Skip to main content

An Effective Strategy for Trait Combinations in Multiple-Trait Genomic Selection

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

  • 2159 Accesses

Abstract

Multiple-trait genomic selection (MTGS) is a recently developed method of genomic selection for satisfying the requirements of actual breeding, which usually aims to improve multiple traits simultaneously. Although many efforts have been made to develop MTGS prediction models, how to set the trait combination for the best performance of MTGS prediction models is still under exploration. In this study, we first classified the traits into two groups according to the single-trait genomic selection predictions: traits with a relatively high and low prediction performance. Then, we constructed three trait combinations (High & High, Low & Low, and High & Low) and evaluated their effects on the performance of a state-of-the-art MTGS prediction model using phenotypic and genotypic data from a maize diversity panel. Cross-validation experimental results indicate that single trait predictions could be used as reference for trait combinations in multi-trait genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desta, Z.A., Ortiz, R.: Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19(9), 592–601 (2014)

    Article  Google Scholar 

  2. Jannink, J.L., Lorenz, A.J., Iwata, H.: Genomic selection in plant breeding: from theory to practice. Brief. Funct. Genomics. 9(2), 166–177 (2010)

    Article  Google Scholar 

  3. Hayes, B.J., Bowman, P.J., Chamberlain, A.J., Goddard, M.E.: Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92(2), 433–443 (2009)

    Article  Google Scholar 

  4. Schmidt, M., Kollers, S., Maasberg-Prelle, A., Grosser, J., Schinkel, B., Tomerius, A., Graner, A., Korzun, V.: Prediction of malting quality traits in barley based on genome-wide marker data to assess the potential of genomic selection. Theor. Appl. Genet. 129(2), 203–213 (2016)

    Article  Google Scholar 

  5. Momen, M., Mehrgardi, A.A., Sheikhy, A., Esmailizadeh, A., Fozi, M.A., Kranis, A., Valente, B.D., Rosa, G.J., Gianola, D.: A predictive assessment of genetic correlations between traits in chickens using markers. Genet. Sel. Evol. 49(1), 16 (2017)

    Article  Google Scholar 

  6. Bao, Y., Kurle, J.E., Anderson, G., Young, N.D.: Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm. Mol. Breed. 35(6), 128 (2015)

    Article  Google Scholar 

  7. Jia, Y., Jannink, J.L.: Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 192(4), 1513–1522 (2012)

    Article  Google Scholar 

  8. Dos Santos, J.P., Vasconcellos, R.C., Pires, L.P., Balestre, M., Von Pinho, R.G.: Inclusion of dominance effects in the multivariate GBLUP model. PLoS One 11(4), e0152045 (2016)

    Article  Google Scholar 

  9. Calus, M.P., Veerkamp, R.F.: Accuracy of multi-trait genomic selection using different methods. Genet. Sel. Evol. 43(1), 26 (2011)

    Article  Google Scholar 

  10. He, D., Kuhn, D., Parida, L.: Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction. Bioinformatics 32(12), i37–i43 (2016)

    Article  Google Scholar 

  11. Abernethy, J., Bach, F., Evgeniou, T., Vert, J.P.: A new approach to collaborative filtering: operator estimation with spectral regularization. J. Mach. Learn. Res. 10((Mar)), 803–826 (2009)

    MATH  Google Scholar 

  12. Schulthess, A.W., Wang, Y., Miedaner, T., Wilde, P., Reif, J.C., Zhao, Y.S.: Multiple-trait- and selection indices-genomic predictions for grain yield and protein content in rye for feeding purposes. Theor. Appl. Genet. 129(2), 273–287 (2016)

    Article  Google Scholar 

  13. Montesinos-Lopez, O.A., Montesinos-Lopez, A., Crossa, J., Toledo, F.H., Perez-Hernandez, O., Eskridge, K.M., Rutkoski, J.: A genomic bayesian multi-trait and multi-environment model. G3 (Bethesda) 6(9), 2725–2744 (2016)

    Article  Google Scholar 

  14. Jiang, J., Zhang, Q., Ma, L., Li, J., Wang, Z., Liu, J.F.: Joint prediction of multiple quantitative traits using a bayesian multivariate antedependence model. Heredity 115(1), 29–36 (2015)

    Article  Google Scholar 

  15. Hayashi, T., Iwata, H.: A bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits. BMC Bioinf. 14(1), 34 (2013)

    Article  Google Scholar 

  16. De los Campos, G., Sorensen, D., Gianola, D.: Genomic Heritability: What Is It? Plos Genetics. 11(5) (2015)

    Google Scholar 

  17. Kruijer, W., Boer, M.P., Malosetti, M., Flood, P.J., Engel, B., Kooke, R., Keurentjes, J.J., van Eeuwijk, F.A.: Marker-based estimation of heritability in immortal populations. Genetics 199(2), 379–398 (2015)

    Article  Google Scholar 

  18. Stanton-Geddes, J., Yoder, J.B., Briskine, R., Young, N.D., Tiffin, P.: Estimating heritability using genomic data. Methods Ecol. Evol. 4(12), 1151–1158 (2013)

    Article  Google Scholar 

  19. Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S.: TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19), 2633–2635 (2007)

    Article  Google Scholar 

  20. Zhou, J., Chen, J., Ye, J.: MALSAR: Multi-task Learning via Structural Regularization (2012). http://www.public.asu.edu/~jye02/Software/MALSAR

  21. Qiu, Z., Cheng, Q., Song, J., Tang, Y., Ma, C.: Application of machine learning-based classification to genomic selection and performance improvement. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 412–421. Springer, Cham (2016). doi:10.1007/978-3-319-42291-6_41

    Chapter  Google Scholar 

  22. Ornella, L., Perez, P., Tapia, E., Gonzalez-Camacho, J.M., Burgueno, J., Zhang, X., Singh, S., Vicente, F.S., Bonnett, D., Dreisigacker, S., Singh, R., Long, N., Crossa, J.: Genomic-enabled Prediction with classification algorithms. Heredity (Edinb). 112(6), 616–626 (2014)

    Article  Google Scholar 

Download references

Funding

Funding.

This work was supported by the National Natural Science Foundation of China (31570371), the Agricultural Science and Technology Innovation and Research Project of Shaanxi Province, China (2015NY011), and the Fund of Northwest A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Qiu, Z., Tang, Y., Ma, C. (2017). An Effective Strategy for Trait Combinations in Multiple-Trait Genomic Selection. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics