Skip to main content

Locality Preserving Projections with Adaptive Neighborhood Size

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

Abstract

Feature extraction methods are widely employed to reduce dimensionality of data and enhance the discriminative information. Among the methods, manifold learning approaches have been developed to detect the underlying manifold structure of the data based on local invariants, which are usually guaranteed by an adjacent graph of the sampled data set. The performance of the manifold learning approaches is however affected by the locality of the data, i.e. what is the neighborhood size for suitably representing the locality? In this paper, we address this issue through proposing a method to adaptively select the neighborhood size. It is applied to the manifold learning approach Locality Preserving Projections (LPP) which is a popular linear reduction algorithm. The effectiveness of the adaptive neighborhood selection method is evaluated by performing classification and clustering experiments on the real-life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  MATH  Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986). doi:10.1007/978-1-4757-1904-8

    Book  MATH  Google Scholar 

  3. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  4. Rao, C.R.: The utilization of multiple measurements in problems of biological classification. J. Roy. Stat. Soc. B 10(2), 159–203 (1948)

    MathSciNet  MATH  Google Scholar 

  5. Huang, P., Chen, C.K., Tang, Z.M., Yang, Z.J.: Feature extraction using local structure preserving discriminant analysis. Neurocomputing 140, 104–113 (2014)

    Article  Google Scholar 

  6. Wu, M., Yu, K., Yu, S., Schölkopf, B.: Local learning projections. In: Proceeding of the 24th International Conference on Machine Learning, pp. 1039–1046. ACM (2007)

    Google Scholar 

  7. Chen, Y., Huang, J., Xu, X.H., Lai, J.H.: Discriminative local learning projection for face recognition. Int. J. Pattern Recogn. Artif. Intell. 25(1), 83–97 (2011)

    Article  Google Scholar 

  8. Lu, Y., Lai, Z., Xu, Y., Li, X., Zhang, D., Yuan, C.: Low-rank preserving projections. IEEE Trans. Cybern. 46(8), 1900–1913 (2015)

    Article  Google Scholar 

  9. Lai, Z., Wong, W.K., Xu, Y., Yang, J.: Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans. Neural Netw. and Learn. Syst. 27(4), 723–735 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhang, D., He, J.Z., Zhao, Y., et al.: Global plus local: a complete framework for feature extraction and recognition. Pattern Recogn. 47(3), 1433–1442 (2014)

    Article  MATH  Google Scholar 

  11. Yang, J., Zhang, D., Yang, J.Y., et al.: Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 650–664 (2007)

    Article  MathSciNet  Google Scholar 

  12. Wang, J.G.: Kernel supervised discriminant projection and its application for face recognition. Int. J. Pattern Recogn. Artif. Intell. 27(2) (2013)

    Google Scholar 

  13. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  14. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  15. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, vol. 14, pp. 585–591, MIT Press (2001)

    Google Scholar 

  16. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290(12), 2268–2269 (2000)

    Article  Google Scholar 

  17. He, X., Niyogi, P.: Locality preserving projections. In: Proceeding of the Conference Advances in Neural Information Processing Systems (NIPS) (2003)

    Google Scholar 

  18. Lai, Z., Xu, Y., Yang, J., Shen, L., Zhang, D.: Rotational invariant dimensionality reduction algorithms. IEEE Trans. Cybern. 99, 1–14 (2016)

    Article  Google Scholar 

  19. Wan, M.H., Li, M., Yang, G.W., Gai, S., Jin, Z.: Feature extraction using two-dimensional maximum embedding difference. Inf. Sci. 274, 55–69 (2014)

    Article  Google Scholar 

  20. Chung, F.R.K.: Spectral graph theory. In: Regional Conference Series in Mathematics, vol. 92 (1997)

    Google Scholar 

  21. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Sun, Y.J., Todorovic, S., Goodison, S.: Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1610–1626 (2010)

    Article  Google Scholar 

  23. Atkeson, C., Moore, A., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11(15), 11–73 (1997)

    Article  Google Scholar 

  24. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, vol. 18. MIT Press (2005)

    Google Scholar 

  25. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. Pattern Anal. Mach. Intell. 17(12), 1624–1637 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by the National Natural Science Foundation of China under Grant 61573137; Zhejiang Provincial Natural Science Foundation under Grants LY13F020011, LY14F010010 and LY14F020009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungang Lou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hu, W., Cheng, X., Jiang, Y., Choi, KS., Lou, J. (2017). Locality Preserving Projections with Adaptive Neighborhood Size. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics