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Abstract. Contrary to several other families of lambda terms, no closed
formula or generating function is known and none of the sophisticated
techniques devised in analytic combinatorics can currently help with
counting or generating the set of simply-typed closed lambda terms of
a given size.

Moreover, their asymptotic scarcity among the set of closed lambda
terms makes counting them via brute force generation and type infer-
ence quickly intractable, with previous published work showing counts
for them only up to size 10.

By taking advantage of the synergy between logic variables, unification
with occurs check and efficient backtracking in today’s Prolog systems,
we climb 4 orders of magnitude above previously known counts by de-
riving progressively faster Horn Clause programs that generate and/or
count the set of closed simply-typed lambda terms of sizes up to 14. A
similar count for closed simply-typed normal forms is also derived up to
size 14.

Keywords: logic programming transformations, type inference, combi-
natorics of lambda terms, simply-typed lambda calculus, simply-typed nor-
mal forms.

1 Introduction

Generation of lambda terms [I] has practical applications to testing compilers
that rely on lambda calculus as an intermediate language, as well as in generation
of random tests for user-level programs and data types. At the same time, several
instances of lambda calculus are of significant theoretical interest given their
correspondence with logic and proofs.

Simply-typed lambda terms [2I3] enjoy a number of nice properties, among
which strong normalization (termination for all evaluation-orders), a cartesian
closed category mapping and a set-theoretical semantics. More importantly, via
the Curry-Howard correspondence lambda terms that are inhabitants of simple
types can be seen as proofs for tautologies in minimal logic which, in turn, cor-
respond to the types. Extended with a fix-point operator, simply-typed lambda



terms can be used as the intermediate language for compiling Turing-complete
functional languages. Random generation of simply-typed lambda terms can also
help with automation of debugging compilers for functional programming lan-
guages [4].

Recent work on the combinatorics of lambda terms [BI6[78], relying on recur-
sion equations, generating functions and techniques from analytic combinatorics
[9] has provided counts for several families of lambda terms and clarified impor-
tant properties like their asymptotic density. With the techniques provided by
generating functions [9], it was possible to separate the counting of the terms
of a given size for several families of lambda terms from their more computa-
tion intensive generation, resulting in several additions (e.g., A220894, A224345,
A114851) to The On-Line Encyclopedia of Integer Sequences, [10].

On the other hand, the combinatorics of simply-typed lambda terms, given
the absence of closed formulas, recurrence equations or grammar-based genera-
tors, due to the intricate interaction between type inference and the applicative
structure of lambda terms, has left important problems open, including the very
basic one of counting the number of closed simply-typed lambda terms of a given
size. At this point, obtaining counts for simply-typed lambda terms requires go-
ing through the more computation-intensive generation process.

As a fortunate synergy, Prolog’s sound unification of logic variables, back-
tracking and definite clause grammars have been shown to provide compact com-
binatorial generation algorithms for various families of lambda terms [TTIT2IT3/T4].

For the case of simply-typed lambda terms, we have pushed (in the unpub-
lished draft [I5]) the counts in sequence A220471 of [I0] to cover sizes 11 and
12, each requiring about one magnitude of extra computation effort, simply by
writing the generators in Prolog. In this paper we focus on going two more mag-
nitudes higher, while also integrating the results described in [I5]. Using similar
techniques, we achieve the same, for the special case of simply-typed normal
forms.

The paper is organized as follows. Section 2| describes our representation of
lambda terms and derives a generator for closed lambda terms. Section [3] defines
generators for well-formed type formulas. Section [] introduces a type inference
algorithm and then derives, step by step, efficient generators for simply-typed
lambda terms and simple types inhabited by terms of a given size. Section [5]
defines generators for closed lambda terms in normal form and then replicates
the derivation of an efficient generator for simply-typed closed normal forms.
Section [6] aggregates our experimental performance data and section [7] discusses
possible extensions and future improvements. Section 8] overviews related work
and section [J] concludes the paper.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 7.3.8 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/~tarau/research/2016/1gen.prol
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2 Deriving a generator for lambda terms

Lambda terms can be seen as Motzkin trees [I6], also called unary-binary trees,
labeled with lambda binders at their unary nodes and corresponding variables
at the leaves. We will thus derive a generator for them from a generator for
Motzkin trees.

2.1 A canonical representation with logic variables

We can represent lambda terms [I] in Prolog using the constructors a/2 for appli-
cations, 1/2 for lambda abstractions and v/1 for variable occurrences. Variables
bound by the lambdas and their occurrences are represented as logic variables. As
an example, the lambda term Aa.(Ab.(a (b b)) Ac.(a (¢ ¢))) will be represented as
1(A,a(1(B,a(v(A),av(B),v(B)))),1(C,alv(A),a(v(C),v(C)))))). As vari-
ables share a unique scope (the clause containing them), this representation as-
sumes that distinct variables are used for distinct scopes induced by the lambda
binders in terms occurring in a given Prolog clause.

Lambda terms might contain free variables not associated to any binders.
Such terms are called open. A closed term is such that each variable occurrence
is associated to a binder.

2.2 Generating Motzkin trees

Motzkin-trees (also called binary-unary trees) have internal nodes of arities 1 or
2. Thus they can be seen as a skeleton of lambda terms that ignores binders and
variables and their leaves.

The predicate motzkin/2 generates Motzkin trees with S internal and leaf
nodes.

motzkin(S,X) :-motzkin(X,S,0) .

motzkin(v)-->[].
motzkin (1 (X))-->down,motzkin(X) .
motzkin(a(X,Y))-->down,motzkin(X) ,motzkin(Y).

down (s (X),X).

Motzkin-trees, with leaves assumed of size 1 are counted by the sequence
A001006 in [I0]. Alternatively, as in our case, when leaves are assumed of size
0, we obtain binary-unary trees with S internal nodes, counted by the entry
4006318 (Large Schroder Numbers) of [10].

Note the use of the predicate down/2, that assumes natural numbers in unary
notation, with n s/1 symbols wrapped around 0 to denote n € N. As our combi-
natorial generation algorithms will usually be tractable for values of n below 15,
the use of unary notation is comparable (and often slightly faster) than the call
to arithmetic built-ins. Note also that this leads, after the DCG translation, to
“pure” Prolog programs made exclusively of Horn Clauses, as the DCG notation



can be eliminated by threading two extra arguments controlling the size of the
terms.

To more conveniently call these generators with the usual natural numbers
we define the converter n2s as follows.

n2s(0,0).
n2s(N,s(X)):-N>0,N1 is N-1,n2s(N1,X).

Example 1 Motzkin trees with 2 internal nodes.

?- n2s(1,8) ,motzkin(S,T).
S=s(0), T=1W ;
S =s50), T=a(v, v) .

2.3 Generating closed lambda terms

We derive a generator for closed lambda terms by adding logic variables as labels
to their binder and variable nodes, while ensuring that the terms are closed, i.e.,
that the function mapping variables to their binders is total.

The predicate lambda/2 builds a list of logic variables as it generates binders.
When generating a leaf variable, it picks “nondeterministically” one of the binders
among the list of binders available, Vs. As in the case of Motzkin trees, the pred-
icate down/2 controls the number of internal nodes.

lambda(S,X) :-lambda(X, [],S,0).
lambda(v (V) ,Vs)-->{member(V,Vs)}.

lambda(1(V,X),Vs)-->down,lambda(X, [V|Vs]).
lambda(a(X,Y),Vs)-->down,lambda(X,Vs),lambda(Y,Vs).

The sequence A220471 in [10] contains counts for lambda terms of increasing
sizes, with size defined as the number of internal nodes.

Example 2 Closed lambda terms with 2 internal nodes.

?- lambda(s(s(0)),Term).

Term = 1(A, 1(B, v(B))) ;
Term = 1(A, 1(B, v(A))) ;
Term = 1(A, a(v(h), v(A4)))

3 A visit to the other side: the language of types

As a result of the Curry-Howard correspondence, the language of types is iso-
morphic with that of minimal logic, with binary trees having variables at leaf
positions and the implication operator (“->”) at internal nodes. We will rely
on the right associativity of this operator in Prolog, that matches the standard
notation in type theory.

The predicate type_skel/3 generates all binary trees with given number of
internal nodes and labels their leaves with unique logic variables. It also collects
the variables to a list returned as its third argument.



type_skel(S,T,Vs) :-type_skel(T,Vs, [1,5,0).

type_skel(V, [V|Vs],Vs)-->[].

type_skel ((X->Y),Vs1,Vs3)-->down,
type_skel(X,Vs1,Vs2),
type_skel(Y,Vs2,Vs3).

Type skeletons are counted by the Catalan numbers (sequence A000108 in [10]).

Example 3 All type skeletons for N=3.

?7- type_skel(s(s(s(0))),T, ).
T = (A->B->C->D) ;

= (A-> (B->C)->D) ;

= ((A->B)->C->D) ;

= ((A->B->C)->D) ;

= (((A->B)->C)->D) .

B e |

The next step toward generating the set of all type formulas is observing that
logic variables define equivalence classes that can be used to generate partitions
of the set of variables, simply by selectively unifying them.

The predicate mpart_of/2 takes a list of distinct logic variables and generates
partitions-as-equivalence-relations by unifying them “nondeterministically”. It
also collects the unique variables, defining the equivalence classes as a list given
by its second argument.

mpart_of ([1,[]).

mpart_of ([U|Xs], [U|Us]) :-
mcomplement_of (U,Xs,Rs),
mpart_of (Rs,Us) .

To implement a set-partition generator, we will split a set repeatedly in
subset4+complement pairs with help from the predicate mcomplement_of/2.

mcomplement_of (_, [1,[1).

mcomplement_of (U, [X|Xs],NewZs) : -
mcomplement_of (U,Xs,Zs),
mplace_element (U,X,Zs,NewZs) .

mplace_element(U,U,Zs,Zs) .
mplace_element (_,X,Zs, [X|Zs]).

To generate set partitions of a set of variables of a given size, we build a list
of fresh variables with the equivalent of Prolog’s length predicate working in
unary notation, len/2.

partitions(S,Ps):-len(Ps,S) ,mpart_of(Ps,_).

len([],0).
len([_|Vs],s(L)):-1len(Vs,L).



The count of the resulting set-partitions (Bell numbers) corresponds to the
entry A000110 in [I0].

Example 4 Set partitions of size 3 expressed as variable equalities.

?7- partitions(s(s(s(0))),P).
P =[A, A, A] ;

P = [A, B, A] ;
P = [A, A, B] ;
P = [A, B, B] ;
P =[A, B, C].

We can then define the language of formulas in minimal logic, among which
tautologies will correspond to simple types, as being generated by the predicate
maybe_type/3.

maybe_type(L,T,Us) :-type_skel(L,T,Vs) ,mpart_of (Vs,Us) .

Example 5 Well-formed formulas of minimal logic (possibly types) of size 2.

?- maybe_type(s(s(0)),T, ).
= (A->A->h) ;

= (A->B->4) ;

= (A->A->B) ;

= (A->B->B) ;

= (A->B->C) ;

= ((A->A)->h) ;
= ((A->B)—>A) ;
= ((A->A)->B) ;
= ((A->B)->B) ;
= ((A->B)->C) .

HHHAAAdaAA

The sequence 2,10,75,728,8526,115764,1776060,30240210 counting these for-
mulas corresponds to the product of Catalan and Bell numbers.

4 Merging the two worlds: generating simply-typable
lambda terms

One can observe that per-size counts of both the sets of lambda terms and their
potential types are very fast growing. There is an important difference, though,
between computing the type of a given lambda term (if it exists) and computing
an inhabitant of a type (if it exists). The first operation, called type inference is
an efficient operation (linear in practice) while the second operation, called the
inhabitation problem is P-space complete [17].

This brings us to design a type inference algorithm that takes advantage of
operations on logic variables.



4.1 A type inference algorithm

While in a functional language inferring types requires implementing unification
with occurs-check, as shown for instance in [5], this operation is available in
Prolog as a built-in predicate, optimized, for instance, in SWI-Prolog [18], to
proceed incrementally, only checking that no new cycles are introduced during
the unification step as such.

The predicate infer_type/3 works by using logic variables as dictionaries
associating terms to their types. Each logic variable is then bound to a term of
the form X:T where X will be a component of a fresh copy of the term and T will
be its type. Note that we create this new term as the original term’s variables
end up loaded with chunks of the partial types created during the type inference
process.

As logic variable bindings propagate between binders and occurrences, this
ensures that types are consistently inferred.

infer_type ((v(XT)),v(X),T):-unify_with_occurs_check(XT,X:T).
infer_type(1((X:TX),A),1(X,NewA), (TX->TA)) :-infer_type(A,NewA,TA) .
infer_type(a(A,B),a(X,Y),TY) :-infer_type(A,X, (TX->TY)) ,infer_type(B,Y,TX).

Example 6 illustrates typability of the term corresponding to the S combinator
/\1‘0.>\I1.>\JC2.((I0 SEQ) (1‘1 CCQ))

and untypabilty of the term corresponding to the Y combinator

)\xo.()\xl.(xo (1‘1 1‘1)) )\132.(.1’0 (IQ .Q?g)))

?7- infer_type(1(A,1(B,1(C,a(a(v(A),v(C)),a(v(B),v(C)))))),X,T),
portray_clause((T:-X)),fail.

(A->B->C)-> (A->B)->A->C :-
1(D,1(F,1(E, a(a(v(D), v(E)), a(v(F), v(E)))))).

?- infer_type(
1(A,a(1(B,a(v(h),a(v(B),v(B)))),1(C,al(v(h),a(v(C),v(C)))))), X, T).
false.

By combining generation of lambda terms with type inference we have our
first cut to an already surprisingly fast generator for simply-typable lambda
terms, able to generate in a few hours counts for sizes 11 and 12 for sequence
4220471 in [10].

lamb_with_type(S,X,T) :-lambda(S,XT),infer_type (XT,X,T).

Example 7 Lambda terms of size up to 3 and their types.

?7- lamb_with_type(s(s(s(0))),Term,Type) .
Term = 1(A, 1(B, 1(C, v(C)))), Type = (D->E->F->F) ;
Term = 1(A, 1(B, 1(C, v(B)))), Type = (D->E->F->E) ;

Term = 1(A, 1(B, 1(C, v(A)))), Type = (D->E->F->D) ;
Term = 1(A, 1(B, a(v(B), v(A)))), Type = (C-> (C->D)->D) ;
Term = 1(A, 1(B, a(v(A), v(B)))), Type = ((C->D)->C->D) ;



Term = 1(A, a(v(A), 1(B, v(B)))), Type = (((C->C)->D)->D) ;

Term = 1(4, a(1(B, v(B)), v(A))), Type = (C->C) ;
Term = 1(A, a(1(B, v(A)), v(A))), Type = (C->C) ;
Term = a(1(A, v(A)), 1(B, v(B))), Type = (C->C).

Note that, for instance, when one wants to select only terms having a given
type, this is quite inefficient. Next, we will show how to combine size-bound term
generation, testing for closed terms and type inference into a single predicate.
This will enable more efficient querying for terms inhabiting a given type, as one
would expect from Prolog’s multi-directional execution model, and more impor-
tantly for our purposes, to climb two orders of magnitude higher for counting
simply-typed terms of size 13 and 14.

4.2 Combining term generation and type inference

We need two changes to infer_type to turn it into an efficient generator for
simply-typed lambda terms. First, we need to add an argument to control the
size of the terms and ensure termination, by calling down/2 for internal nodes.
Second, we need to generate the mapping between binders and variables. We
ensure this by borrowing the member/2-based mechanism used in the predicate
lambda/4 generating closed lambda terms in subsection 2.3
The predicate typed_lambda/3 does just that, with helper from DCG-expanded

typed-lambda/5.

typed_lambda(S,X,T) :-typed_lambda(_XT,X,T,[],S,0).

typed_lambda(v(V:T),v(V),T,Vs)--> {
member (V:TO,Vs),
unify_with_occurs_check(TO,T)
}.
typed_lambda(1(X:TX,A),1(X,Newd) , (TX->TY),Vs)-->down,
typed_lambda(A,NewA,TY, [X:TX|Vs]).
typed_lambda(a(A,B) ,a(NewA,NewB) ,TY,Vs)-->down,
typed_lambda(A,NewA, (TX->TY),Vs),
typed_lambda(B,NewB,TX,Vs) .

Like lambda/4, the predicate typed-lambda/5 relies on Prolog’s DCG nota-
tion to thread together the steps controlled by the predicate down. Note also
the nondeterministic use of the built-in member/2 that enumerates values for
variable:type pairs ranging over the list of available pairs Vs, as well as the
use of unify with_occurs_check to ensure that unification of candidate types
does not create cycles.

Example 8 A term of size 15 and its type.

1(A,1(B,1(C,1(D,1(E,1(F,1(G,1(H,1(1,1(J,1(K,
a(v(I),1(L,aalv(E),v(3)),v(IINNNIII
M->N->0->P-> (Q->Q->R)->S->T->U-> ((V->R)->W)->Q->X->W



We will discuss exact performance data later, but let’s note here that this
operation brings down by an order of magnitude the computational effort to
generate simply-typed terms. As expected, the number of solutions is computed
as the sequence A220471 in [10]. Interestingly, by interleaving generation of closed
terms and type inference in the predicate typed_-lambda, the time to generate
all the closed simply-typed terms is actually shorter than the time to generate
all closed terms of the same size, e.g., 17.123 vs. 31.442 seconds for size 10 with
SWI-Prolog. As, via the Curry-Howard isomorphism, closed simply typed terms
correspond to proofs of tautologies in minimal logic, co-generation of terms and
types corresponds to co-generation of tautologies and their proofs for proofs of
given length.

4.3 Omne more trim: generating inhabited types

Let’s first observe that the actual lambda term does not need to be built, pro-
vided that we mimic exactly the type inference operations that one would need
to perform to ensure it is simply-typed. It is thus safe to remove the first ar-
gument of typed_lambda/5 as well as the building of the fresh copy performed
in the second argument. To further simplify the code, we can also make the
DCG-processing of the size computations explicit, in the last two arguments.

This gives the predicate inhabited_type/4 and then inhabited_type/2,
that generates all types having inhabitants of a given size, but omits the inhab-
itants as such.

inhabited_type(X,Vs,N,N):-
member (V,Vs),
unify_with_occurs_check(X,V).
inhabited_type ((X->Xs),Vs,s(N1) ,N2):-
inhabited_type(Xs, [X|Vs],N1,N2).
inhabited_type(Xs,Vs,s(N1),N3):-
inhabited_type ((X->Xs),Vs,N1,N2),
inhabited_type(X,Vs,N2,N3).

Clearly the multiset of generated types has the same count as the set of their
inhabitants and this brings us an additional 1.5x speed-up.

inhabited_type(S,T) :-inhabited_type(T, [1,S,0).

One more (easy) step, giving a 3x speed-up, makes reaching counts for sizes 13
and 14 achievable: using a faster Prolog, with a similar unify with_occurs_check
built-in, like YAP [19], with the last value computed in less than a day.

Example 9 The sequence A220471 completed up to N=14
first 10: 1,2,9,40,238,1564,11807,98529,904318,9006364

11: 96,709,332
12: 1,110,858,977

13: 13,581,942,434
14: 175,844,515,544



5 Doing it once more: generating closed simply-typed
normal forms

We will devise similar methods for an important subclass of simply-typed lambda
terms.

5.1 Generating normal forms

Normal forms are lambda terms that cannot be further reduced. A normal form
should not be an application with a lambda as its left branch and, recursively,
its subterms should also be normal forms. The predicate normal_form/2 uses
normal_form/4 to define them inductively and generates all normal forms with
S internal nodes.

normal_form(S,T) :-normal_form(T, [],S,0).

normal_form(v(X),Vs)-->{member (X,Vs)}.
normal_form(1(X,A),Vs)-->down,normal_form(A, [X|Vs]).

normal _form(a(v(X),B),Vs)-->down,normal_form(v(X),Vs) ,normal_form(B,Vs).
normal _form(a(a(X,Y),B),Vs)-->down,normal_form(a(X,Y),Vs),normal_form(B,Vs).

Example 10 illustrates closed normal forms with 2 internal nodes.

?- normal_form(s(s(0)),NF).
NF = 1(A, 1(B, v(B))) ;
NF = 1(A, 1(B, v(A))) ;
NF = 1(A, a(v(d), v(A))) .

The number of solutions of our generator replicates entry A224345 in [10] that
counts closed normal forms of various sizes.

The predicate nf _with_type applies the type inference algorithm to the gen-
erated normal forms of size S.

nf_with_type(S,X,T) :-normal_form(S,XT) ,infer_type (XT,X,T).

5.2 Merging in type inference

Like in the case of the set of simply-typed lambda terms, we can define the more
efficient combined generator and type inferrer predicate typed nf/2.
typed_nf(S,X,T) : -typed_nf (_XT,X,T, [1,S,0).

It works by calling the DCG-expended typed_nf/4 predicate, with the last
two arguments enforcing the size constraints.

typed_nf (v(V:T),v(V),T,Vs)-—> {
member (V:TO,Vs),
unify_with_occurs_check(TO,T)
}.

10



typed_nf (1(X:TX,A),1(X,NewA) , (TX->TY),Vs)-->down,
typed_nf (A,NewA,TY, [X:TX|Vs]) .

typed_nf (a(v(A),B),a(NewA,NewB) ,TY,Vs)-->down,
typed_nf (v(A) ,NewA, (TX->TY) ,Vs),
typed_nf (B,NewB,TX,Vs) .

typed_nf (a(a(Al,A2),B),a(NewA,NewB) ,TY,Vs)-->down,
typed_nf (a(A1,A2) ,NewA, (TX->TY),Vs),
typed_nf (B,NewB,TX,Vs) .

Example 11 Simply-typed normal forms up to size 3.

?7- typed_nf(s(s(s(0))),Term,Type).
Term = 1(A, 1(B, 1(C, v(C)))),
Type = (D->E->F->F) ;

Term = 1(A, a(v(A), 1(B, v(B)))),
Type (((C->C)->D)->D) .

We are now able to efficiently generate counts for simply-typed normal forms
of a given size.

Example 12 Counts for closed simply-typed normal forms up to N=14.

first 10: 1,2,6,23,108,618,4092,30413,252590,2297954

11: 22,640,259
12: 240,084,189
13: 2,721,455,329
14: 32,783,910,297

Note that if we would want to just collect the set of types having inhabitants of
a given size, the preservation of typability under 3-reduction property [3] would
allow us to work with the (smaller) set of simply-typed terms in normal form.

6 Experimental data

Figure 1 gives the number of logical inferences as counted by SWI-Prolog. This
is a good measure of computational effort except for counting operations like
unify with occurs_check as a single step, while its actual complexity depends
on the size of the terms involved. Therefore, figure 2 gives actual timings for the
same operations above N=5, where they start to be meaningful.

The “closed A-terms” column gives logical inferences and timing for gener-
ating all closed lambda terms of size given in column 1. The column “gen, then
infer” covers the algorithm that first generates lambda terms and then infers
their types. The column “gen + infer” gives performance data for the signif-
icantly faster algorithm that merges generation and type inference in the same
predicate. The column “inhabitants” gives data for the case when actual in-
habitants are omitted in the merged generation and type inference process. The

11



column “typed normal form” shows results for the fast, merged generation and
type inference for terms in normal form.
As moving from a size to the next typically adds one order of magnitude of
computational effort, computing values for N=15 and N=16 is reachable with our
best algorithms for both simply typed terms and their normal form subset.

Size|| closed A-terms| gen, then infer| gen + infer| inhabitants| typed normal form
1 15 19 16 9 19
2 44 59 50 28 47
3 166 261 188 113 127
4 810 1,517 864 553 429
5 4,905 10,930 1,652 3,112 1,814
6 35,372 92,661 28,878 19,955 9,247
7 294,697 895,154 202,526 143,431 55,219
3 2,776,174 9,647,495 1,586,880 1,146,116 377,745
9 29,103,799 114,273,833| 13,722,618| 10,073,400 2,896,982

10 335,379,436| 1,471,373,474| 129,817,948 96,626,916 24,556,921

Fig. 1. Number of logical inferences used by our generators, as counted by SWI-Prolog

Size|| closed A-terms| gen, then infer| gen + infer| inhabitants| typed normal form
5 0.001 0.001 0.001 0.000 0.001
6 0.005 0.011 0.004]  0.002 0.004
7 0.028 0.114 0.029 0.018 0.011
8 0.257 1.253 0.242 0.149 0.050
9 2.763 15.256 2.080 1.298 0.379
10 32.239 199.188 19.888| 12.664 3.329

Fig. 2. Timings (in seconds) for our generators up to size 10 (on a 2015 MacBook,
with 1.3 GHz Intel Core M processor)

7 Discussion

An interesting open problem is if this can be pushed significantly farther. We
have looked into term_hash based indexing and tabling-based dynamic program-
ming algorithms, using de Bruijn terms. Unfortunately as subterms of closed
terms are not necessarily closed, even if de Bruijn terms can be used as ground
keys, their associated types are incomplete and dependent on the context in
which they are inferred.

12



While it only offers a constant factor speed-up, parallel execution is a more
promising possibility. However, given the small granularity of the generation
and type inference process, the most useful parallel execution mechanism would
simply split the task of combined generation and inference process into a number
of disjoint sets, corresponding to the number of available processors. A way to
do this, is by using unranking functions (bijections originating in N) to the sets
of combinatorial objects involved, and then, for k processors, assign work on
successive numbers belonging to the same equivalence class modulo k. Another
way is to first generate Motzkin trees and then launch threads to “flesh them
up” with logic variables, run the type inference steps and collect success counts
atomically.

We have not seen any obvious way to improve these results using constraint
programing systems, partly because the “inner loop” computation is unification
with occurs check with computations ranging over Prolog terms rather than
being objects of a constraint domain. On the other hand, for a given size, ex-
ploring grounding to propositional formulas or answer-set programming seems
worth exploring as a way to take advantage of today’s fast SAT-solvers.

Our techniques can be easily adapted to a different size definition like the
ones in [20/21] where variables in de Bruijn notation have a size proportional
to the distance to their binder. We have not discussed here the use of similar
techniques to improve the Boltzmann samplers described to [22], but clearly in-
terleaving type checking with the probability-driven building of the terms would
improve their performance, by excluding terms with ill-typed subterms as early
as possible, during the large number of retries needed to overcome the asymp-
totically O-density of simply-typed terms in the set of closed terms [6].

8 Related work

The classic reference for lambda calculus is [I]. Various instances of typed lambda
calculi are overviewed in [3].

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [5/8]. Distribution and density properties of
random lambda terms are described in [6].

Generation of random simply-typed lambda terms and its applications to
generating functional programs from type definitions is covered in [23].

Several concepts of size have been used in the literature, partly to facilitate
convergence of formal series in analytic combinatorics [20/21].

Asymptotic density properties of simple types (corresponding to tautologies
in minimal logic) have been studied in [24] with the surprising result that “almost
all” classical tautologies are also intuitionistic ones.

In [] a “type-directed” mechanism for the generation of random terms is
introduced, resulting in more realistic (while not uniformly random) terms, used
successfully in discovering some bugs in the Glasgow Haskell Compiler (GHC).
A statistical exploration of the structure of the simple types of lambda terms of
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a given size in [I4] gives indications that some types frequent in human-written
programs are among the most frequently inferred ones.

Generators for closed simply-typed lambda terms, as well as their normal
forms, expressed as functional programming algorithms, are given in [5], derived
from combinatorial recurrences. However, they are significantly more complex
than the ones described here in Prolog, and limited to terms up to size 10.

In the unpublished draft [I5] we have collected several lambda term gen-
eration algorithms written in Prolog and covering mostly de Bruijn terms and
a compressed de Bruijn representation. Among them, we have covered linear,
affine linear terms as well as terms of bounded unary height and in binary
lambda calculus encoding. In [I5] type inference algorithms are also given for
SK and Rosser’s X-combinator expressions. A similar (but slower) program for
type inference using de Bruijn notation is also given in the unpublished draft
[15], without however describing the step-by-step derivation steps leading to it,
as done in this paper.

In [25] a general constraint logic programming framework is defined for size-
constrained generation of data structures as well as a program-transformation
mechanism. While our fine-tuned interleaving of term generation and type infer-
ence directly provides the benefits of a CLP-based scheme, the program transfor-
mation techniques described in [25] are worth exploring for possible performance
improvements.

9 Conclusion

We have derived several logic programs that have helped solve the fairly hard
combinatorial counting and generation problem for simply-typed lambda terms,
4 orders of magnitude higher than previously published results.

This has put at test two simple but effective program transformation tech-
niques naturally available in logic programming languages: 1) interleaving gen-
erators and testers by integrating them in the same predicate and 2) dropping
arguments used in generators when used simply as counters of solutions, as in
this case their role can be kept implicit in the recursive structure of the pro-
gram. Both have turned out to be effective for speeding up computations with-
out changing the semantics of their intended application. We have also managed
(after a simple DCG translation) to work within in the minimalist framework
of Horn Clauses with sound unification, showing that non-trivial combinatorics
problems can be handled without any of Prolog’s impure features.

Our techniques, combining unification of logic variables with Prolog’s back-
tracking mechanism and DCG grammar notation, recommend logic program-
ming as a convenient meta-language for the manipulation of various families of
lambda terms and the study of their combinatorial and computational proper-
ties.
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