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Abstract. During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of perfor-
mance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was
readily measurable and comprehensibility not so, later definitions in the 1990s, such as that of Mitchell,
tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ul-
timately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a
definition of comprehensibility of hypotheses which can be estimated using human participant trials. We
present the results of experiments testing human comprehensibility of logic programs learned with and
without predicate invention. Results indicate that comprehensibility is affected not only by the complexity
of the presented program but also by the existence of anonymous predicate symbols.

1 Introduction

Within Artificial Intelligence (AI) comprehensibility of symbolic knowledge is viewed as one of the
defining factors which distinguishes logic-based representations from statistical or neural ones. However,
to the authors’ knowledge, no operational criterion of comprehensibility exists in the literature. This
paper addresses the issue by introducing such a definition which is inspired by “Comprehension Tests”,
administered to children at primary school. Such a test comprises the presentation of a piece of text,
followed by questions which probe the child’s understanding. Answers to questions in some cases may
not be directly stated, but instead inferred from the text. Once the test is scored, the degree of the
pupil’s answers can be assessed numerically.

In the same fashion, our operational definition of comprehensibility is based on presentation of
a logic program to an experimental participant, who is given time to study it, after which the score
is used to assess their degree of comprehension. The detailed results of such a test can be used to
identify factors in the program which affect its comprehensibility both for individuals and for groups
of participants. The existence of an experimental methodology for testing comprehensibility has the
potential to provide empirical input for improvement of Machine Learning systems for which the
generated hypotheses are intended to provide insights.

Fig. 1. Example of student giving meaningful names to predicate symbols.

Figure 1 provides an example of such a test in which students were asked about a given program
in which some predicate names were meaningful (i.e., had publicly recognisable names like father
and mother) and others were anonymous (i.e., had privately defined names like p and p1). In this
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case, high-scoring students often unexpectedly annotated the answer scripts to indicate the name they
believed to be correct.

Given renewed interest within Inductive Logic Programming (ILP) in the use of predicate invention
[11, 12, 7, 1, 2] this paper explores the effects on comprehensibility of using anonymous definitions within
logic programs. Within experiments we assess students’ understanding of such programs within the
kinship domain. Empirical results indicate that comprehensibility is positively correlated to the degree
with which new predicates produce compact descriptions. Additionally comprehensibility correlates
with the degree to which participants can successfully match the presented predicate with one they are
already familiar with. However, somewhat surprisingly, it is negatively correlated with the amount of
time taken to inspect the definitions.

The paper is arranged as follows. In Section 2 we discuss existing work relevant to the paper. The
framework, including relevant definitions and their relationship to experimental hypotheses is described
in Section 3. Section 4 describes the experiments, including details of the questionnaires, experimental
procedure, results and discussion. Finally in Section 5 we conclude the paper and discuss further work.

2 Related Work

2.1 Comprehensibility

In the late 1980s Michie [8] suggested the idea of using both comprehensibility of hypotheses and
predictive accuracy as performance indicators for Machine Learning. He proposed three criteria. The
weak criterion defines Machine Learning as occurring whenever a system generates an updated basis
building on sample data for improving its performance on subsequent data. The focus is put exclusively
on the prediction and problem-solving aspects. The strong criterion expands the weak version in a
second direction, requiring the system to be able additionally to “communicate its internal updates in
explicit symbolic form”. Lastly his ultra-strong criterion additionally requires the communication of
updates to be “operationally effective”, in which case the user is required to understand the update and
any consequences to be drawn from it. While ILP systems clearly meet the weak and strong criterion
(since learning outcomes are represented as symbolic logic programs), only very limited attention has
been given to checking whether the ultra-strong criterion holds, which requires testing whether the
user comprehends generated hypotheses.

One Machine Learning approach which engages with issues related to comprehensibility is Argument-
Based Machine Learning (ABML) [9]. ABML applies methods from argumentation in combination with
a rule-learning approach. Explanations provided by domain experts concerning positive or negative
arguments serve to enrich selected learning examples by being included in the learning data. Although
ABML enhances the degree of explanation within a Machine Learning context, like ILP, ABML fails to
pass Michie’s ultra-strong test since no demonstration of user comprehensibility of learned hypotheses
is guaranteed.

Issues related to comprehensibility have been gaining more wide-spread attention recently in the
study of classification models [4, 6]. However, while these studies emphasise the need for compre-
hensibility, they do not offer a definitive test of the kind provided by our definition in Section 3.
For classification models augmented comprehensibility of the classification model promises to impact
positively on the trust users have in the model’s prediction. For example, in medical decision-making
and in the case of unexpected system outputs, comprehensibility generally increases the acceptance
of the models by users. Finally, comprehensible models can unveil new insights about the internal
structure of the data or its domain of origin.

In the context of AI testing and evaluation the importance of human comprehensibility of intelligent
systems has very recently been emphasised in [3]. Forbus makes a case for AI as a research endeavour
being equivalent to learning how to create smart software social organisms which should exhibit
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increasing abilities to participate in human culture and daily life. The comprehensibility of the systems
behaviour and outputs is paramount in this context, since only efficient communication enables
participation in human society. In [3] this is then tied into the general context of assessing the capacities
of AI systems by measuring the progress which has been made, for instance, in domain generality,
acquired knowledge levels, or the flexibility across different interaction modalities. When looking back
at the original Turing Test [19] and present-day discussions surrounding new and updated versions or
substitutes for it, comprehensibility of systems plays a crucial role. While there is frequent discussion
about abandonment of the Turing Test and focusing on more clearly specified tasks in well-defined
domains, putting emphasis on making systems and their output comprehensible for humans offers an
alternative approach to overcoming limitations of the original test, while still maintaining domain and
task generality.

2.2 Predicate Invention

Predicate Invention, the automated introduction of auxiliary predicates, has been viewed as an
important problem since the early days of ILP (e.g. [10, 15, 17]), though limited progress has been
made in this topic recently [13]. Early approaches were based on the use of W -operators within the
inverting resolution framework (e.g., [10, 15]). However, the completeness of these approaches was never
demonstrated, partly because of the lack of a declarative bias to delimit the hypothesis space. Failure
to address these issues has, until recently, led to limited progress being made in this important topic
and many well-known ILP systems such as ALEPH [16] and FOIL [14] have no predicate invention. In
the recently introduced Meta-Interpretive Learning (MIL) framework [11, 12], predicate invention is
conducted via construction of substitutions for meta-rules applied by a meta-interpreter. The use of
the meta-rules clarifies the declarative bias being employed. New predicate names are introduced as
higher-order skolem constants, a finite number of which are added during every iterative deepening of
the search.

3 Framework

3.1 General Setting

We assume sets of constants, predicate symbols and first-order variables are denoted C,P,V . We assume
definite clause programs to be defined in the usual way. Furthermore we assume a human as possessing
background knowledge B expressed as a definite program. We now define the distinction between
private and public predicate symbols.

Definition 1. [Public and private predicate symbols]. We say that a predicate symbol p ∈ P
found in definite program P is public with respect to a human population S in the case that p forms
part of the background knowledge of each human s ∈ S. Otherwise p is private.

Now we define Predicate Invention as follows.

Definition 2. [Predicate Invention]. In the case background knowledge B of an ILP is extended to
B ∪H, where H is a definite program we call predicate symbol p ∈ P an Invention iff p is defined in
H but not in B.

3.2 Comprehensibility

Next we provide our operational definition of comprehensibility.

Definition 3. [Comprehensibility, C(S, P )]. The comprehensibility of a definition (or program) P
with respect to a human population S is the mean accuracy with which a human s from population S
after brief study and without further sight can use P to classify new material sampled randomly from
the definition’s domain.
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Note that this definition allows us to define comprehensibility in a way which allows its experimental
determination given a set of human participants. However, in order to clarify the term ”after brief
study” we next define the notion of inspection time.

Definition 4. [Inspection time T (S, P )]. The inspection time T of a definition (or program) P with
respect to a human population S is the mean time that a human s from S spends studying P before
applying P to new material.

Since, in the previous subsection, we assume humans as having background knowledge which is
equivalent to a definite program, we next define the idea of humans mapping privately defined predicate
symbols to ones found in their own background knowledge.

Definition 5. [Predicate recognition R(S, p)]. Predicate recognition R is the mean proportion of
times that a human s from population S gives the correct public name to a predicate symbol p presented
as a privately named definition q.

For each of these mappings from privately defined predicate symbols to elements from the background
knowledge we can now experimentally determine the required naming time.

Definition 6. [Naming time N(S, p)]. For a predicate symbol p presented as a privately named
definition q in definite program P the naming time N with respect to a human population S is the
mean time that a human s from S spends studying P before giving a public name to p.

Lastly we provide a simple definition of the textual complexity of a definite program.

Definition 7. [Textual complexity, Sz(P )]. The textual complexity Sz of a definition of definite
program P is the sum of the occurrences of predicate symbols, functions symbols and variables found in
P .

3.3 Experimental Hypotheses

We are now in a position to define and explain the motivations for the experimental hypotheses to be
tested in Section 4. Below C(S, P ), T (S, P ), R(S, p), N(S, p), Sz(P ) are denoted by C, T,R, N and
Sz respectively.

Hypothesis H1, C ∝ 1
T . This hypothesis relates to the idea of using inspection time as a proxy for

incomprehension. That is, we might expect that humans take a long time to commit to an answer in
the case they find the program hard to understand. As a proxy, inspection time is easier to measure
than comprehension.

Hypothesis H2, C ∝ R. This hypothesis is related to the idea that humans understand private
predicate symbols, such as p1/2, generated during predicate invention, by mapping them to public
ones in their own background knowledge.

Hypothesis H3, C ∝ 1
Sz . This hypothesis is motivated by the idea that a key property of predicate

invention is its ability to compress a description by introducing new predicates which are used multiply
within the definition. We are interested in whether the resultant compression of the description leads
to increased comprehensibility.

Hypothesis H4, R ∝ 1
N . This hypothesis relates to the idea that if humans take a long time to

recognise and publicly name a privately named predicate they are unlikely to correctly identify it.
Analogous to H1, this allows naming time to be used as a proxy for recognition of an invented predicate.

In the next section we describe experiments which test these four hypotheses. Table 1 shows the
mapping between the measurable properties defined in this section and the independent variables used
in the experiment.
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Table 1. Mapping defined properties from this section and independent variables in the experiment.

Defined property Experimental variable

Comprehensibility C Score
Inspection time T Time
Recognition R CorrectNaming
Naming Time N NamingTime

4 Experiment

To investigate the hypotheses concerning comprehensibility and predicate invention, we conducted
an experiment with human participants. In the following, we first present the material. Afterwards
we present the independent and dependent variables and re-formulate the hypotheses with respect to
these variables. Then we present the design and the results of the experiment. Finally, we relate the
findings to the hypotheses of the framework.

4.1 Material

Material construction is based on the well-known family tree examples used to teach Prolog [18] and
also used in the context of ILP [12]. Based on the grandparent/2 predicate, three additional problems
were defined: grandfather/2 which is more specific than grandparent/2, greatgrandparent/2 which needs
the double amount of rules if defined without an additional (invented) predicate, that is, which has
a high textual complexity, and the recursive predicate ancestor/2 which has small textual but high
cognitive complexity [5]. Instead of these meaningful names, target predicates are called p/2. Given
facts are identical to the family tree presented in [12].4 In the rule bodies, either public names (mother,
father)—that is, names which relate to the well-known semantics of family relations—or private names
(q1/2, q2/2 ) were used. Furthermore, programs were either presented with or without the inclusion of
an additional (invented) predicate for parent/2 which was named p1/2. The trees for the public and
the private name space and the predicate definitions for the public name space are given in Figure 2.

In Section 3 we defined comprehensibility of a program as the accuracy with which a human can
classify new material sampled from the domain. To assess comprehensibility, we defined seven questions
for each of the four predicates (see Fig. 3). For five questions, it has to be determined whether a relation
for two given objects is true. For two further questions, it has to be determined for which variable
bindings the relation can be fulfilled. In addition, an open question was included, where a meaningful
name had to be given to predicate p/2 for each of the four problems and—if applicable—also to the
additional predicate p1/2.

To evaluate the material, we ran a pilot study (March 2016) at Imperial College London with 16
students of computer science with a strong background in programming, Prolog, and logic. The pilot
study was conducted as a paper-and-pencil experiment where for each problem first the seven questions
had to be answered and afterwards a meaningful name had to be given to the program. 13 out of the
16 students solved all questions correctly and most students were able to give the correct public names
to all of the programs, regardless whether they had to work with the public or with the private names.
Participants needed about 20 minutes for the four problems. Thus, the instructions and the material

4 Please note that the relation mother(matilda,bill) needs to be changed to mother(matilda,alice) and the relation
father(jake,bill) needs to be changed to father(jake,alice) to cover all cases necessary to invent the predicate parent/2
in the context of different target predicates.
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; grandfather without invented predicate
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).

; grandfather with invented predicate
p(X,Y) :- p1(X,Z), father(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; grandparent without invented predicate
p(X,Y) :- father(X,Z), father(Z,Y).
p(X,Y) :- father(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), mother(Z,Y).
p(X,Y) :- mother(X,Z), father(Z,Y).

; grandparent with invented predicate
p(X,Y) :- p1(X,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; ancestor without invented predicate
p(X,Y) :- father(X,Y).
p(X,Y) :- mother(X,Y).
p(X,Y) :- father(X,Z), p(Z,Y).
p(X,Y) :- mother(X,Z), p(Z,Y).

; greatgrandparent without invented predicate
p(X,Y) :- father(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), father(Z,Y).
p(X,Y) :- father(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), father(U,Z), father(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), mother(Z,Y).
p(X,Y) :- mother(X,U), mother(U,Z), father(Z,Y).

; greatgrandparent with invented predicate
p(X,Y) :- p1(X,U), p1(U,Z), p1(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

; ancestor with invented predicate
p(X,Y) :- p1(X,Y).
p(X,Y) :- p1(X,Z), p(Z,Y).
p1(X,Y) :- father(X,Y).
p1(X,Y) :- mother(X,Y).

Fig. 2. Public tree (left), private tree (right) and the Prolog programs for grandfather/2, grandparent/2, greatgrandparent/2,
and ancestor/2 with and without use of an additional (invented) predicate parent. In the corresponding programs for the
private name space, father/2 is replaced by q1/2 and mother/2 is replaced by q2/2.

– What is the result of p(bill,bob)?
2 true 2 false 2 don’t know

– What is the result of p(jake,harry)?
2 true 2 false 2 don’t know

– What is the result of p(bob,bill)?
2 true 2 false 2 don’t know

– What is the result of p(mary,jo)?
2 true 2 false 2 don’t know

– What is the result of p(john,sam)?
2 true 2 false 2 don’t know

– What is the result of p(X,bob)?
2 false 2 X = bill 2 X = alice
2 X = bill; alice 2 don’t know

– What is the result of p(john,X)?
2 false 2 X = sam 2 X = jo
2 X = sam; jo 2 don’t know

Fig. 3. Questions for the grandparent/2 problem with public names.
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are understandable and coherent. A very interesting outcome of the study was that about a third of
the students made notes on the questionnaires. Some of the notes showed that students first named
the target predicates and the invented predicate (see Fig. 1) and then answered the questions. That is,
students gave a meaningful name without being instructed to do so and one can assume that they
used this strategy because it made answering the questions easier.

4.2 Variables and Empirical Hypotheses

To assess the influence of meaningful names and of predicate invention on comprehensibility, we
introduced the following three independent variables:

NameSpace: The name space in which context the problems is presented is either public or private
as shown in Figure 2.

PredicateInvention: The problems are given either with or without an additional (invented)
predicate p1/2 which represents the parent/2 relation.

NamingInstruction: The open question to give a meaningful name to predicate p/2 is either given
before or after the seven questions given in Figure 3 had to be answered.

The variation of the independent variables results in a 2 × 2 × 2 factor design which was realised
between-participants for factors NameSpace and NamingInstruction and within-participants for factor
PredicateInvention. Problem presentation with PredicateInvention was either given for the first and
the third or the second and the fourth problem.

The textual complexity varies over problems and in dependence of the introduction of the
additional predicate p1/2. The textually most complex program is greatgrandparent/2 without the
use of p1/2. The least complex program is grandfather/2 without the use of p1/2 as can be seen in
Figure 2.

The following dependent variables were assessed:

Score: For each problem, the score is calculated as the sum of correctly answered questions (see
Fig. 3). That is, score has minimal value 0 and maximal value 7 for each problem.

Time: The time to inspect a problem is measured from presenting the problem until answering the
seven questions.

CorrectNaming: The correctness of the given public name for a predicate definition p/2 was judged
by two raters. In addition, it was discriminated between clearly incorrect answers and responses
where participants wrote nothing or stated that they do not know the correct meaning.

NamingTime: The time for naming is measured from presenting the question until indication that
the question is answered by going to the next page. For condition PredicateInvention/with both
p/2 and p1/2 had to be named.

Given the independent and dependent variables, hypotheses can now be formulated with respect to
these variables:

H1: Score is inverse proportional to Time, that is, participants who comprehend a program, give more
correct answers in less time than such participants who do not comprehend the program.

H2: CorrectNaming is proportional to Score, that is, participants who can give the intended public—
that is, meaningful—name to a program have higher scores than participants who do not get the
meaning of the program.

H3: Score is inverse proportional to textual complexity, that is, for problem greatgrandparent/2 the
differences of score should be greatest between the PredicateInvention/with and PredicateInven-
tion/without condition because here the difference in textual complexity is highest.

H4: CorrectNaming is inverse proportional to NamingTime, that is, if participants need a long time
to come up with a meaningful name for a program, they probably will get it wrong.
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4.3 Participants and Procedure

The experiment was conducted in April 2016 with cognitive science students of the University of
Osnabrueck. All students had passed at least one previous one-semester course on Prolog programming
and all have a background in logic. That is, their background in Prolog is less strong than for the
Imperial College sample but they are no novices. From the originally 87 participants, three did not
finish the experiment and six students were excluded because they answered “don’t know” for more
than 50% of the questions. All analyses were done with the remaining 78 participants (43 male, 35
female; mean age 23.55 years, sd = 2.47).5

The experiment was realised with the soscisurvey.de system and was conducted online during
class. After a general introduction, students worked through an example problem (“sibling”) to get
acquainted with the domain—that is either the family tree or the abstract tree shown in Figure 2—and
with the types of questions they needed to answer. Afterwards, the four test problems were presented
in one of the eight experimental conditions. For each problem, on the first page the facts and the
tree and the predicate definition was presented. On the next page, this information was given again
together with the first question or the naming instruction. If the “next”-button was pressed, it was not
possible to go back to a previous page.

Working through the problems was self-paced. The four problems were presented in the sequence
grandfather/2, grandparent/2, greatgrandparent/2, ancestor/2 for all participants. That is, we cannot
control for sequence effects, such as performance gain due to getting acquainted with the style of the
problems and questions or performance loss due to decrease in motivation or fatigue. However, since
problem type is not used as an experimental condition, possible sequence effects do not affect statistical
analyses of the effects of the independent variables introduced above.

4.4 Results

Scores and Times. When considering time for question answering and naming together, participants
needed about 5 minutes for the first problem and got faster over the problems. One reason for this
speed-up effect might be, that participants needed less time to inspect the tree or the facts for later
problems. There is no speed-accuracy trade-off, that is, there is no systematic relation between (low)
number of correct answers and (low) solution time for question answering. In the following, time is
given in seconds and for statistical analyses time was logarithmically transformed.
Giving meaningful names. In the public name condition, the names the participants gave to the
programs were typically the standard names, sometimes their inverse, such as “grandchildren”, “child
of child”, or “parent of parent” for the grandparent/2 problem. In the condition with private names,
the standard names describing family relations were also used by most participants, however, some
participants gave more abstract descriptions, such as “X and Y are connected via an internode” for
grandparent/2. Among the incorrect answers for the grandparent/2 problem often were over-specific
interpretations such as “grandson” or “grandfather”. The same was the case for greatgrandparent/2
with incorrect answers such as “greatgrandson”. Some participants restricted the description to the
given tree, for example, “parent of parent with 2 children” for grandparent/2. Incorrect answers for the
ancestor/2 problem typically were overly general, such as “related”.
Impact of NameSpace, PredicateInvention, and NamingInstruction on Score and Time.
An overview of the impact of all factors on score is given in Figure 4. There it can be seen that
NameSpace/public results in higher scores for all four problems. The effects of PredicateInvention and
NamingInstruction are less obvious. It is not the case that having to think about the meaning of a

5 A comprehensive description of all analyses and results can be found at http://www.cogsys.wiai.uni-bamberg.de/
publications/comprAnalysesDoc.pdf.
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predicate before question answering has a general positive effect on Score. PredicateInvention is helpful
for some problems, for others not. We will give a closer look on the effect of PredicateInvention for
the textually most complex problem greatgrandparent/2 below (H3). Statistical analyses were done
with general linear models with NameSpace, PredicateInvention, and NamingInstruction as predictor
variables and Score as criterion variable. Predictor variables were dummy coded as contrasts. The effect
of NameSpace/public is significant for grandfather/2 (b = 1.55, p = 0.03) and marginally significant for
greatgrandparent/2 (b = 1.12, p = 0.069). In addition, for grandfather/2 the interaction of NameSpace
and PredicateInvention is significant (b = −2.52, p = 0.017).

Fig. 4. Scores distributed over NameSpace, PredicateInvention, and NamingInstruction (arithmetic means and standard
deviations are given; for significant differences, see text).

Inverse proportional relation between Score and Time (H1). There is a significant negative
Pearsons product-moment correlation between Time and Score over all problems (r = −.38, p ≤ 0.001).
Effect of CorrectNaming on Score (H2). To assess the impact of being able to give a meaningful
name to a problem (CorrectNaming) on comprehensibility (Score), answers were classified as “correct”,
“incorrect” and “no answer” which covers answers where participants either did not answer or explicitly
stated that they do not know the answer. Participants who were able to give meaningful names to the
programs answered significantly more questions correctly. Statistical analyses were again performed
with general linear models with dummy coding (contrast) for the predictor variable CorrectNaming.
The results are given in Table 2.
Impact of textual complexity on the effect of PredicateInvention on Score (H3). For
the greatgrandparent/2 problem, there is a marginally significant effect of PredicateInvention for
NameSpace/private and NamingInstruction/after with a higher score for the PredicateInvention/with
condition (b = −1.59, p = 0.09).
Relation of CorrectNaming and NamingTime (H4). Participants who give a correct meaningful
name to a problem do need less time to do so than participants who end up giving an incorrect name
for all problems except ancestor/2. This relation is given in Figure 5 accumulated over all factors
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Table 2. Means and standard deviations of Score in dependence of CorrectNaming, where “no answer” covers answers
where participants either did not answer or explicitly stated that they do not know the answer. Results for linear models
are given as b-estimates and p-values for the contrast between correct and incorrect naming.

Correct Incorrect No answer Test

Grandfather n = 28 n = 46 n = 4
Score Mean 6.68 (sd = 0.61) 5.15 (1.81) 4.75 (1.71) -1.53, p < 0.001

Grandparent 50 23 5
Score 6.56 (1.23) 5.04 (2.12) 3.4 (1.82) -1.52, p < 0.001

Greatgrandparent 54 18 6
Score 6.76 (0.66) 5.78 (1.66) 3 (1.67) -1, p < 0.001

Ancestor 32 39 7
Score 5.75 (1.44) 3.08 (1.8) 2.86 (1.57) -2.67, p < 0.001

per problem. Statistical analyses were done separately for conditions PredicateInvention/with and
PredicateInvention/without because in the first case two names—for target predicate p/2 and for the
additional predicate p1/2 —had to be given. Differences between correct and incorrect are significant
for grandfather/2 in the condition PredicateInvention/without (b = 0.31, p = 0.007) and marginally
significant for grandparent/2 in the condition PredicateInvention/with (b = 0.2, p = 0.084). For
ancestor/2 in the condition PredicateInvention/with there is a significant difference between correct
naming and “no answer” (b = −0.49, p = 0.039).

4.5 Interpretation and Discussion

Fig. 5. Relation between time needed for
giving a meaningful name and correct-
ness of naming, where “no answer” cov-
ers answers where participants either did
not answer or explicitly stated that they
do not know the answer (averaged over
PredicateInvention with/without).

Results show that presenting programs in relation to a pub-
lic name space facilitates comprehension. Contrary to our
expectations, being instructed to first think about a mean-
ingful name for a program before answering questions in
general does not facilitate generation of answers. We would
have expected that having a (denotational) semantic inter-
pretation for a predicate supports working on classification
and variable bindings of new material from a given domain
because mental evaluation of a program can be—at least
partially—avoided. Furthermore, as expected, the use of
additional (invented) predicates does not facilitate program
comprehension in general but only under specific conditions
which are discussed below (H3).

Results concerning our hypotheses are summarised in
Table 3. Hypothesis H1 is confirmed by our empirical data:
if a person comprehends a program, she or he can come up
with correct answers in short time. Hypothesis H2 is also
confirmed: participants who can give a meaningful name
to a program give more correct answers than participants
who give incorrect answers or state that they do not know
the answer. In addition, participants who give a correct
name give answers faster. As hypothesis H3 we assumed
that predicate invention supports comprehensibility if it
reduces the textual complexity of a program. For the four
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problems we investigated, the reduction in complexity is greatest for greatgrandparent/2. Here we get a
partial confirmation: predicate invention results in more correct answers for the private name space and
if the instruction for naming was given after question answering. This experimental condition is the
most challenging, because comprehensibility is not supported by public names and because participants
were not encouraged to think about the meaning of the presented predicate before they had to answer
questions about it.

Finally, we assumed that persons who have problems to come up with a meaningful name for a
predicate spend a longer amount of time to come up with an (incorrect or no) answer (H4). Results
show that this is the case—with the exception of the ancestor/2 problem. However, the differences are
only significant under specific conditions. The observation that long answering time can indicate a
problem with comprehensibility could be exploited for the design of the interaction of a person with an
ILP system: if a person does not come up quickly with a name for a predicate, the system could offer
examples of the predicates behaviour. For example, for the ancestor/2 problem, pairs for which this
predicate is true could be highlighted in the given tree.

It can be assumed that the empirical results depend on the level of expertise of the participants.
As we saw, the highly experienced sample of students of Imperial College did not profit from public
name space or from the use of invented predicates. They answered most questions correctly under
all conditions. In contrast, for the moderately experienced sample of students from University of
Osnabrueck, presenting predicates in relation to a public name space and under some conditions
with invented predicates resulted in better comprehensibility. For a sample of Prolog novices, the
experimental variations might result in stronger or different effects.

Table 3. Hypotheses concerning comprehensibility, meaningful names, and predicate invention.

Hypothesis Confirmation

H1 Comprehensibility manifests itself in high scores and fast solution times. confirmed
H2 Comprehensibility means to be able to give a meaningful name to a program. confirmed
H3 Predicate invention helps comprehensibility if it reduces textual complexity of partially

the program.
H4 If coming up with a meaningful name needs a long time, it will probably partially

be the false concept.

5 Conclusions and Further Work

This paper is, to our knowledge, the first paper in the literature which provides an operational definition
of the comprehensibility of a logic program. The definition is used within the experiments in Section 4
to identify factors which affect comprehension. These factors include the time required to inspect the
program, the accuracy with which a participant can recognise a predicate to be equivalent to one
already known and the textual complexity of the program.

As expected, the four problems presented in the experiment differ with respect to comprehensibility.
The problem most participants had difficulty with is the recursive ancestor/2. For this problem less
than half of the participants (32) gave the correct meaningful name and for this problem participants
have the lowest scores. However, since this problem was positioned last in the sequence, the results
might also be due to loss of motivation or exhaustion. Astonishingly, ancestor/2 is also the only of the
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four problems where participants reached the highest score in the private naming condition without
predicate invention (cf. Fig. 4). We plan a follow-up experiment where problem sequences are varied to
determine whether this is a systematic effect.

The kinship predicates presented to human participants in our experiments are all ones which could
be expected to be equivalent to ones already known to the participant. In further work we hope also to
study the effects of human users being presented with definitions of predicates which are novel for the
user.

In closing we believe the operational definition of comprehensibility has enormous potential to both
clarify one of the central concepts of AI research, as well as to provide a bridge to the study of factors
affecting the design of AI systems which improve human understanding.
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