Skip to main content

Chaotic Optimization of Tethered Kites for Wind Energy Generator

  • Conference paper
  • First Online:
  • 2954 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Abstract

Transduction of the stable wind energy into electrical energy at high altitudes is an innovative eco-friendly electricity generation strategy. Effective trajectory optimization can maximize the power generation for the traction phase and the recovery phase of the high-altitude wind power generator. The offline receding horizon control or the fast nonlinear model predictive control was previously employed to realize effective trajectory optimization, however it is time-consuming and lacks of adaptability and flexibility to varying system configurations. A receding horizon optimization method for the tethered kite generator based on an online searching scheme is proposed to improve the flexibility of the system. The nonlinear optimization problem can be approximately reformulated to a univariate receding horizon sub-optimal issue in a short interval in four phases with different objectives. By using uniform sampling and chaotic searching approaches, the sub-optimal solution, subject to the physical constraints, can be sought online. The simulation results demonstrate the effectiveness of the proposed method.

This work was supported by the Natural Science Foundation of China Under Grants of 61573197, 61273138, 61573199, and the Tianjin Natural Science Foundation (Grant No. 14JCYBJC18700, 13JCYBJC17400).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Archer, C.L., Caldeira, K.: Lobal assessment of high-altitude wind power. Energies 2(2), 307–319 (2009)

    Article  Google Scholar 

  2. Lansdorp, B., Ockels, W. J.: Comparison of concepts for high-altitude wind energy generation with ground based generator. In: The 2nd RE Asia Conference, Beijing, China (2005). 28(2), pp. 253–263

    Google Scholar 

  3. Ahmed, M., Hably, A., Bacha, S.: High altitude wind power systems: a survey on flexible power kites. In: International Conference on Electrical Machines, Marseille, France, pp. 2085–2089 (2012)

    Google Scholar 

  4. Loyd, M.L.: Crosswind kite power. Energy 4(3), 106–111 (1980)

    Article  Google Scholar 

  5. Ockels, W.J.: Laddermill: a novel concept to exploit the energy in the airspace. Aircr. Des. 4(2–3), 81–97 (2001)

    Article  Google Scholar 

  6. Fagiano, L., Milanese, M., Piga, D.: High-altitude wind power generation. IEEE Trans. Energ. Conver. 25(1), 168–180 (2010)

    Article  Google Scholar 

  7. Canale, M., Fagiano, L., Ippolito, M.: Control of tethered airfoils for a new class of wind energy generator. In: Proceedings of 45th IEEE Conference Decision and Control, San Diego, USA, pp. 4020–4026 (2006)

    Google Scholar 

  8. Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation. IEEE Control Syst. Mag. 27(6), 25–38 (2007)

    Article  MathSciNet  Google Scholar 

  9. Canale, M., Fagiano, L., Milanese, M.: High altitude wind energy generation using controlled power kites. IEEE Trans. Control Syst. Technol. 18(2), 279–293 (2010)

    Article  Google Scholar 

  10. Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. Int. J. Robust Nonlinear Control 22(18), 2055–2083 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erhand, M., Strauch, H.: Control of towing kites for seagoing vessels. IEEE Trans. Control Syst. Technol. 21(5), 1629–1640 (2013)

    Article  Google Scholar 

  12. Canale, M., Fagiano, L., Milanese, M., Razza, V.: Control of tethered aircrafts for sustainable marine transportation. In: Proceedings of 2010 IEEE International Conference on Control Application Part of 2010 IEEE Multiconference System Control, Yokohama, Japan, pp. 1904–1909 (2010)

    Google Scholar 

  13. Dadd, G.M., Hudson, D.A., Shenoi, R.A.: Determination of kite forces using three-dimensional flight trajectories for ship propulsion. Renew. Energy 36(10), 2667–2678 (2011)

    Article  Google Scholar 

  14. Fagiano, L., Milanese, M., Razza, V., Bonansone, M.: High-altitude wind energy for sustainable marine transportation. IEEE Trans. Intell. Transp. Syst. 13(2), 781–791 (2012)

    Article  Google Scholar 

  15. Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renew. Energy 34(6), 1525–1532 (2009)

    Article  Google Scholar 

  16. Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renew. Energy 35(5), 1052–1060 (2010)

    Article  Google Scholar 

  17. Diehl, M.: Real-time optimization for large scale nonlinear processes. Ph.D. dissertation, Dept. Electr. Eng., Heidelberg Univ., Heidelberg, Germany (2001)

    Google Scholar 

  18. Ahmed, M., Hably, A., Bacha, S.: Power maximization of a closed-orbit kite generator system. In: Proceedings of 50th IEEE Conference on Decision Control and European Control Conference, Orlando, FL, USA, pp. 7717–7722 (2011)

    Google Scholar 

  19. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of 9th European Control Conference, Kos, Greece, pp. 3560–3567 (2007)

    Google Scholar 

  20. Furey, A., Harvey, I.: Evolution of neural networks for active control of tethered airfoils. In: Proceedings of 9th European Conference on Artificial Life, pp. 746–756 (2007)

    Google Scholar 

  21. Williams, P., Lansdorp, B., Ockels, W.: Optimal crosswind towing and power generation with tethered kites. J. Guidance Control Dyn. 31(1), 81–93 (2008)

    Article  Google Scholar 

  22. Williams, P., Lansdorp, B., Ockels, W.: Nonlinear control and estimation of a tethered kite in changing wind conditions. J. Guidance Control Dyn. 31(3), 793–799 (2008)

    Article  Google Scholar 

  23. Ilzhoefer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large scale wind power generators. Int. J. Robust Nonlinear Control 17(17), 1590–1599 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Houska, B., Diehl, M.: Robustness and stability optimization of power generating kite systems in a periodic pumping mode. In: Proceedings of IEEE Multiconference System Control, Yokohama, pp. 2172–2177 (2010)

    Google Scholar 

  25. Novara, C., Fagiano, L., Milanese, M.: Direct data-driven inverse control of a power kite for high altitude wind energy conversion. In: Proceedings of IEEE International Conference Control Application, Denver, USA, pp. 240–245 (2011)

    Google Scholar 

  26. Ferreau, H.J., Houska, B., Geebelen, K., Diehl, M.: Real-time control of a kite-model using an auto-generated nonlinear MPC algorithm. In: Proceedings of 18th IFAC World Conference, Milan, Italy, pp. 2488–2493 (2011)

    Google Scholar 

  27. Gillis, J., Goos, J., Geebelen, K., Swevers, J., Diehl, M.: Optimal periodic control of power harvesting tethered airplanes: how to fly fast without wind and without propeller. In: Proceedings of American Control Conference, Fairmont Queen Elizabeth, Montréal, Canada, pp. 2527–2532 (2012)

    Google Scholar 

  28. Baayen, J.H., Ockels, W.J.: Tracking control with adaption of kites. IET Control Theory Appl. 6(2), 182–191 (2012)

    Article  MathSciNet  Google Scholar 

  29. Henson, M.A.: Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 23(2), 187–202 (1998)

    Article  Google Scholar 

  30. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23(4–5), 667–682 (1999)

    Article  Google Scholar 

  31. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)

    Article  Google Scholar 

  32. Canale, M., Fagiano, L., Milanese, M.: Set membership approximation theory for fast implementation of model predictive control laws. Automatica 45(1), 45–54 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, Y., Chen, Z.Q., Yuan, Z.Z.: New chaotic PSO-based neural network predictive control for nonlinear process. IEEE Trans. Neural Netw. 18(2), 595–600 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, J., Sun, M., Wang, Z., Chen, Z. (2017). Chaotic Optimization of Tethered Kites for Wind Energy Generator. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics