Skip to main content

Smooth Multi-instance Learning for Object Detection

  • Conference paper
  • First Online:
  • 3032 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Abstract

The problem of object localization is one of the key problems in computer vision applications. Recently, multiple-instance learning (MIL) is a kind of machine learning framework which receiving a set of instances that are individually labeled. This framework has been verified that will get good effect in object localization in images. In this paper, we propose a novel method to handle the classical MIL problem. We preprocess images with superpixel techniques to speed up the whole procedure of training our model and regard the positiveness of instance as a continuous variable. The softmax model is used to bring a bridge between instances and bags and jointly optimize the bag label and instance label in a unified framework. At last, the model is trained by iterative weakly supervised training method. The extensive experiments demonstrate that out method achieves superior performance on various MIL benchmarks. The state-of-the-art results of object discovery on Pascal VOC datasets further confirm the advantages of the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, X., Zhang, Z., Ma, Y., Bai, X., Liu, W., Tu, Z.: Robust subspace discovery via relaxed rank minimization. Neural Comput. 26(3), 611–635 (2014)

    Article  MathSciNet  Google Scholar 

  2. Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15567-3_3

    Chapter  Google Scholar 

  3. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2027–2034 (2014)

    Google Scholar 

  4. Tang, K., Joulin, A., Li, L.-J., Fei-Fei, L.: Co-localization in real-world images. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1464–1471. IEEE (2014)

    Google Scholar 

  5. Zhu, J.-Y., Wu, J., Xu, Y., Chang, E., Tu, Z.: Unsupervised object class discovery via saliency-guided multiple class learning. IEEE Trans. Pattern Anal. Mach. Intell. 37(4), 862–875 (2015)

    Article  Google Scholar 

  6. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  MATH  Google Scholar 

  7. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3460–3469 (2015)

    Google Scholar 

  8. Wei, X.-S., Wu, J., Zhou, Z.-H.: Scalable multi-instance learning. In: 2014 IEEE International Conference on Data Mining, pp. 1037–1042. IEEE (2014)

    Google Scholar 

  9. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 685–694 (2015)

    Google Scholar 

  10. Song, H.O., Girshick, R.B., Jegelka, S., Mairal, J., Harchaoui, Z., Darrell, T.: On learning to localize objects with minimal supervision. In: ICML, pp. 1611–1619 (2014)

    Google Scholar 

  11. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. 5, 913–939 (2004)

    MathSciNet  Google Scholar 

  12. Sapienza, M., Cuzzolin, F., Torr, P.H.: Learning discriminative space–time action parts from weakly labelled videos. Int. J. Comput. Vis. 110(1), 30–47 (2014)

    Article  Google Scholar 

  13. Hong, R., Wang, M., Gao, Y., Tao, D., Li, X., Wu, X.: Image annotation by multiple-instance learning with discriminative feature mapping and selection. IEEE Trans. Cybern. 44(5), 669–680 (2014)

    Article  Google Scholar 

  14. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels (2010)

    Google Scholar 

  15. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). doi:10.1007/978-3-319-10602-1_26

    Google Scholar 

  16. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 570–576 (1998)

    Google Scholar 

  17. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1073–1080 (2001)

    Google Scholar 

  18. Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 272–281. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24775-3_35

    Chapter  Google Scholar 

  19. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 561–568 (2002)

    Google Scholar 

  20. Zhou, Z.-H., Sun, Y.-Y., Li, Y.-F.: Multi-instance learning by treating instances as non-iid samples. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1249–1256. ACM (2009)

    Google Scholar 

  21. Berg, T.L., Berg, A.C., Edwards, J., Maire, M., White, R., Teh, Y.-W., Learned-Miller, E., Forsyth. D.A.: Names and faces in the news. In: 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, vol. 842, pp. II-848–II-854. IEEE (2004)

    Google Scholar 

  22. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Iintell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  23. Gu, C., Arbeláez, P., Lin, Y., Yu, K., Malik, J.: Multi-component models for object detection. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 445–458. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33765-9_32

    Chapter  Google Scholar 

  24. Deselaers, T., Alexe, B., Ferrari, V.: Weakly supervised localization and learning with generic knowledge. Int. J. Comput. Vis. 100(3), 275–293 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, X.-F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43(3), 603–618 (2010)

    Article  MATH  Google Scholar 

  26. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition (in Chinese). Publishing House of Electronic Industry of China, Beijing, May 1996

    Google Scholar 

  27. Li, B., Huang, D.S.: Locally linear discriminant embedding: An efficient method for face recognition. Pattern Recogn. 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  28. Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Networks 19(12), 2099–2115 (2008)

    Article  Google Scholar 

  29. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recogn. Artif. Intell. 13(7), 1083–1101 (1999)

    Article  MathSciNet  Google Scholar 

  30. Wang, X.-F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515–1531 (2009)

    Article  Google Scholar 

  31. Huang, D.S., Ip, H.H.S., Chi, Z.: A neural root finder of polynomials based on root moments. Neural Comput. 16(8), 1721–1762 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the National Science Foundation of China, Nos. 61520106006, 31571364, U1611265, 61532008, 61672203, 61402334, 61472282, 61472280, 61472173, 61572447, 61373098 and 61672382, China Postdoctoral Science Foundation Grant, Nos. 2016M601646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, D., Li, Z., Zhang, Y. (2017). Smooth Multi-instance Learning for Object Detection. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics