Skip to main content

A Hashing Image Retrieval Method Based on Deep Learning and Local Feature Fusion

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

  • 3111 Accesses

Abstract

The multimedia information such as images and videos has been growing rapidly, how to efficiently retrieve large-scale image dataset to meet user needs is an urgent problem. The traditional method has the problem of slow retrieval and low accuracy on large-scale datasets, we propose an effective deep learning framework to generate binary hash codes for fast image retrieval, our idea is to fuse local features maps of different layers in convolutional neural networks (CNNs), and the binary hash codes can be learned by employing a hidden layer. Additionally, we train the network by combining cross entropy loss function with the triplet loss function to get better features. The approximate nearest neighbor search strategy is used to improve the quality and speed of retrieval. Experimental results show that our method outperforms several state-of-the-art hashing image retrieval algorithms on the MNIST and CIFAR-10 datasets. At last, we further demonstrate its scalability and efficacy on the CUB200-2011 and Stanford Dogs fine-grained classification datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lew, M.S., Sebe, N., Djeraba, C., et al.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. 2, 1–19 (2006)

    Article  Google Scholar 

  2. Lowe D.G.: Object recognition from local scale-invariant features. In: Proceeding of 7th IEEE International Conference on Computer Vision, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  3. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 886–893 (2005)

    Google Scholar 

  5. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25(2), 1106–1114 (2012)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  8. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  10. Lin, K., Yang, H.F., Hsiao, J.H., et al.: Deep learning of binary hash codes for fast image retrieval. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 27–35 (2015)

    Google Scholar 

  11. Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors. IEEE Signal Process. Mag. 25, 128–131 (2008)

    Article  Google Scholar 

  12. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp. 1753–1760 (2008)

    Google Scholar 

  13. Xia, R., Pan, Y., Lai, H., et al.: Supervised hashing for image retrieval via image representation learning. In: AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  14. Liu, H., Wang, R., Shan, S., Chen, X.: Deep supervised hashing for fast image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2064–2072 (2016)

    Google Scholar 

  15. Liu, Z., Luo, P., Qiu, S., et al.: DeepFashion: powering robust clothes recognition and retrieval with rich annotations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1096–1104 (2016)

    Google Scholar 

  16. Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  17. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41488-6_21

    Chapter  Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face recognition and clustering. In: Proceeding of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

    Google Scholar 

  19. Lecun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Krizhevsky, A: Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Technical report (2009)

    Google Scholar 

  21. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200–2011 Dataset. Computation and Neural Systems Technical report, CNS-TR-2011-0012

    Google Scholar 

  22. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization. In: IEEE Conference on Computer Vision and Pattern Recognition on First Workshop on Fine-Grained Visual Categorization (FGVC) (2011)

    Google Scholar 

  23. Jia, D., Berg, A.C., Li, F.F.: Hierarchical semantic indexing for large scale image retrieval. In: CVPR 2011 IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June, pp. 785–792. IEEE Xplore (2011)

    Google Scholar 

  24. Gong, Y., Lazebnik, S.: Iterative quantization: A procrustean approach to learning binary codes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 817–824. IEEE Computer Society(2011)

    Google Scholar 

  25. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. In: International Conference on Learning Representations (ICLR) 2013

    Google Scholar 

  26. Liu, W., Wang, J., Ji, R., et al.: Supervised hashing with kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 157, no. 10, pp. 2074–2081. IEEE Computer Society (2011)

    Google Scholar 

  27. Norouzi, M.E., Fleet, D.J.: Minimal loss hashing for compact binary codes. In: International Conference on Machine Learning (ICML 2011), Bellevue, Washington, USA, June 28–July 2011, pp. 353–360 (2011)

    Google Scholar 

  28. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 392–407. Springer, Cham (2014). doi:10.1007/978-3-319-10584-0_26

    Google Scholar 

  29. Babenko, A., Lempitsky, V.: Aggregating deep convolutional features for image retrieval. In: Proceeding of IEEE Conference on Computer Science (2015)

    Google Scholar 

  30. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-Dimensional Weighting for Aggregated Deep Convolutional Features (2016)

    Google Scholar 

  31. Wei, X.S., Luo, J.H., Wu, J.: Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant of the National Science Foundation of China (No. 61673186, 61370006, 61502183), the Grant of the National Science Foundation of Fujian Province (No. 2013J06014, 2014J01237), the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-YX108), the Scientific Research Funds of Huaqiao University (No. 600005-Z15Y0016), and Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University (No. 1511314007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Xiang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nie, YL., Du, JX., Fan, WT. (2017). A Hashing Image Retrieval Method Based on Deep Learning and Local Feature Fusion. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics