all values ottyipe in a non-deterministic man-
ner. For instance, if we evaluate the Boolean variableroo1, we obtain the valueBalse
andTrue as results. Similarly, fobs: : [Boo1] we obtain values likg 1, [Falsel, [Truel,
[False,Falsel, etc. In order to select a finite amount of these infinite valwme can use
Curry’s feature for encapsulated search to collect all deterministic results in a tree struc-
ture, traverse the tree with some strategy and return thit @fshe traversal into a list. If one
selects only a finite amount of this list, the lazy evaluastnategy of Curry ensures a finite
computation even if the tree is infinite. Based on these featthe EasyCheck library contains
an operation

valuesOf :: a — [a]

! One can also provide several module names so that they éed t@once. Furthermore, CurryCheck
has various options to influence the number of test casemyltigfpes for polymorphic properties, etc.

which computes the list of all values of the given argumebading to a fixed strategy (in
the current implementation by randomized level diagoaéitin [15]). Hence, we can get 20
values for a list of integers by

...> take 20 (valuesOf (_::[Int]))

ti1, =11, =31, tol, 111, -1, 01, (-21, 10,01, €31, [-1,11, [-3,01, [0,11,

tz1, -1,-11, (-51, 10,-11, 51, [-1, 2], [-9], [0, 2]]
It should be noted thataluesof enumerates all values of the given type completely and
without duplicate@.Hence, if the set of possible input values is finite, it is eaduthat all of
them are tested if sufficiently many tests are performedhisndase, the property is also verified
(where QuickCheck or PrologCheck does not give such guegahtFor instance, consider the
De Morgan law from Boolean algebra:

negor bl b2 = not (bl || b2) -=— not bl && not b2

This property is proved by CurryCheck after four tests wittpassible input values, and the
output of CurryCheck indicates that the testing was exlaist

negOr (module BoolTest, line 4):
Passed all available tests: 4 tests.

5 User-Defined Test Data

Due to the use of functional logic features to generate tatgt, ne can write properties not
only on predefined data types but also on user-defined dags.tfjor instance, consider the
following definition of general polymorphic trees:

data Tree a = Leaf a | Node [Tree a]

We define operations to compute the leaves of a tree and imgrattree:

leaves (Leaf x) = [x]
leaves (Node ts) concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) Node (reverse (map mirror ts))

The following properties should increase our confidencééncorrectness of the implementa-
tion:

doubleMirrorIsId t = mirror (mirror t) —=— t

leavesOfMirrorAreReversed t = leaves t —=- reverse (leaves (mirror t))
CurryCheck successfully tests these properties withawiging any further information about
how to generate test data. However, in some cases it mighesieatile to define our own
test data since the generated structures are not appefmidesting. For instance, if we test
algorithms working on balanced search trees, we need ¢lyrtedanced search trees as test
data. As a naive approach, we can limit the tests to corrstirputs by using conditional
properties. As a simple example, consider the followingrapen that adds all numbers from
1 to a given limit;

sumUp n = if n==1 then 1 else n + sumUp (n-1)
Since there is also a simple formula to compute this sum, weback it:

sumUpIsCorrect n = n>0 ==> sumUp n —=— n * (n+l) ‘div‘ 2

2 |n order to get an idea of the distribution of the generatstidata, CurryCheck also provides property
combinatorsollect andclassify known from QuickCheck.

Note that the condition is important sineemup diverges on non-positive numbers. As aresult,
CurryCheck tests this property by enumerating integersdiiogdping tests with non-positive
numbers. While this works well, since CurryCheck perforrfaidy good distribution between
positive and negative numbers, this approach might have@usedrawback if the proportion
of correct test data is small. In the case of balanced seegeh, tthere are many more unbal-
anced trees than balanced search trees. This has the kffeCurryCheck generates many test
data and drops it so that it does not make much progress. INctGarryCheck has an upper
limit for dropping test data in the conditional operator irder to avoid spending too much
work on generating unusable test data. For instance, if wa teatest the above property
revRevIsIdon long input lists, we could define it as follows:

revRevIsIdLong :: [Int] — Prop

revRevIsIdlong xs = length xs > 100 ==> rev (rev xs) —-=— XS
Since there are a huge number of integer lists with a lengtilenthan 100, CurryCheck
does not find any test case (with a default limit of droppinghast 10,000 incorrect test data
values):

revRevIsIdLong (module Rev, line 13):

Arguments exhausted after 0 test.
This shows that the fully automatic generation of test datadt always appropriate. There-
fore, CurryCheck provides some combinators to explicigfine test data (more advanced
enumeration combinators in the context of Scala are discliss29]).
To show the method for test data generation in more detailhawe to review Curry’s

methods to encapsulate non-deterministic computatiomsthis purpose, Curry defines the
following structure to represent the results of a non-aeteistic computation [13]:

data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

(value v) andrail represent a single value or a failure (i.e., no value), retspsy, and
(0r tl t2) represents a non-deterministic choice between two searebctt andt2. Fur-
thermore, there is a primitive search operator

someSearchTree :: a — SearchTree a

which yields a search tree for an expression. For instane@;searchTree (021) evaluates
to the search tree

Or (Value 0) (Value 1)

The expression
someSearchTree (id $## (_::[Bool]))

(where “s#4#" is an infix application operator which evaluates the rigigiement to ground nor-
mal form before applying the left argument to it) yields afifiite) search tree of all Boolean
lists:

(Or (Value []) (Or (Or (Or (Value [False]) ...) (Or ...)) ...))

Basically, EasyCheck defines various strategies to travarsh search trees (seel[15] for de-
tails) in order to enumerate test data. Hence, if we want fmel®ur own test data, we have
to define an operation that generates a search tree comaimértest data ivalue leaves.
Although this is not difficult for simple data types, it coul® demanding for polymorphic
types where generators for the polymorphic arguments nmaistdaved with the generators
for the main data structure. To simplify this task, CurryCkeffers a family of combinators
genConsn Where each combinator takes arary constructor function and generators as
arguments and produces a search tree for this construacglboombinations of generated
arguments. Hence, these combinators have the type

genConsn :: (a1 — -+ — an — a) — SearchTree a1 —--- — SearchTree an
— SearchTree a
Furthermore, there is an infix combinatof|‘|” to combine two search trees. For instance,
consider the straightforward definition of Peano numbers:
data Nat = 2z | S Nat
Then we can define a search tree generator for this type asvioll
genNat :: SearchTree Nat
genNat = genCons0 Z | | | genConsl S genNat
Similarly, we can define a search tree generator for polyimorpees which takes a search tree
for the argument type as a parameter (whgrerist denotes the corresponding generator for
list values):
genTree :: SearchTree a — SearchTree (Tree a)
genTree ta = genConsl Leaf ta ||| genConsl Node (genList (genTree ta))
The explicit definition of value generators is reasonableminly a subset of all values should
be used for testing. For instancaymupIscorrect should be testest with positive numbers
only. Hence, we define a generator for positive numbers:
genPos = genCons0 1 | | | genConsl (+1) genPos
Since these numbers are slowly increasing, i.e., the sé@els actually degenerated to a list,
we can also use the following definition to obtain a more beddrsearch tree:
genPos = genCons0 1 | | | genConsl (\n — 2x(n+l)) genPos
||| genConsl (\n — 2xn+l) genPos
In order to test properties with user-defined data, Currgpeovides the property combinator
forAll :: [a] — (a — Prop) — Prop
which is satisfied if the parameterized property given as#o®nd argument is satisfied for all
values of the first argument list. Since there is also a lipogreration
valuesOfSearchTree :: SearchTree a — [a]
(actually, the operatioraluesof introduced in Secfl4 is defined via this operation) to enu-
merate all values of a search tree, we can redefine the pyopettpiscorrect as follows:
sumUpIsCorrect = forAll (valuesOfSearchTree genPos)
(\n — sumUp n —=- n*(n+l) ‘div‘' 2)
Using this technique, we could also define finite tests foeptlly infinite structures, e.g.,
one can easily define tree generators that generate allpgesa particular depth.
Finally, we show the implementation of the combinators toegate search trees. The def-
inition of “ | | |” and genconso is straightforward:
x |[[ly=orxy
genCons0 v = Value v
To define the further combinators likencons1, we have to replace in a given search tree (for
the argument) thea1ue nodes by new nodes where the constructor operation is agplihe
given value. This task is done by the following auxiliary (mﬁ)nﬁ

updateValues :: SearchTree a — (a — SearchTree b) — SearchTree b
updateValues (Value a) f = f a
updateValues Fail f = Fail

updatevValues (Or tl t2) £ Or (updateValues tl f) (updateValues t2 f)

% This operation is similar to the monadic bind operation irskédl’s MonadP1lus, but we use this
definition due to the lack of type classes in the current lagguefiniton of Curry.

The definition of the remaining combinators is now easy (wWg show the first two ones):
genConsl ¢ gena = updateValues gena (\a — Value (c a))

genCons2 c genal gena2 =
updateValues genal (\al — updateValues gena2 (\a2 — Value (c al a2)))

6 Contract and Specification Testing

As discussed in detail in [8], the distinctive features ofi@ue.g., non-deterministic opera-
tions, demand-driven evaluation, functional patternsfiggctions) support writing high-level
specifications as well as efficient implementations for a&gigroblem in the same program-
ming language. When applying this idea, Curry can be usedvdeaspectrum language [111]
for software development. If a specification or contractrisvitled for some function, one
can exploit this information to support run-time assertitvecking with these specifications
and contracts. As an additional use of this information,r@heck automatically generates
properties to test the given specifications and contradtghws described in the following.

According to the notation proposed in [8]specificatiorfor an operatiory is an operation
[’ spec of the same type ag. A contractconsists of a pre- and a postcondition, where the
precondition could be omitted. When providedhraconditionfor an operatiory of typer —
7’ is an operation

f'pre :: 7 — Bool

putting demands on allowed arguments, whereassaconditiorfor f is an operation
f'post :: 7 — 7' — Bool

which relates input and output values (the generalizaticoperations with more than one ar-
gument is straightforward). A specification should pregisiescribe the meaning of an oper-
ation, i.e., the declarative meaning of the specificatiahthe implementation of an operation
should be equivalent. In contrast, a contract is a partietifigation, e.g., all results computed
by the implementation should satisfy the postcondition.
As a concrete example, consider the problem of sorting aTis¢ specification defines

a sorted version of a given list as a permutation of the inphitkvis sorted. Exploiting the
operations introduced in Sddt.3, we define the followinggjmation for the operatiosort:

sort’spec :: [Int] — [Int]

sort’ spec xs | ys == perm xs && sorted ys = ys where ys free
A postcondition, which is easier to check, states that thatiand output lists should have the
same length:

sort’post :: [Int] — [Int] — Bool

sort’post xs ys = length xs == length ys
To provide a concrete implementation, we implement thelcaaict algorithm as follows:

sort :: [Int] — [Int]
sort [] =[]
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

Note that specifications and contracts are optional. Howéwhey are included in a module
processed with CurryCheck, CurryCheck automatically geties and checks properties that
relate the specification and contract to the implementa#ton instance, an implementation
satisfies a specification if both yield the same values, andlstcpndition is satisfied if each
value computed for some input satisfies the postcondititatioa between input and output.

For our example, CurryCheck generates the following prigee(if there are also precondi-
tions for some operation, these preconditions are usedtiaatehe test cases via the condition
operater £=>"):

sortSatisfiesSpecification :: [Int] — Prop

sortSatisfiesSpecification x = sort x <~> sort’spec x

sortSatisfiesPostCondition :: [Int] — Prop

sortSatisfiesPostCondition x = always (sort’post x (sort x))
With CurryCheck, the framework df [8] becomes more usefutsicontracts are not only used
as run-time assertions in concrete computations, but massilple computations are checked
with various test data. For instance, CurryCheck repodisttte above implementation eért
is incorrect for the example inputi, 11 (as the careful reader might have already noticed).
When reporting the error, the module and source code linebeuwf the erroneous operation
is shown so that the programmer can easily spot the problem.

Another kind of contracts taken into account by CurryCheekdeterminism annotations.
An operation that yields always identical results (maybétipie times) on identical argument
values can be annotated as “deterministic” by addimgto the result type of its type signature.
For instance, the following operation tests whether a éiptesents a set, i.e., has no duplicate
elements (the definition exploits functional patteinis [8lagell as default rules [9]):

isSet :: [a] —DET Bool
isSet (_++[x]++ ++[x]++_) = False
isSet’default _ = True

The determinism annotationspeET” has the effect that at most one result is computed for a
given input, e.g., a single valua1se is returned for the calisset [1, 3,1, 3,117, although
the first rule can be applied multiple times to this call. Thafter computing a first value, all
attempts to compute further values are ignored. In ordensue that this does not destroy
completeness, i.e., it behaves like “green cuts” in Pradagh operations must be deterministic
from a semantical point of view. CurryCheck tests this propby generating a property for
eachoeTr-annotated operation that expresses that there is at mesiadue for each input. For
instance, foi sset, thepeT annotation is removed and the property

isSetIsDeterministic x1 = isSet x1 #< 2
is added by CurryCheck, where #< n” is satisfied if thesetof all values ofe contains less
thann elements.

7 Combining Testing and Verification

The objective of CurryCheck is to increase the confidenckarr¢liability of Curry programs.
Testing with a lot of input data is one important step butgeeof input data types with infinite
values, it can only show possible errors but not the absehtteem. In order to support the
latter, CurryCheck has also some (preliminary) suppométuide the verification of program
properties. For this purpose, a programmer might provegptigs stated in a source program.
Since there are many different possibilities to prove sudperties, ranging from manual
proofs to interactive proof assistants and fully automattavers, CurryCheck does not enforce
a particular proof technique. Instead, CurryCheck trustésgrogrammer and uses a naming
convention for files containing proofs: if there is a file withmeproof-t. », CurryCheck
assumes that this file contains a valid proof for properBor instance, the following property
states that sorting a list does not change its length:

4 The property 41ways 2" is satisfied if all values of: areTrue.

sortlength xs = length (sort xs) <~> length xs

If there is a fileproof-sortlength.agda, containing a proof for the above property ([10]
addresses techniques how to prove such properties in tlemdeptly typed language Agda),
CurryCheck considers this property as valid and does natikciheMoreover, it uses it to sim-
plify other properties to be tested. In our case, the prgperttsatisfiesPostCondition

of the previous section can be simplified 4aways True so that it does not need to be
tested. Similarly, a determinism annotation for operatfois not tested if there is a proof
file fIsDeterministic. *.

Since program verification is a notoriously difficult taskniature of different techniques
is required. For instance, [27] discusses techniques tahesésabelle/HOL proof assistant
to verify purely functional properties inspired by Quickétk. [10] describes a method to
prove non-deterministic computations by translating €uymrograms into Agda programs.
Since these proofs can be verified by the Agda compiler, @lregk can test the validity
of a given proof file by simply invoking the Agda compiler. Sepurely functional properties
can be proved in a fully automatic way. For instance, the @iriigs

conclength xs = length (xs ++ ys) —=- length xs + length ys

revlength xs = length (rev xs) —=- length xs
can be proved by the SMT solver Alt-Ergo. To support the usioh solvers, we have started
the development of tools to automatically translate Cunggpams into the syntax of Agda
and other proof systems. We omit more details since thistsarithe scope of this paper.

8 Practical Experience

The implementation of CurryCheck is available with the (Bgebased) Curry implementation
PAKCS [24] (since version 1.14.0) and the (Haskell-basadjydmplementation KiCSZ [14]
(since version 0.5.0). The implementation exploits metagpamming features available in
these systems to parse programs and transform them into mgrams as described in the
previous sections.

Although we could show in this paper only simple examples,weeilld like to remark
that CurryCheck is successfully applied in a larger cont@xtryCheck is regularly used for
automatic regression testing during continuous integnagind nightly builds of PAKCS and
KiCS2. Currently, approximately 500 properties (the numisecontinuously growing) are
regularly used to test the libraries and tools of these syst©ur practical experience is quite
promising. After the development and use of CurryCheck,aumél a bug in the implementa-
tion of the prelude operationrgiot andrem W.r.t. negative numbers and free variables which
was undetected for a couple of years. Although the bug was teafix, the definition of a
general property relating both operations and testingth afi smaller values was essential for
its detection.

The run time of CurryCheck mainly depends on the specific gntigs to be tested. The
initial translation phase, which extracts properties,tamsts, and specifications from a given
module and transforms them into executable tests, is agbtfarward compilation process.
The run time of the subsequent test execution phase departtle aumber of test cases and
the time needed to evaluate each property. The functioga fiwsogramming technique to gen-
erate test data described in S&tt. 4 (i.e,. collecting altah@terministic results of evaluating a
logic variable) is reasonable in practice. For instanc€3d needs 0.6 seconds to test a trivial
property on a list of integers with 10,000 test cases contplyethe randomized level diag-

onalization strategy described in [15] (on a Linux machinghwntel Core i7-4790/3.60Ghz
and 8GiB of memory).

9 Related Work

Since testing is an important part of the software develogmecess, there is a vast literature
on this topic. In the following, we compare our approach ttitg, in particular, property-
based testing, in declarative languages. We already nmattiQuickCheck [16] which was
influential in this area and followed by other property-tegsystems for functional languages,
like GAST [28] or SmallChecK[33]. The same idea has also Iegrsferred to other languages
like PropEr [30] for Erlang and PrologChecK [1] for Prolog.dontrast to CurryCheck, most
of these systems (except for SmallCheck) are based on rdpd@merating test data so that
they do not provide guarantees for a complete enumerattbe gets of input values are finite,
i.e., they cannot verify properties. PropEr also suppastiract checking but these function
contracts are limited to type specifications. PrologChexlkdalso check operational aspects
likes modes or multiplicity of answers, whereas our prapstre oriented towards declarative
aspects, i.e., the input/output relation of values.

Closely related to CurryCheck is EasyCheck![15] since it barseen as our back end.
EasyCheck is the only property-based test tool coveringtfanal and logic aspects but it
is more limited than CurryCheck. EasyCheck does not suggmytmorphic properties, 1/0
properties, or combinators for user-defined generatiorestf data. This has been added in
CurryCheck together with a full automation of the test pescin order to obtain an easily
usable tool. Moreover, CurryCheck expands the use of autotaating by using it for contract
and specification checking, where functional logic prograng has been shown to be an
appropriate framework [8], and combines it with static fiesition techniques.

10 Conclusion

We have presented CurryCheck, the first fully automatic to¢ést functional as well as non-
deterministic properties of Curry programs. CurryCheclgparts unit tests and tests of 1/0
operations with fixed inputs as well as property tests whietparameterized over some argu-
ments. In the latter case, they are executed with test inplitsh are systematically generated
for the given argument types. Moreover, CurryCheck als@sttp specification and contract
testing if such information is present in the source program

To simplify and, thus, enhance the use property testinghgrtes can be interspersed in the
source program and are automatically extracted by CurrgiChi¢ence, CurryCheck supports
test-driven program development methods like extremeraroging. Properties are not only
useful to obtain more reliable programs, but they can alsgskd by automated documentation
tools to describe the intended meaning of operations, areathich has been recently added
to the CurryDocl[2[l] documentation tadl.

For future work we plan to extend the functionality of Curhgek (the current version
does not support the generation of floating point numberduwmational values). Furthermore,
we intend to integrate into CurryCheck more features thathedp to improve the reliability of
the source code, like abstract interpretation to approtérsecific run-time propertigs [[18]35],

5 Seéwww.informatik.uni-kiel.de/~pakcs/1ib/Combinatorial.html/for an exam-
ple.

www.informatik.uni-kiel.de/~pakcs/lib/Combinatorial.html

or program covering to show whether the test data was suffitdereach all parts of a source
program.

AcknowledgementsThe author is grateful to Jan-Patrick Baye for implementnginitial
version of CurryCheck.

References

1.

10.

11.

12.

13.

14.

15.

C. Amaral, M. Florido, and V. Santos Costa. PrologCheckoperty-based testing in Prolog. In
Proc. of the 12th International Symposium on Functional andic Porgramming (FLOPS 2014)
pages 1-17. Springer LNCS 8475, 2014.

. S. Antoy, R. Echahed, and M. Hanus. A needed narrowinteglyalournal of the ACM47(4):776—

822, 2000.

. S. Antoy and M. Hanus. Declarative programming with fiorcpatterns. IrProceedings of the In-

ternational Symposium on Logic-based Program Synthesi§eamsformation (LOPSTR’05)ages
6-22. Springer LNCS 3901, 2005.

. S. Antoy and M. Hanus. Overlapping rules and logic vagabh functional logic programs. In

Proceedings of the 22nd International Conference on LogagfRamming (ICLP 2006)pages 87—
101. Springer LNCS 4079, 2006.

. S. Antoy and M. Hanus. Set functions for functional logiogramming. InProceedings of the 11th

ACM SIGPLAN International Conference on Principles andd®ie of Declarative Programming
(PPDP’09), pages 73—-82. ACM Press, 2009.

. S. Antoy and M. Hanus. Functional logic programmi@g@mmunications of the ACN83(4):74-85,

2010.

. S. Antoy and M. Hanus. New functional logic design paserin Proc. of the 20th International

Workshop on Functional and (Constraint) Logic Programmiw§~LP 2011) pages 19-34. Springer
LNCS 6816, 2011.

. S. Antoy and M. Hanus. Contracts and specifications foctfanal logic programming. IifProc.

of the 14th International Symposium on Practical AspecBeaxflarative Languages (PADL 2012)
pages 33-47. Springer LNCS 7149, 2012.

. S. Antoy and M. Hanus. Default rules for Curry. Proc. of the 18th International Symposium

on Practical Aspects of Declarative Languages (PADL 20p&pes 65-82. Springer LNCS 9585,
2016.

S. Antoy, M. Hanus, and S. Libby. Proving non-deterntinisomputations in Agda. IRroc. of the
24th International Workshop on Functional and (Constrainbgic Programming (WFLP 2016), to
appear in EPTCS2016.

F.L. Bauer, M. Broy, R. Gnatz, W. Hesse, B. Krieg-Bruakihe Partsch, P. Pepper, and H. Wossner.
Towards a wide spectrum language to support program spaaificand program developme#tCM
SIGPLAN Notices13(12):15-24, 1978.

J.P. Bernardy, P. Jansson, and K. Claessen. Testingpaihic properties. IProc. 19th European
Symposium on Programming Languages and Systems (ESOPRAag63 125-144. Springer LNCS
6012, 2010.

B. BraRRel, M. Hanus, and F. Huch. Encapsulating nonrahétésm in functional logic computations.
Journal of Functional and Logic Programming004(6), 2004.

B. BraRRel, M. Hanus, B. Peemdller, and F. Reck. KiCS2: & nempiler from Curry to Haskell.
In Proc. of the 20th International Workshop on Functional af@bi(straint) Logic Programming
(WFLP 2011) pages 1-18. Springer LNCS 6816, 2011.

J. Christiansen and S. Fischer. EasyCheck - test dafaefar InProc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 20@&)es 322—-336. Springer LNCS
4989, 2008.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

K. Claessen and J. Hughes. QuickCheck: A lightweightftsx@andom testing of Haskell programs.
In International Conference on Functional Programming (IC8®), pages 268-279. ACM Press,
2000.

K. Claessen and J. Hughes. Testing monadic code withkQbhack. ACM SIGPLAN Notices
37(12):47-59, 2002.

M. Fahndrich and F. Logozzo. Static contract checkintp wbstract interpretation. IRroc. of
the Conference on Formal Verification of Object-oriented8are (FoVeOOS 2010pages 10-30.
Springer LNCS 6528, 2011.

J.C. Gonzalez-Moreno, M.T. Hortala-Gonzalez, F.Jdzépraguas, and M. Rodriguez-Artalejo. An
approach to declarative programming based on a rewritigig.laJournal of Logic Programming
40:47-87, 1999.

M. Hanus. A unified computation model for functional aogdit programming. IProc. of the 24th
ACM Symposium on Principles of Programming Languages $fqrages 80-93, 1997.

M. Hanus. CurryDoc: A documentation tool for declamtprograms. IrProc. 11th International
Workshop on Functional and (Constraint) Logic Programm(ig-LP 2002) pages 225-228. Re-
search Report UDMI/18/2002/RR, University of Udine, 2002.

M. Hanus. Declarative processing of semistructured degh. InTechnical Communications of the
27th International Conference on Logic Programmirglume 11, pages 198—208. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), 2011.

M. Hanus. Functional logic programming: From theory to1@. In Programming Logics - Essays
in Memory of Harald Ganzingepages 123-168. Springer LNCS 7797, 2013.

M. Hanus, S. Antoy, B. BraBel, M. Engelke, K. Hoppner, 1j,KP. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2016.

M. Hanus (ed.). Curry: An integrated functional logiaxdaage (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

M. Hermenegildo. A documentation generator for (C)LBtems. InProc. of the 1st International
Conference on Computation Logic (CL 2000xges 1345-1361. Springer LNAI 1861, 2000.

M. Johansson, D. Rosén, N. Smallbone, and K. Claess@steti Integrating theory exploration in
a proof assistant. Imt. Conf. on Intelligent Computer Mathematics (CICM 2Q1ggges 108-122.
Springer LNCS 8543, 2014.

P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmejast: Generic automated software testing.
In Proc. of the 14th International Workshop on ImplementatibRunctional Languagegages 84—
100. Springer LNCS 2670, 2003.

I. Kuraj, V. Kuncak, and D. Jackson. Programming withraatable sets of structures. Rroc.
of the 2015 ACM SIGPLAN International Conference on Obf&gented Programming, Systems,
Languages, and Applications (OOPSLA Jjaages 37-56. ACM, 2015.

M. Papadakis and K. Sagonas. A PropEr integration ofstygred function specifications with
property-based testing. IRroc. of the 10th ACM SIGPLAN Workshop on Erlapages 39-50,
2011.

S. Peyton Jones, editoHaskell 98 Language and Libraries—The Revised Rep&@ambridge
University Press, 2003.

U.S. Reddy. Narrowing as the operational semanticational languages. IRroc. IEEE Internat.
Symposium on Logic Programmirgages 138-151, Boston, 1985.

C. Runciman, M. Naylor, and F. Lindblad. SmallCheck aadyt SmallCheck: automatic exhaustive
testing for small values. IRroc. of the 1st ACM SIGPLAN Symposium on Haskelyes 37-48.
ACM Press, 2008.

J.R. Slagle. Automated theorem-proving for theorigh wimplifiers, commutativity, and associa-
tivity. Journal of the ACM21(4):622—642, 1974.

N. Stulova, J.F. Morales, and M. Hermenegildo. Reduttiegoverhead of assertion run-time checks
via static analysis. IRroc. 18th International Symposium on Principles and Picof Declarative
Programming (PPDP 2016)To appear, 2016.

P. Wadler. How to declare an imperativeCM Computing Survey29(3):240-263, 1997.

http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org

	CurryCheck: Checking Properties of Curry Programs

