Skip to main content

A Computer Aided Ophthalmic Diagnosis System Based on Tomographic Features

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Abstract

Keratoconus is a bilateral progressive corneal disease characterized by thinning and apical protrusion; its early diagnosis is fundamental since it allows one to treat this rare disease by cross-linking approach, thus preventing a major corneal deformation and avoiding more invasive and risky surgical therapies, such as cornea transplant. Ophthalmology improvements have allowed a more rapid, precise and painless acquisition of corneal biometric parameters which are useful to evaluate alterations and abnormalities of eye’s outer structure. This paper presents a study about Keratoconus diagnosis based on a machine learning approach using corneal physical and morphological parameters obtained through Precisio™ tomographic examination. Artificial Neural Networks (ANNs) have been used for classification; in particular, a mono-objective Genetic Algorithm has been used to obtain the best topology for the neural classifiers for different input datasets obtained from features ranking. High levels of accuracy (higher than 90%) have been reached for all types of classification; in particular, binary classification has showed the best discrimination capability for Keratoconus identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinowitz, Y.S.: Keratoconus. Surv. Ophthalmol. 42, 297–319 (1998)

    Article  Google Scholar 

  2. Meek, K.M., Hayes, S.: Corneal cross-linking–a review. Ophthalmic Physiol. Opt. 33, 78–93 (2013)

    Article  Google Scholar 

  3. Vinciguerra, R., Romano, M.R., Camesasca, F.I., Azzolini, C., Trazza, S., Morenghi, E., Vinciguerra, P.: Corneal cross-linking as a treatment for keratoconus: four-year morphologic and clinical outcomes with respect to patient age. Ophthalmology 120, 908–916 (2013)

    Article  Google Scholar 

  4. Raiskup-Wolf, F., Hoyer, A., Spoerl, E., Pillunat, L.E.: Collagen crosslinking with riboflavin and ultraviolet - a light in keratoconus: long-term results. J. Cataract Refract. Surg. 34, 796–801 (2008)

    Article  Google Scholar 

  5. Rand, R.H., Howland, H.C., Applegate, R.A.: Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography. Optom. Vis. Sci. 74, 926–930 (1997)

    Article  Google Scholar 

  6. Guirao, A., Artal, P.: Corneal wave aberration from videokeratography: accuracy and limitations of the procedure. JOSA A 17, 955–965 (2000)

    Article  Google Scholar 

  7. Rabinowitz, Y.S., Li, X., Canedo, A.L.C., Ambrósio, R., Bykhovskaya, Y.: Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes. J. Refract. Surg. 30, 80–86 (2014)

    Article  Google Scholar 

  8. Carnimeo, L., Bevilacqua, V., Cariello, L., Mastronardi, G.: Retinal vessel extraction by a combined neural network–wavelet enhancement method. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 1106–1116. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04020-7_118

    Chapter  Google Scholar 

  9. Bevilacqua, V., Carnimeo, L., Mastronardi, G., Santarcangelo, V., Scaramuzzi, R.: On the comparison of NN-based architectures for diabetic damage detection in retinal images. J. Circuits Syst. Comput. 18, 1369–1380 (2009)

    Article  Google Scholar 

  10. Bevilacqua, V., Cariello, L., Columbo, D., Daleno, D., Dellisanti Fabiano, M., Giannini, M., Mastronardi, G., Castellano, M.: Retinal fundus biometric analysis for personal identifications. Adv. Intell. Comput. Theor. Appl. Asp. Artif. Intell. 1229–1237 (2008)

    Google Scholar 

  11. Arbelaez, M.C., Versaci, F., Vestri, G., Barboni, P., Savini, G.: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 119, 2231–2238 (2012)

    Article  Google Scholar 

  12. Li, Y., Meisler, D.M., Tang, M., Lu, A.T., Thakrar, V., Reiser, B.J., Huang, D.: Keratoconus diagnosis with optical coherence tomography pachymetry mapping. Ophthalmology 115, 2159–2166 (2008)

    Article  Google Scholar 

  13. Freitag, D.: Greedy attribute selection. In: Machine Learning Proceedings 1994: Proceedings of 8th International Conference, p. 28. Morgan Kaufmann (2014)

    Google Scholar 

  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  15. Bevilacqua, V., Mastronardi, G., Menolascina, F., Pannarale, P., Pedone, A.: A novel multi-objective genetic algorithm approach to artificial neural network topology optimisation: the breast cancer classification problem. In: International Joint Conference on Neural Networks, 2006, IJCNN 2006, pp. 1958–1965. IEEE (2006)

    Google Scholar 

  16. Bevilacqua, V., Brunetti, A., Triggiani, M., Magaletti, D., Telegrafo, M., Moschetta, M.: An optimized feed-forward artificial neural network topology to support radiologists in breast lesions classification. In: Proceedings of 2016 on Genetic and Evolutionary Computation Conference Companion, pp. 1385–1392. ACM (2016)

    Google Scholar 

  17. Du, J.-X., Huang, D.-S., Wang, X.-F., Gu, X.: Shape recognition based on neural networks trained by differential evolution algorithm. Neurocomputing 70, 896–903 (2007)

    Article  Google Scholar 

  18. Wang, J., Wang, H., Zhou, Y., McDonald, N.: Multiple kernel multivariate performance learning using cutting plane algorithm. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1870–1875. IEEE (2015)

    Google Scholar 

  19. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: IEEE International Conference on Neural Networks, pp. 586–591. IEEE (1993)

    Google Scholar 

  20. De Boer, P.-T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zill, D., Wright, W.S., Cullen, M.R.: Advanced Engineering Mathematics. Jones & Bartlett Learning, Burlington (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoantonio Bevilacqua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bevilacqua, V. et al. (2017). A Computer Aided Ophthalmic Diagnosis System Based on Tomographic Features. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics