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Abstract. We present a monitoring approach for verifying systems at
runtime. Our approach targets systems whose components communicate
with the monitors over unreliable channels, where messages can be delayed
or lost. In contrast to prior works, whose property specification languages
are limited to propositional temporal logics, our approach handles an
extension of the real-time logic MTL with freeze quantifiers for reasoning
about data values. We present its underlying theory based on a new three-
valued semantics that is well suited to soundly and completely reason
online about event streams in the presence of message delay or loss. We
also evaluate our approach experimentally. Our prototype implementation
processes hundreds of events per second in settings where messages are
received out of order.

1 Introduction

Verifying systems at runtime can be accomplished by instrumenting system
components so that they inform monitors about the actions they perform. The
monitors update their states according to the information received and check
whether the properties they are monitoring are fulfilled or violated. Various
runtime-verification approaches exist for different kind of systems and property
specification languages, see for example [2, 5, 7, 10,17,18,21].

Many of these specifications languages are based on temporal logics or finite-
state machines, which describe the correct system behavior in terms of infinite
streams of system actions. However, at any point in time, a monitor has only
partial knowledge about the system’s behavior. In particular, a monitor can at
best only be aware of the previously performed actions, which correspond to
a finite prefix of the infinite action stream. When communication channels are
unreliable, a monitor’s knowledge about the previously performed actions may
even be incomplete since messages can be lost or delayed and thus received out
of order. Nevertheless, a monitor should output a verdict promptly when the
monitored property is fulfilled or violated. Moreover, the verdict should remain
correct when some of the monitor’s knowledge gaps are subsequently closed.

Many runtime-verification approaches rely on an extension of the standard
Boolean semantics of the linear-time temporal logic LTL with a third truth value,
proposed by Bauer et al. [9]. Namely, a formula evaluates to the Boolean truth
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2 D. Basin et al.

value b on a finite stream of performed actions σ if the formula evaluates to b on
all infinite streams that extend σ; otherwise, the formula’s truth value is unknown
on σ. This semantics, however, only accounts for settings where monitors are
always aware of all previously performed actions. It is insufficient to reason
soundly and completely about system behavior at runtime when, for example,
unreliable channels are used to inform the monitors about the performed actions.

In this paper, we present an extension of the propositional real-time logic
MTL [1,16], which we name MTL↓. First, MTL↓ comprises a freeze quantifier [15]
for reasoning about data values in action streams. The freeze quantifier ↓ can be
seen as a restricted version of the first-order quantifiers ∃ and ∀. More concretely,
at a position of the action stream, the formula ↓x. ϕ uniquely binds a data value
of the action at that position to the logical variable x.

Second, we equip MTL↓ with a new three-value semantics that is well suited for
settings where system components communicate with the monitors over unreliable
channels. Specifically, we define the semantics of MTL↓’s connectives over the
three truth values t, f, and ⊥. We interpret these truth values as in Kleene logic
and conservatively extend the logic’s standard Boolean semantics, where t and f
stand for “true” and “false” respectively, and the third truth value ⊥ stands for
“unknown” and accounts for the monitor’s knowledge gaps. The models of MTL↓

are finite words where knowledge gaps are explicitly represented. Intuitively, a
finite word corresponds to a monitor’s knowledge about the system behavior at
a given time and the knowledge gaps may result from message delays, losses,
crashed components, and the like. Critically in our setting, reasoning is monotonic
with respect to the partial order on truth values, where ⊥ is less than t and f, and
t and f are incomparable. This monotonicity property guarantees that closing
knowledge gaps does not invalidate previously obtained Boolean truth values.

Third, we present an online algorithm for verifying systems at runtime with
respect to MTL↓ specifications. Our algorithm is based on, and extends, the
algorithm for MTL by Basin et al. [6] to additionally handle the freeze quantifier.
The algorithm’s output is sound and complete for MTL↓’s three-valued semantics
and with respect to the monitor’s partial knowledge about the performed actions
at each point in time.

Our algorithm works roughly as follows. It receives messages from the system
components describing the actions they perform. As with the algorithm in [6],
no assumptions are made on the order in which messages are received. The
algorithm updates its state for each received message. This state comprises
a graph structure for reasoning about the system behavior, i.e., computing
verdicts about the monitored property’s fulfillment. The graph’s nodes store
the truth values of the subformulas at the different times for the data values to
which quantified variables are frozen. In each update, the algorithm propagates
data values down to the graph’s leaves and propagates Boolean truth values
for subformulas up along the graph’s edges. When a Boolean truth value is
propagated to a root node of the graph, the algorithm outputs a verdict.

Our main contribution is a runtime-verification approach that makes no
assumptions about message delivery. It handles a significantly richer specification
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language than previous approaches, namely, an extension of the real-time logic
MTL with a quantifier for reasoning about the data processed by the monitored
system. Furthermore, our approach guarantees sound and complete reasoning with
partial knowledge about system behavior. Finally, we experimentally evaluate
the performance of a prototype implementation of our approach, illuminating its
current capabilities, tradeoffs, and performance limitations.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce relevant notation and terminology. In Section 3, we extend MTL with the
freeze quantifier and give the logic’s semantics. In Section 4, we describe our
monitoring approach, including its algorithmic details. In Section 5, we report
on our experimental evaluation. Finally, in Sections 6 and 7, we discuss related
work and draw conclusions. Further details are given in the appendixes.

2 Preliminaries

In this section, we introduce relevant notation and terminology.

Intervals. An interval I is a nonempty subset of Q≥0 such that if a, b ∈ I then
c ∈ I, for any c ∈ Q≥0 with a ≤ c ≤ b. We use standard notation and terminology
for intervals. For example, (a, b] denotes the interval that is left-open with bound a
and right-closed with bound b. Note that an interval I with cardinality |I| = 1 is
a singleton {τ} = [τ, τ ], for some τ ∈ Q≥0. An interval I is unbounded if its right
bound is∞, and bounded otherwise. Let I−J := {τ−τ ′ | τ ∈ I and τ ′ ∈ J}∩Q≥0.

Partial Functions. For a partial function f : A 9 B, let def(f) := {a ∈
A | f(a) is defined}. If def(f) = {a1, . . . , an}, for some n ∈ N, we also write
[a1 7→ f(a1), . . . , an 7→ f(an)] for f , when f ’s domain A and its codomain B are
irrelevant or clear from the context. Note that [ ] denotes the partial function
that is undefined everywhere. Furthermore, for partial functions f, g : A 9 B,
we write f Ď g if def(f) ⊆ def(g) and f(a) = g(a), for all a ∈ def(f). We write
f [a 7→ b] to denote the update of a partial function f : A 9 B at a ∈ A, i.e.,
f [a 7→ b] equals f , except that a is mapped to b if b ∈ B, and a 6∈ def(f [a 7→ b])
if b /∈ B.

Truth Values. Let 3 be the set {t, f,⊥}, where t (true) and f (false) denote the
standard Boolean values, and ⊥ denotes the truth value “unknown.” Table 1
shows the truth tables of some standard logical operators over 3. Observe that
these operators coincide with their Boolean counterparts when restricted to the
set 2 := {t, f}. We partially order the elements in 3 by their knowledge: ⊥ ≺ t and
⊥ ≺ f, and t and f are incomparable as they carry the same amount of knowledge.
Note that (3,≺) is a lower semilattice where f denotes the meet. We remark that
the operators in Table 1 are monotonic. This ensures that reasoning is monotonic
in knowledge. Intuitively, when closing a knowledge gap, represented by ⊥, with
t or f, we never obtain a truth value that disagrees with the previous one.
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Table 1. Truth tables for three-valued logical operators (strong Kleene logic).

¬
t f
f t
⊥ ⊥

∨ t f ⊥
t t t t
f t f ⊥
⊥ t ⊥ ⊥

∧ t f ⊥
t t f ⊥
f f f f
⊥ ⊥ f ⊥

→ t f ⊥
t t f ⊥
f t t t
⊥ t ⊥ ⊥

Timed Words. Let Σ be an alphabet. A timed word over Σ is an infinite word
(τ0, a0)(τ1, a1) . . . ∈ (Q≥0 ×Σ)ω, where the sequence of τis is strictly monotonic
and nonzeno, that is, τi < τi+1, for every i ∈ N, and for every t ∈ Q≥0, there is
some i ∈ N such that τi > t.

3 Metric Temporal Logic Extensions

In this section, we extend the propositional real-time logic MTL [1,16] with a
freeze quantifier [15]. The logic’s three-valued semantics conservatively extends the
standard Boolean semantics and accounts for knowledge gaps during monitoring.

3.1 Syntax

Let P be a finite set of predicate symbols, where ι(p) denotes the arity of p ∈ P .
Furthermore, let V be a set of variables and R a finite set of registers. The syntax
of the real-time logic MTL↓ is given by the grammar:

ϕ ::= t
∣∣ p(x1, . . . , xι(p))

∣∣ ↓rx. ϕ ∣∣ ¬ϕ ∣∣ ϕ ∨ ϕ ∣∣ ϕ UI ϕ ,

where p ∈ P , x, x1, x2 . . . , xι(p) ∈ V , r ∈ R, and I is an interval. For the sake
of brevity, we limit ourselves to the future fragment and omit the temporal
connective for “next.” A formula is closed if each variable occurrence is bound
by a freeze quantifier. A formula is temporal if the connective at the root of the
formula’s syntax tree is UI . We denote by Sub(ϕ) the set of ϕ’s subformulas.

We employ standard syntactic sugar. For example, ϕ→ ψ abbreviates (¬ϕ)∨ψ,
and �I ϕ (“eventually”) and �I ϕ (“always”) abbreviate t UI ϕ and ¬ �I ¬ϕ,
respectively. The nonmetric variants of the temporal connectives are also easily
defined, e.g., �ϕ := �[0,∞) ϕ. Finally, we use standard conventions concerning
the connectives’ binding strength to omit parentheses. For example, ¬ binds
stronger than ∧, which binds stronger than ∨, and the connectives ¬, ∨, etc.
bind stronger than the temporal connectives, which bind stronger than the freeze
quantifier. To simplify notation, we omit the superscript r in formulas like ↓rx. ϕ
whenever r ∈ R is irrelevant or clear from the context.

Example 1. Before defining the logic’s semantics, we provide some intuition. The
following formula formalizes the policy that whenever a customer executes a
transaction that exceeds some threshold (e.g. $2,000) then this customer must
not execute any other transaction for a certain period of time (e.g. 3 days).

� ↓cidc.↓tid t.↓suma. trans(c, t, a)∧a ≥ 2000→ �(0,3] ↓tid t′.↓suma′.¬trans(c, t′, a′)



Runtime Verification over Out-of-order Data Streams 5

We assume that the predicate symbol trans is interpreted as a singleton rela-
tion or the empty set at any point in time. For instance, the interpretation
{(Alice, 42, 99)} of trans at time τ describes the action of Alice executing a trans-
action with identifier 42 with the amount $99 at time τ . When the interpretation
is the empty set, no transaction is executed. We further assume that when the
interpretation of the predicate symbol trans is nonempty, the registers cid , tid ,
and sum store (a) the transaction’s customer, (b) the transaction identifier, and
(c) the transferred amount, respectively. If the interpretation is the empty set,
the registers store a dummy value, representing undefinedness.

The variables c, t, a, t′, and a′ are frozen to the respective register values. For
example, c is frozen to the value stored in the register cid at each point in time
and is used to identify later transactions from this customer. Furthermore, note
that, e.g., the variables t and t′ are frozen to values stored in the registers tid at
different times. The freeze quantifier can be seen as a weak form of the standard
first-order quantifiers [15]. Since a register stores exactly one value at any time,
it is irrelevant whether we quantify existentially or universally over a register’s
value. ut

3.2 Semantics

MTL↓’s models under the three-valued semantics are finite words (see Definition 2
below). Such a model represents a monitor’s partial knowledge about the system
behavior at a given point in time. This is in contrast to the models for the
standard Boolean semantics for MTL, which are infinite timed words and capture
the complete system behavior in the limit.

Definition 2. Let D be the data domain, a nonempty set of values with ⊥ 6∈ D.
Observations are finite words with letters of the form (I, σ, %), where I is an
interval, σ : P 9 2

⋃
ι∈ND

ι

, and % : R9 D. We define observations inductively.
– The word

(
[0,∞), [ ], [ ]

)
of length 1 is an observation.

– If w is an observation, then the word obtained by applying one of the following
transformations to w is an observation.
(T1) Some letter (I, σ, %) of w, where |I| > 1, is replaced by the three-letter

word
(
I ∩ [0, τ), σ, %

)(
{τ}, σ, %

)(
I ∩ (τ,∞), σ, %

)
, where τ ∈ I and τ > 0.

If τ = 0, then (I, σ, %) is replaced by
(
{τ}, σ, %

)(
I ∩ (τ,∞), σ, %

)
.

(T2) Some letter (I, σ, %) of w, where |I| > 1 and I is bounded, is removed.
(T3) Some letter (I, σ, %) of w, where |I| = 1, is replaced by (I, σ′, %′), where

σ Ď σ′ and % Ď %′, and σ 6= σ′ or % 6= %′.

For an observation w of length n ∈ N, let pos(w) := {0, . . . , n − 1}. We call
i ∈ pos(w) a time point in w if the interval Ii of the letter at position i in w is
a singleton. In this case, the element of Ii is the timestamp of the time point i,
denoted by tsw(i). We note that for any letter (I, σ, %) of an observation, if |I| > 1
then σ = % = [ ].

Example 3. A monitor’s initial knowledge is represented by the observation
w0 =

(
[0,∞), [ ], [ ]

)
. Suppose a transaction of $99 with identifier 42 from Alice
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is executed at time 3.0. The monitor’s initial knowledge w0 is then updated
by (T1) and (T3) to w1 =

(
[0, 3.0), [ ], [ ]

)(
{3.0}, σ, %

)(
(3.0,∞), [ ], [ ]

)
, where

σ(trans) = {(Alice, 42, 99)} and % = [cid 7→ Alice, tid 7→ 42, sum 7→ 99]. If the
monitor also receives the information that no action has occurred in the interval
[0, 3.0), then its updated knowledge is represented by

(
{3.0}, σ, %

)(
(3.0,∞), [ ], [ ]

)
,

obtained from w1 by (T2). The information that no action has occurred in an
interval can be communicated explicitly or implicitly by the monitored system to
the monitor, for instance, by attaching a sequence number to each action. See [6]
for details. Finally, note that the interval of the last letter of any observation is
always unbounded. This reflects that a monitor is unaware of what it will observe
in the future. ut

Definition 4. The observation w′ refines the observation w, written w Ă1 w
′,

iff w′ is obtained from w by one of the transformations (T1), (T2), or (T3). The
reflexive-transitive closure of Ă1 is Ď.

MTL↓’s three-valued semantics is defined by a function ϕ 7→ Jw, i, ν |≈
ϕK ∈ 3, for a given observation w, time point i ∈ N, and partial valuation ν :
V 9 D. We define this function inductively over the formula structure. For a
predicate symbol p ∈ P , we write in the following p(x̄) instead of p(x1, . . . , xι(p)).
Furthermore, we abuse notation by abbreviating, e.g., ν(x1), . . . , ν(xn) as ν(x̄),
for a partial valuation ν : V 9 D and variables x1, . . . , xn. Also, the notation
x̄ ∈ def(ν) means that x ∈ def(ν), for each x occurring in x̄. Finally, we identify
the logic’s constant symbol t with the Boolean value t ∈ 3, and the connectives ¬
and ∨ with the corresponding three-valued logical operators in Table 1.

Jw, i, ν |≈ tK := t

Jw, i, ν |≈ p(x̄)K :=


t if x̄ ∈ def(ν), p ∈ def(σi), and ν(x̄) ∈ σi(p)
f if x̄ ∈ def(ν), p ∈ def(σi), and ν(x̄) 6∈ σi(p)
⊥ otherwise

Jw, i, ν |≈ ↓rx. ϕK := Jw, i, ν[x 7→ %i(r)] |≈ ϕK
Jw, i, ν |≈ ¬ϕK := ¬Jw, i, ν |≈ ϕK

Jw, i, ν |≈ ϕ ∨ ψK := Jw, i, ν |≈ ϕK ∨ Jw, i, ν |≈ ψK

Jw, i, ν |≈ ϕ UI ψK :=
∨
j∈pos(w),j≥i

(
tpw(j) ∧ tcw,I(j, i) ∧ Jw, j, ν |≈ ψK∧∧

i≤k<j
(
tpw(k)→ Jw, k, ν |≈ ϕK

))
The auxiliary functions tpw : pos(w)→ 3 and tcw,I : pos(w)× pos(w)→ 3, are
defined as follows, where Ik denotes the interval at position k ∈ pos(w) in w.

tpw(j) :=

{
t if j is a time point in w

⊥ otherwise

tcw,I(i, j) :=


t if τ − τ ′ ∈ I, for all τ ∈ Ii and τ ′ ∈ Ij
f if τ − τ ′ /∈ I, for all τ ∈ Ii and τ ′ ∈ Ij
⊥ otherwise
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We comment on the semantics of ϕ UI ψ. The auxiliary functions account
for the positions in w that are not time points. For example, at position i, for a
position j ≤ i to be a “valid anchor” for the formula, j must be a time point (in
this case tpw(j) = t). Otherwise, the truth value ⊥ is used to express that it is
not yet known whether the interval at position j in w will contain a time point.
Note that using the truth value f would be incorrect since a refinement of w might
contain a time point with a timestamp in Ij . Furthermore, tcw,I(i, j) is used
to account for the metric constraint of the temporal connective. In particular,
tcw,I(i, j) is ⊥ if it is unknown in w whether the formula’s metric constraint
is always satisfied or never satisfied for the positions i and j. Finally, suppose
that ϕ’s truth value is f at a position k between j and i. If the interval Ik at
position k is not a singleton, the function tpw(k) “downgrades” this value to ⊥,
since it will be irrelevant in refinements of w that do not contain any time points
with timestamps in Ik.

Note that it may be the case that Jw, i, ν |≈ ϕK ∈ 2 when i is not a time
point in w (i.e., Ii is not a singleton). A trivial example is when ϕ = t. In a
refinement of w, it might turn out that there are no time points with timestamps
in Ii, and hence a monitor should not output a verdict for the specification ϕ at
position i in w. We address this artifact by downgrading (with respect to the
partial order ≺) a Boolean truth value Jw, i, ν |≈ ϕK to ⊥ when i is not a time
point. To this end, we introduce the following variant of the semantics.

Definition 5. For a formula ϕ, an observation w, τ ∈ Q≥0, and ν a partial val-
uation, we define [w, τ, ν |≈ ϕ] := Jw, i, ν |≈ ϕK, provided that τ is the timestamp
of some time point i ∈ pos(w) in w, and [w, τ, ν |≈ ϕ] := ⊥, otherwise.

3.3 Properties

The following theorem states that MTL↓’s three-valued semantics is monotonic
in Ď (on observations and partial valuations) and � (on truth values). This
property is crucial for monitoring since it guarantees that a verdict output for
an observation stays valid for refined observations.

Theorem 6. Let ϕ be a formula, µ and ν partial valuations, u and v observations,
and τ ∈ Q≥0. If u Ď v and µ Ď ν then [u, τ, µ |≈ ϕ] � [v, τ, ν |≈ ϕ].

A similar theorem shows that MTL↓’s three-valued semantics conservatively
extends the standard Boolean semantics (see Appendix A for details). Intuitively
speaking, if a formula ϕ evaluates to a Boolean value for an observation at time
τ ∈ Q≥0, then ϕ has the same Boolean value at time τ for any timed word4

that refines the observation. Formally, a timed word w′ refines an observation w,
w Ď w′ for short, if for every j ∈ N, there is some i ∈ pos(w), such that τj ∈ Ii,
σi Ď σ′j , and %i Ď %′j , where (I`, σ`, %`) and (τk, σ

′
k, %
′
k), for ` ∈ pos(w) and k ∈ N,

are the letters of w and w′, respectively.
We investigate next the decision problem that underlies monitoring.

4 We assume here that the timed words are over the alphabet Σ that consists of the
pairs (σ, %), where (i) σ is a total function over P with σ(p) ⊆ Dι(p) for p ∈ P , and
(ii) % is a total function over R with %(r) ∈ D for r ∈ R.
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Theorem 7. For an arbitrary formula ϕ, observation w, partial valuation ν,
time τ ∈ Q≥0, and truth value b ∈ 2, the question of whether [w, τ, ν |≈ ϕ] equals b
is PSPACE-complete.

In a propositional setting, the corresponding decision problem can be solved in
polynomial time using dynamic programming, where the truth values at the
positions of an observation are propagated up the formula structure. Note that
the truth value of a proposition at a position is given by the observation’s letter
at that position. This is in contrast to MTL↓, where atomic formulas can have
free variables and their truth values at the positions in an observation w may
depend on the data values stored in the registers and frozen to these variables at
different time points of w. Before truth values are propagated up, the bindings
of variables to data values must be propagated down.

4 Monitoring Algorithm

In this section, we present an online algorithm that computes verdicts for MTL↓

specifications. To support scalable monitoring, the computation is incremental in
that, when refining an observation according to the transformations (T1)–(T3),
the results from previous computations are reused, including the propagated
data values and Boolean values. We also define correctness requirements for
monitoring and establish the algorithm’s correctness.

4.1 Correctness Requirements

We define when a sequence of observations is valid for representing a moni-
tor’s knowledge over time. We assume that the monitor receives in the limit
infinitely many messages containing information about the system behavior. This
assumption is invalid if the system ever terminates. Nevertheless, we make this
assumption to simplify matters and it is easy to adapt the definitions and results
to the general case.

Definition 8. The infinite sequence w̄ = (wi)i∈N of observations is valid if
w0 = ([0,∞), [ ], [ ]) and wi Ĺ wi+1, for all i ∈ N.

Let M be a monitor and w̄ a valid sequence of observations. In the following,
we view wi as the input to M at iteration i. For the input wi, M outputs a set
of verdicts, which is a finite set of pairs (τ, b) with τ ∈ Q≥0 and b ∈ 2. We denote
this set by M(wi). Note that in practice, M would receive at iteration i > 0 a
message that describes just the differences between wi−1 and wi. Furthermore,
the wis can be understood as abstract descriptions of M ’s states over time,
representing M ’s knowledge about the system behavior, where w0 represents M ’s
initial knowledge. Also note that if the timed word v is the system behavior in the
limit, then wi Ď v, for all i ∈ N, assuming that components do not send bogus
messages. However, for every i ∈ N, there are infinitely many timed words u with
wi Ď u. Since messages sent to the monitor can be lost, it can even be the case
that there are timed words u with u 6= v and wi Ď u, for all i ∈ N.
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Definition 9. Let M be a monitor, ϕ a formula, and w̄ a valid observation
sequence.
– M is observationally sound for w̄ and ϕ if for all partial valuations ν and
i ∈ N, if (τ, b) ∈M(wi) then [wi, τ, ν |≈ ϕ] = b.

– M is observationally complete for w̄ and ϕ if for all partial valuations ν, i ∈ N,
and τ ∈ Q≥0, if [wi, τ, ν |≈ ϕ] ∈ 2 then (τ, b) ∈

⋃
j≤iM(wj), for some b ∈ 2.

We say that M is observationally sound if M is observational sound for all valid
observation sequences and formulas ϕ. The definition of M being observationally
complete is analogous.

It follows from Theorem 7 that there exist monitors for MTL↓ that are
both observationally sound and complete. This is in contrast to correctness
requirements that demand that a monitor outputs a verdict as soon as the
specification has the same Boolean value on every extension of the monitor’s
current knowledge. It is easy to see that, for a given specification language,
such monitoring is at least as hard as checking satisfiability for the language.
The propositional fragment of MTL↓ is already undecidable [20]. Thus monitors
satisfying such strong requirements do not exist for MTL↓. For LTL, such stronger
requirements are standardly formalized using a three-valued runtime-verification
semantics, as introduced by Bauer et al. [10], and adopted by other runtime-
verification approaches, e.g. [8]. See Appendix A.2 for a formal definition of these
requirements in our setting.

Example 10. Consider the formula ϕ = �(p∧ �¬p). Under the classical Boolean
semantics, ϕ is logically equivalent to f, however not under our semantics. For
example, Jw, 0, ν |≈ ϕK = ⊥, for w =

(
[0,∞), [ ], [ ]

)
and any valuation ν. Given a

valid observation sequence w̄, an observationally sound and complete monitor
for w̄ and ϕ will first output the verdict (0, f) for the minimal i such that wi
contains a letter that assigns p to false. ut

4.2 Monitoring Algorithm

We sketch the algorithm’s state, its main procedure, and its main data structure.
We provide further algorithmic details in Appendix B.

4.2.1 Monitor State. Before explaining the algorithm, we first rephrase the
MTL↓’s semantics such that it is closer to the representation used by the monitor.
Given an i ∈ N, a position j ∈ pos(wi), and a subformula γ of ϕ, we denote

by Φ
γ,Jj
i , where Jk is the interval of the kth letter of wi, the propositional formula:

Φ
γ,Jj
i :=


γJj if γ is atomic
¬αJj if γ = ¬α
αJj ∨ βJj if γ = α ∨ β
αJj if γ = ↓rx. α∨
k≥j

(
tpJk ∧ tc

Jk,Jj
γ ∧ βJk ∧

∧
j≤h<k(tpJh → αJh)

)
if γ = α UI β,
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where αK , tpK , and tcH,Kψ denote atomic propositions, for each proper subfor-
mula α of ϕ, each temporal subformula ψ of ϕ, and all intervals H,K of letters
in wi. Next, we define, for any partial valuation ν, the substitution θνi of Boolean
values for these atomic propositions as follows:

θνi (αJj ) := Jwi, j, ν |≈ αK if Jwi, j, ν |≈ αK ∈ 2,
θνi (tpJj ) := tpwi(j) if tpwi(j) ∈ 2,

θνi (tc
Jj ,Jk
αUIβ

) := tcwi,I(j, k) if tcwi,I(j, k) ∈ 2,

and θνi is undefined otherwise. In what follows, the symbol ≡ denotes semantic
equivalence between propositional formulas. It is easy to see that

θµi (Φ
γ,Jj
i ) ≡ Jwi, j, ν |≈ γK iff Jwi, j, ν |≈ γK ∈ 2,

where µ = ν[x 7→ %j(r)] if γ = ↓rx. α and µ = ν otherwise, with %j being the

third component of the jth letter of wi. Note that the formula θµi (Φ
γ,Jj
i ) tells us

more than the truth value Jwi, j, ν |≈ γK. Indeed, when θµi (Φ
γ,Jj
i ) 6≡ b, for each

b ∈ 2, then we know not only that Jwi, j, ν |≈ γK = ⊥, but we also know what the
causes of uncertainty are, namely the direct subformulas α of γ and indexes k
with Jwi, k, µ |≈ αK = ⊥.

The monitor maintains as state between its iterations a variant of the propo-

sitional formulas θµi (Φ
γ,Jj
i ). The reason for using variants is that it is not al-

gorithmically convenient to transform θµi (Φγ,Ji ) into θµi+1(Φγ,Ki+1 ), where K is an
interval (of a letter) in wi+1 that originates from the interval J in wi. Such a
transformation is needed for obtaining an incremental monitoring algorithm that
reuses information already computed at previous iterations.

The formulas that the monitors maintains, denoted Ψ
γ,Jj ,ν
i , can be obtained

from the formulas θµi (Φ
γ,Jj
i ) as follows. When γ is a nontemporal formula, then

Ψ
γ,Jj ,ν
i equals θµi (Φ

γ,Jj
i ). When γ is a temporal formula α UI β, then, to each

disjunct for index k in Φ
γ,Jj
i , we add the subformula (tpJk ∨ αJk) as a conjunct.

This is sound, based on the equivalence tpJk ≡ tpJk ∧ (tpJk ∨ αJk). Furthermore,
the monitor treats the subformulas (tpJk ∧ βJk), (tpJh → αJh), and (tpJk ∨ αJk)

in a special way: they are not simplified in Ψγ,J,νi when they are still needed to

obtain Ψγ,K,νi+1 . That is, even if one the atomic propositions q of these subformulas
could be instantiated (i.e. q ∈ def(θµi )) this is not always done, as explained in
the next section. Instead, these three types of subformulas are represented in

Ψ
γ,Jj ,ν
i by the atomic propositions β̄Jk , ᾱJh , and ¯̄αJk , respectively.

Example 11. We illustrate here the definitions of the propositional formulas
Φγ,J,νi and Ψγ,J,νi for temporal formulas γ. We also suggest why variants of the

formulas θµi (Φ
γ,Jj
i ) are needed.

Let γ = p U q, where p and q are 0-ary predicates. Assume that in w1 we
have the intervals L = [0, τ1), N = {τ1}, and R = (τ1,∞), and in w2 we have the
intervals L1 = [0, τ0), L2 = {τ0}, L3 = (τ0, τ1), N , and R, with τ0 ∈ L. Assume
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also that neither p nor q holds at τ1. Then

θ
[ ]
1 (Φγ,L1 ) ≡ tpL ∧ qL θ

[ ]
2 (Φγ,L2

2 ) ≡ qL2 ∨ (tpL3 ∧ qL3 ∧ pL2)

Ψ
γ,L,[ ]
1 = q̄L ∧ ¯̄pL Ψ

γ,L2,[ ]
2 = q̄L2 ∨ (q̄L3 ∧ ¯̄pL3 ∧ p̄L2)

Note that pL is not an atomic proposition of Φγ,L1 , while ¯̄pL is an atomic propo-

sition of Ψ
γ,L,[ ]
1 . This last fact allows the monitoring algorithm to obtain Ψ

γ,L2,[ ]
2

from Ψ
γ,L,[ ]
1 , by introducing the needed new propositions p̄L2 , p̄L3 , and ¯̄pL2 . ut

To recapitulate, the monitor’s state at iteration i consists of propositional
formulas Ψγ,J,νi , one for each subformula γ of ϕ, interval J occurring in a letter
of wi, where i is the current iteration, and partial valuation ν that is relevant
for the current subformula and position corresponding to J in wi. Intuitively,
a valuation ν is relevant for ψ and a position j ∈ pos(wi), if Jwi, j, ν |≈ ψK
is reached when unfolding the formula that defines Jwi, k, [ ] |≈ ϕK, for some
k ∈ pos(wi).

5 For instance, [ ] is relevant for ϕ and any j ∈ pos(wi). Furthermore,
if ν is relevant for ↓rx. ψ and j, then ν[x 7→ %j(r)] is relevant for ψ and j.

Example 12. Let ϕ := ↓rx. �(0,1] p(x). For brevity, we treat the temporal con-
nective �(0,1] as a primitive. Also, for readability, we let α := �(0,1] p(x) and
β := p(x). Consider an observation w1 that has the same interval structure as in
the previous example and the second letter is (τ1, σ, %) with %(r) = d for some
data value d and p /∈ def(σ). The monitor’s state for w1 consists of the formulas:

Ψ
ϕ,K,[ ]
1 = αK , for any K ∈ {L,N,R}, Ψ

α,L,[ ]
1 = β̄L ∨ β̄N ∨ β̄R,

Ψ
β,K,[ ]
1 = βK , for any K ∈ {L,N,R}, Ψ

α,N,[x 7→d]
1 = β̄R,

Ψ
β,R,[x 7→d]
1 = βR, Ψ

α,R,[ ]
1 = β̄R.

Note that there are two relevant valuations for β and position 2 (which is the
position of the interval R in w1), namely [ ] and [x 7→ d]. This follows from the
definition and it corresponds to the fact that β̄R is an atomic proposition of a

formula both of the form Ψ
α,K,[ ]
1 (namely, when K ∈ {L,R}) and of the form

Ψ
α,K,[x 7→d]
1 (namely, when K = N). ut

4.2.2 Main Procedure. The monitor’s pseudocode is shown in Listing 1.
After initializing the monitor’s state, the monitor loops. In each loop iteration,
the monitor receives a message, updates its state according to the information
extracted from the message, and outputs the computed verdicts.

We assume that each received message describes a new time point in an
observation, i.e., a letter of the form ({τ}, σ, %). Furthermore, we assume that
each received message m contains information that identifies the component that

5 We consider here that the formulas defining the semantics are first simplified. E.g., as-
suming that Jwi, j, ν |≈ α UI βK is reached, k ∈ pos(wi), and k ≥ j, if tcwi,I(k, j) = f,
then Jwi, k, ν |≈ βK is not reached, otherwise (i.e. tcwi,I(k, j) 6= f) it is reached.
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Listing 1.
procedure Monitor(ϕ)

Init(ϕ)
loop
m ← NewMessage()
τ , σ, %, comp, seq num := Parse(m)
J, new := Split(τ , comp, seq num)
NewTimePoint(ϕ, J, new)
foreach ↓rx. ψ in Sub(ϕ) with r ∈ def(%) do

PropagateDown(ψ, {τ}, x, %(r))

foreach Ψp(x̄),{τ},ν 6= nil with x̄ ∈ def(ϕ), p ∈ def(σ) do
b := (ν(x̄) ∈ σ(p))

Ψp(x̄),{τ},ν := b
PropagateUp(p(x̄), {τ}, b)

NewVerdicts()

has sent the message to the monitor and a sequence number, i.e., the number of
messages, including m, that the component has sent to the monitor so far. Using
this information, the monitor can detect complete intervals, i.e., the nonsingleton
intervals that do not contain the timestamp of any message that the monitor
processes in later iterations. Thus, the received messages describe the “deltas”
of a valid observation sequence (cf. Section 4.1), where the next observation
is obtained from the previous one by applying transformation (T1), followed
by (T3), possibly followed by several applications of (T2).

With the procedure NewMessage, the monitor receives a new message, for
instance over a channel or a log file. Next, the monitor parses the message to
recover the corresponding letter ({τ}, σ, %), the component, and the sequence
number. Afterwards, using the procedure Split, the monitor determines the
interval J that is split (namely, the one where τ ∈ J) and the resulting new,
incomplete intervals, stored in the sequence new. Concretely, the intervals in new
consist of those intervals among J ∩ [0, τ), {τ}, and J ∩ (τ,∞) that are not
complete. Note that new contains at least the singleton {τ}. The detection of
complete intervals by the Split procedure is done in the same manner as in [6].

The remaining pseudocode updates the monitor’s state to reflect the new obser-
vation. It first transforms formulas Ψγ,K,ν so that they reflect the interval structure
of the new observation, with NewTimePoint. Afterwards, the monitor propagates
the new data values down (the formula ϕ’s syntax tree) with PropagateDown, and
propagates newly obtained Boolean values up with PropagateUp. The procedures
NewTimePoint and PropagateUp are conceptually similar to analogous procedures
given in [6], although the formulas Ψγ,K,ν were implicit in [6]. We outline next
these three procedures and give their pseudocode in Appendix B. Finally, the
monitor reports the verdicts computed during the current iteration by calling
the procedure NewVerdicts.

In the rest of the section, we use the convention that whenever γ or ν are not
specified in a formula Ψγ,Jj ,ν then we assume they are an arbitrary subformula
of ϕ and respectively an arbitrary partial valuation that is relevant for γ and j.

Adding a New Time Point. The procedure NewTimePoint builds new formulas
Ψγ,K,ν with K ∈ new from the corresponding formulas Ψγ,J,ν . It also updates all
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formulas Ψγ,J,ν such that they use atomic propositions αK with K ∈ new instead
of αJ . For nontemporal formulas γ, the update is straightforward. For instance,
if γ = α∨β and Ψγ,J,ν = βJ , then Ψγ,K,ν = βK , for each K ∈ new. For temporal
formulas γ, the update is more involved, although it can be performed easily
by applying well-suited substitutions. To illustrate the kind of updates that are
needed, suppose for example that γ = α UI β and that Ψγ,J

′,ν , for some J ′ < J ,
contains the atomic proposition ᾱJ . Then Ψγ,J

′,ν is updated by replacing ᾱJ

with the conjunct
∧
K∈new ᾱ

K . Finally, we note that formulas Ψγ,K,ν with K 6= J
and without atomic propositions αJ need not be updated.

Downward Propagation. Whenever a variable x is frozen to a data value at time τ ,
the procedure PropagateDown updates the monitor’s state to account for this
fact. Concretely, this value is propagated according to the semantics through
partial valuations to atomic formulas p(ȳ). The propagation is performed by
starting from formulas Ψ↓

rx.ψ,{τ},µ and recursively visiting formulas Ψα,K,ν with
α a subformula of ψ. For each visited formula, a new formula Ψα,K,ν[x 7→%(r)]

is created, where the new formula is simply a copy of Ψα,K,ν . Note that the
old formula Ψα,K,ν may still be relevant in the future. For instance, suppose a

value d is propagated from Ψ �I β,{τ},ν to Ψβ,K,ν , copying it to Ψβ,K,ν[x7→d], and

suppose also that β̄K is an atomic proposition in Ψ �I β,J
′,ν . Then Ψβ,K,ν might

be used again later when another data value d′ is propagated downwards from
Ψ �I β,{τ ′},ν with τ ′ ∈ J ′, to copy it to Ψβ,K,ν[x 7→d′].

Upward Propagation. The procedure PropagateUp performs the following update
of the monitor’s state. When a formula Ψα,K,µ simplifies to a Boolean value b,
then this Boolean value is propagated up the syntax tree of ϕ as follows: αK is
instantiated to b in every formula Ψγ,J

′,ν that has αK as an atomic proposition,
except when γ is itself an atom of ϕ. The formula is then simplified (using rules
like z ∨ t ≡ t) and if it simplifies to a Boolean value then propagation continues
recursively. Note that γ is a parent of α. When Ψϕ,{τ

′},[ ] is simplified to a Boolean
value b′, then (τ ′, b′) is marked as a new verdict. Propagation starts from the
atoms of ϕ. The Boolean value t is propagated from the atom t only once, in the
Init procedure. For an atom α = p(x̄), the monitor sets Ψp(x̄),{τ},µ to a Boolean
value, if possible, according to the semantics, for all relevant valuations µ.

Recall that for temporal formulas γ = α UI β, the formula Ψγ,J
′,ν contains

atomic propositions of the form ᾱK , ¯̄αK , and β̄K instead of αK and βK . These
atomic propositions are treated specially: they are not instantiated when K is
not a singleton and the value b to be propagated is t for β formulas and f for
α formulas (otherwise they are instantiated). This behavior corresponds to the
meaning of these atomic proposition given in Section 4.2.1. For instance, β̄K

stands for tpK ∨ βK and thus it is not instantiated to t in Ψγ,J
′,ν when K is not

a singleton even when Ψγ,K,ν = t, because the existence of a time point in K is
not guaranteed: it might turn out that K is a complete interval. The propagation
will be done later for singletons {τ ′} with τ ′ ∈ K, if and when a message with
timestamp τ ′ arrives.
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↓x. �(0,1] p(x)
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p(x)

(a) for w0

[0,∞)
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[ ]

[ ]
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Fig. 1. Graph structures.

4.2.3 Data Structure. We have not yet described the data structure used
in our pseudocode, which is needed for an efficient implementation. The data
structure that we use is similar to that described in [6]. Namely, it is a directed
acyclic graph. The graph’s nodes are tuples of the form (ψ, J, ν), where ψ is a
subformula of ϕ, J an interval, and ν a partial valuation. Each node (γ, J, ν)
stores the associated propositional formula Ψγ,J,ν . Nodes are linked via triggers : a
trigger of a node (α,K, µ) points to a node (γ, J, ν) if and only if αK , ᾱK , or ¯̄αK is
an atomic proposition of Ψγ,J,ν , γ is a nonatomic formula, and µ = ν[x 7→ %ij(r)]
if γ = ↓rx. α and µ = ν otherwise. Triggers are actually bidirectional: for any
(outgoing) trigger there is a corresponding ingoing trigger.

This data structure allows us to directly access, given a formula Ψα,K,µ, all the
formulas Ψγ,J,ν that have αK as an atomic proposition. Also, conversely, for any
formula Ψγ,J,ν the data structure allows us to directly access the formula Ψα,K,µ

for any atomic proposition αK of Ψγ,J,ν . These two operations are used for
upward and downward propagation respectively. We note also that a node for
which the associated propositional formula has simplified to a Boolean value that
has been propagated can be deleted.

Figure 1 illustrates the data structure at the end of iterations 0 and 1, that
is, corresponding to the observations w0 and w1, for the setting in Example 12.
A box in the figure corresponds to a node of the graph structure, where the
node’s formula is given by the row, the interval by the column of the box, and the
valuation by the content of the box. The valuation of the hidden box in the lower
right corner is ν = [x 7→ d], the same as the box in the middle of Figure 1(b).
Arrows correspond to triggers.

4.2.4 Correctness. The following theorem establishes the monitor’s correct-
ness. We refer to Appendix C for its proof.

Theorem 13. Let w̄ be the valid observation sequence derived from the messages
received by Monitor. Furthermore, let ϕ be a closed MTL↓ formula. Monitor(ϕ)
is observationally complete and sound for w̄ and ϕ.
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� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000→ �[0,3] report(t) (P1)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000→ �(0,3] ↓tidt′ . ↓suma′ . trans(c, t′, a′)→ a′ ≤ 2000 (P2)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000→
(
(↓tidt′ . ↓suma′ . trans(c, t′, a′)→ t = t′) W report(t)

)
(P3)

� ↓cidc. ↓tidt. ↓suma. trans(c, t, a) ∧ a > 2000→ �[0,6] ↓tidt′ . ↓suma′ . trans(c, t′, a′)→ �[0,3] report(t′) (P4)

Fig. 2. MTL↓ formulas used in the experimental evaluation.

An important property class in monitoring are safety properties. We note
that our monitor is not limited to formulas of this class, and the monitor is
sound and observationally complete for any formula. For instance, for the formula
ϕ = � � p, which states that p is true infinitely often, the monitor will never
output a verdict, as expected. It is nevertheless observationally complete for any
valid observation sequence w̄, since [wi, τ, ν |≈ ϕ] = ⊥, for any i ∈ N, τ ∈ Q≥0,
and partial valuation ν.

Besides correctness requirements, time and space requirements are also impor-
tant. Concerning time requirements, recall that the underlying decision problem
is PSPACE-complete, see Theorem 7. Concerning space requirements, note that
space cannot be bounded even in the setting without message loss and with
in-order delivery. Indeed, consider the formula � ↓x. p(x)→ �(0,∞) ¬p(x) stating
that the parameter of p events are fresh at each time point. Any monitor must
store the parameters seen. Further investigation of the time and space complexity
of the monitoring procedure is left for future work.

5 Experiments

We have implemented our monitor in a prototype tool, written in the programming
language Go. Our tool either reads messages from a log file or over a UDP socket.
Our experimental evaluation focuses on the prototype’s performance in settings
with different message orderings.

Setup. We monitor the formulas in Figure 2, which vary in their temporal
requirements and the data involved. They express compliance policies from the
banking domain and are variants of policies that have been used in previous case
studies [5]. Furthermore, we synthetically generate log files. Each log spans over
60 time units (i.e., a minute) and contains one event per time point. The number
of events in a log is determined by the event rate, which is the approximate
number of events per time unit (i.e., a second). For each time point i, with
0 ≤ i < 60, the number of events with a timestamp in the time interval [i, i+1) is
randomly chosen within 10% of the event rate. The events and their parameters
are randomly chosen such that the number of violations is in a provided range.
For instance, a log with event rate 100 comprises approximately 6000 events.
Finally, we use a standard desktop computer with a 2.8Ghz Intel Core i7 CPU,
8GB of RAM, and the Linux operating system.
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Fig. 3. Running times (where each data point shows the mean over five logs together
with the minimum and maximum, which are very close to the mean).

In-order Delivery. In our first setting, messages are received ordered by their
timestamps and are never lost. Namely, all events of the log are processed in the
order of their timestamps. Figure 3(a) shows the running times of our prototype
tool for different event rates. Note that each log spans 60 seconds and a running
time below 60 seconds essentially means that the events in the log could have
been processed online. The dashed horizontal lines mark this border.

Out-of-order Delivery. In our second setting, messages can arrive out of order
but they are not lost. We control the degree of message arrival disruption as
follows. For the events in a generated log file, we choose their arrival times,
which provide the order in which the monitor processes them. The arrival time
of an event is derived from the event’s timestamp by offsetting it by a random
delay with respect to the normal distribution with a mean of 10 time units and
a chosen standard deviation. In particular, for an event’s timestamp τ and for
a standard deviation σ > 0, it holds that an arrival time τ ′ is in the interval
[τ + 10−σ, τ + 10 +σ] with probability 0.68 and in [τ + 10− 2σ, τ + 10 + 2σ] with
probability 0.95. For the degenerate case σ = 0, the reordered log is identical
to the original log. We remark that the mean value does not impact the event
reordering because it does not influence the difference between arrival times.

Figure 3(b) shows the prototype’s running times on logs with the fixed event
rate 100 for different deviations. For instance, for (P1), the logs are processed in
around 1 second when σ = 0 and in 3.5 seconds when σ = 10.

Interpretation. The running times are nonlinear in the event rate for all four
formulas. This is expected from Theorem 7. The growth is caused by the data
values occurring in the events. A log with a higher event rate contains more
different data values and the monitor’s state must account for those. As expected,
(P1) is the easiest to monitor. It has only one block of freeze quantifiers. Note
that (P1)–(P3) have two temporal connectives, where one is the outermost
connective �, which is common to all formulas, whereas (P4) has an additional
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nesting of temporal connectives. The time window is also larger than in (P1)
and (P2).

Also expected, the running times increase when messages are received out of
order. Again, (P4) is worst. For (P1) and (P2), however, the growth rate decreases
for larger standard deviations. This is because, as the standard deviation increases,
all the events within the relevant time window for a given time point arrive at
the monitor in an order that is increasingly close to the uniformly random one.
The running times thus stabilize. Due to the larger time window, this effect does
not take place for (P4). The running times for (P3) increase more rapidly than
for (P1) and (P2) because of the data values and the “continuation formula” of
the derived unbounded temporal connective W.

To put the experimental results in perspective, we carried out two additional
experiments. First, we conducted similar experiments on formulas with their
freeze quantifiers removed and further transformed into propositional formulas,
as described in Appendix D.2. We make similar observations in the propositional
setting. However, in the propositional setting the running times increase linearly
with respect to the event rate and logs are processed several orders of magnitude
faster. Overall, one pays a price at runtime for the expressivity gain given by
the freeze quantifier. Second, we compared our prototype with the MONPOLY
tool [3]. MONPOLY’s specification language is, like MTL↓, a point-based real-
time logic. It is richer than MTL↓ in that it admits existential and universal
quantification over domain elements. However, MONPOLY specifications are
syntactically restricted in that temporal future connectives must be bounded
(except for the outermost connective �). Thus, (P3) does not have a counterpart
in MONPOLY’s specification language. MONPOLY handles the counterparts
of (P1), (P2), and (P4) significantly faster, up to three orders of magnitude.
Comparing the performance of both tools should, however, be taken with a grain
of salt. First, MONPOLY only handles the restrictive setting where messages must
be received in-order. Second, MONPOLY outputs violations for specifications with
(bounded) future only after all events in the relevant time window are available,
whereas our prototype outputs verdicts promptly.6 Finally, while MONPOLY is
optimized, our prototype is not.

In summary, our experimental evaluation shows that one pays a high price
to handle an expressive specification language together with message delays.
Nevertheless, our prototype’s performance is sufficient to monitor systems that
generate hundreds of events per second, and the prototype can be used as a
starting point for a more efficient implementation.

6 For instance, for the formula �[0,3] p, if p does not hold at time point i with time-
stamp τ , then our prototype outputs the corresponding verdict directly after pro-
cessing the time point i, whereas MONPOLY reports this violation at the first time
point with a timestamp larger than τ + 3.
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6 Related Work

Runtime verification is a well-established approach for checking at runtime
whether a system’s execution fulfills a given specification. Various monitoring
algorithms exist, e.g., [2,5,10,18]. They differ in the specifications they can handle
(some of the specification languages account for data values) and they make
different assumptions on the monitored systems. A commonly made assumption
is that a monitor has always complete knowledge about the system behavior
up to the current time. Only a few runtime-verification approaches exist that
relax this assumption. Note that this assumption is, for instance, not met in
distributed systems whose components communicate over unreliable channels.

Closest to our work is the runtime-verification approach by Basin et al. [6].
We use the same system model and our monitoring algorithm extends their
monitoring algorithm for the propositional real-time logic MTL. Namely, our
algorithm handles the more expressive specification language MTL↓ and handles
data values. Furthermore, we present a semantics for MTL↓ that is based on
three truth values and uses observations instead of timed words. This enables
us to cleanly state correctness requirements and establish stronger correctness
guarantees for the monitoring algorithm. Basin et al.’s completeness result [6]
is limited in that it assumes that all messages are eventually received. Finally,
Basin et al. [6] do not evaluate their monitoring algorithm experimentally.

Colombo and Falcone [11] propose a runtime-verification approach, based
on formula rewriting, that also allows the monitor to receive messages out
of order. Their approach only handles the propositional temporal logic LTL
with the three-valued semantics proposed by Bauer et al. [9]. In a nutshell,
their approach unfolds temporal connectives as time progresses and special
propositions act as placeholders for subformulas. The subsequent assignment
of these placeholders to Boolean truth values triggers the reevaluation and
simplification of the formula. Their approach only guarantees soundness but
not completeness, since the simplification rules used for formula rewriting are
incomplete. Finally, its performance with respect to out-of-order messages is not
evaluated.

The monitoring approaches by Garg et al. [13] and Basin et al. [4], both
targeting the auditing of policies on system logs, also account for knowledge
gaps, i.e., logs that may not contain all the actions performed by a system. Both
approaches handle rich policy specification languages with first-order quantifica-
tion and a three-valued semantics. Garg et al.’s approach [13], which is based on
formula rewriting, is however, not suited for online use since it does not process
logs incrementally. It also only accounts for knowledge gaps in a limited way,
namely, the interpretation of a predicate symbol cannot be partially unknown,
e.g., for certain time periods. Furthermore, their approach is not complete. Basin
et al.’s approach [4], which is based on their prior work [5], can be used online.
However, the problem of how to incrementally output verdicts as prior knowledge
gaps are resolved is not addressed, and thus it does not deal with out-of-order
events. Moreover, the semantics of the specification language handled does not
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reflect a monitor’s partial view about the system behavior. Instead, it is given
for infinite data streams that represent system behavior in the limit.

Several dedicated monitoring approaches for distributed systems have been
developed [7,19,21]. These approaches only handle less expressive specification
languages, namely, the propositional temporal logic LTL or variants thereof. Fur-
thermore, none of them handles message loss or out-of-order delivery of messages,
problems that are inherent to such systems because of crashing components and
nonuniform delays in message delivery.

A similar extension of MTL with the freeze quantifier is defined by Feng
et al. [12]. Their analysis focuses on the computational complexity of the path-
checking problem. However, they use a finite trace semantics, which is less suitable
for runtime verification. Out-of-order messages are also not considered.

Temporal logics with additional truth values have also been considered in
model checking finite-state systems. Closest to our three-valued semantics is the
three-valued semantics for LTL by Goidefroid and Piterman [14], which is based
on infinite words, not observations (Definition 2). Similar to (T3) of Definition 2,
a proposition with the truth value ⊥ at a position can be refined by t or f. In
contrast, their semantics does not support refinements that add and delete letters,
cf. (T1) and (T2) of Definition 2.

7 Conclusion

We have presented a runtime-verification approach to checking real-time specifi-
cations given as MTL↓ formulas. Our approach handles the practically-relevant
setting where messages sent to the monitors can be delayed or lost, and it provides
soundness and completeness guarantees. Although our experimental evaluation
is promising, our approach does not yet scale to monitor systems that generate
thousands or even millions of events per second. This requires additional research,
including algorithmic optimizations. We plan to do this in future work, as well
as to deploy and evaluate our approach in realistic, large-scale case studies.
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A Additional MTL↓ Details

A.1 Standard Boolean Semantics

MTL↓ with a Boolean semantics has the same syntax as MTL↓ with a three-
valued semantics as defined in Section 3. We use the same syntactic sugar and
conventions from Section 3. The Boolean semantics for MTL↓ is defined over
timed words.

To define MTL↓’s Boolean semantics, we introduce the following notation
and terminology. Recall that D—the data domain—is a nonempty set of values.
Furthermore, let Σ be the set of the pairs (σ, %), where σ is a total function over
P with σ(p) ⊆ Dι(p) for p ∈ P and % is a total function over R with %(r) ∈ D for
r ∈ R. In the following, timed words are always over the alphabet Σ. Note that
the letter at position i ∈ N of a timed word (over Σ) is of the form (τi, σi, %i),
where σi interprets the predicate symbols at time τi and %i determines the values
stored in the registers in R at time τi. As for observations, we call the positions
i ∈ N of a timed word w the time points of w. Furthermore, we call τi the
timestamp of the time point i ∈ N.

Remark 14. Observations generalize the notion of a finite prefix of a timed
word. Let w = (τ1, σ1, %1)(τ2, σ2, %2) . . . be a timed word. For the prefix of length
n ∈ N of w, we define the word wn as ({τ1}, σ1, %1) . . . ({τn}, σn, %n)(I, [ ], [ ]), with
I = Q≥0 \

(⋃
1≤i≤n[0, τi]

)
. That is, we transform the timestamps of the prefix

into singletons and attach a last letter, which can be seen as a placeholder for
the remaining letters in w. The words wn for n ∈ N are observations. Obviously,
w0 = ([0,∞), [ ], [ ]) is an observation. For n > 0, we obtain wn from wn−1 by
applying the transformation (T1) with the timestamp τn on wn−1’s last letter,
then applying (T2) to delete the letter with the interval (τn−1, τn), and finally
applying (T3) on the letter with interval {τn} to populate it with σn and %n.

MTL↓’s Boolean semantics is defined inductively over the formula structure.
In particular, similar to the function ϕ 7→ Jw, i, ν |≈ ϕK defined in Section 3, we
define a function ϕ 7→ Jw, i, ν |= p(x̄)K ∈ 2, for a given timed word w, a time
point i ∈ N, and a valuation ν : V 9 D. Let w = (τ0, σ0, %0)(τ1, σ1, %1) . . . .

Jw, i, ν |= tK := t

Jw, i, ν |= p(x̄)K :=

{
t if ν(x̄) ∈ σi(p)
f otherwise

Jw, i, ν |= ↓rx. ϕK := Jw, i, ν[x 7→ %i(r)] |= ϕK
Jw, i, ν |= ¬ϕK := ¬Jw, i, ν |= ϕK

Jw, i, ν |= ϕ ∨ ψK := Jw, i, ν |= ϕK ∨ Jw, i, ν |= ψK
Jw, i, ν |= ϕ UI ψK :=

∨
j∈{`∈N | τ`−τi∈I}

(
Jw, j, ν |= ψK ∧

∧
i≤k<jJw, k, ν |= ϕK

)
Note that we abuse notation here and identify the logic’s constant symbol t with
the Boolean value t, and the connectives ¬ and ∨ with the corresponding logical
operators.
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Definition 15. For τ ∈ Q≥0, a timed word w, a valuation ν, and a formula ϕ,
we define [w, τ, ν |= ϕ] := Jw, j, ν |= ϕK, provided that there is some time point j
in w with timestamp τ , and [w, τ, ν |= ϕ] := ⊥, otherwise.

The following theorem shows that the semantics of MTL↓ on observations
conservatively extends the logic’s semantics on timed words. In particular, if a
formula evaluates to a Boolean value for an observation for a given time τ ∈ Q≥0,
it has the same Boolean value on any timed word that refines the observation.

Theorem 16. Let ϕ be a formula, µ a partial valuation, ν a total valuation,
u an observation, v a timed word, and τ ∈ Q≥0. If u Ď v and µ Ď ν then
[u, τ, µ |≈ ϕ] � [v, τ, ν |= ϕ].

Proof. Let (Ii, σi, %i) and (τj , σ
′
j , %
′
j), for i ∈ pos(u) and j ∈ N be the letters of

u and v, respectively. As u Ď v, we have that there is a function π : N→ pos(u)
such that (R1) τj ∈ Iπ(j), (R2) σπ(j) Ď σ′j , and (R3) %π(j) Ď %′j , for every j ∈ N.
It is easy to see that π is monotonic.

We prove by structural induction on ϕ that for any time point i′ ∈ N and
partial valuations µ and ν with µ Ď ν, it holds that Ju, π(i′), µ |≈ ϕK � Jv, i′, ν |=
ϕK. The theorem’s statement easily follows from this property. For the reminder of
the proof, we fix an arbitrary time point i′ ∈ N and arbitrary partial valuations µ
and ν with µ Ď ν. Let i = π(i′).

When Ju, i, µ |≈ ϕK = ⊥ the statement clearly holds. Hence, it suffices to show
that Ju, i, µ |≈ ϕK = Jv, i′, ν |= ϕK, provided that Ju, i, µ |≈ ϕK ∈ 2.

Base cases. The case ϕ = t is trivial. Consider the case ϕ = p(x̄), for some
p ∈ P . As Ju, i, ν |≈ p(x̄)K ∈ 2, it holds that x̄ ∈ def(ν) and p ∈ def(σi). It follows
from the theorem’s premise that µ(x̄) = ν(x̄), and from (R2) that σi(p) = σ′i′(p).
Thus Ju, i, ν |≈ p(x̄)K = Jv, i′, ν |= p(x̄)K.

Inductive cases. The cases where ϕ is of the form ¬α or α ∨ β are straightfor-
ward and omitted. The remaining cases are as follows.

First, assume that ϕ is of the form ↓rx . ψ. Let η = µ[x 7→ %i(r)] and
η′ = ν[x 7→ %′i′(r)]. By (R3), we have that if r ∈ def(%i) then r ∈ def(%′i′)
and %i(r) = %′i′(r), and thus η(x) = η′(x). Furthermore, if r 6∈ def(%i), then
x 6∈ def(η). This shows that η Ď η′. It follows from the induction hypothesis that
Ju, i, η |≈ ψK � Jv, i′, η′ |= ψK. We conclude that Ju, i, µ |≈ ϕK = Jv, i′, ν |= ϕK.

Finally, assume that ϕ is of the form α UI β. We consider first the case
Ju, i, µ |≈ α UI βK = t. By definition, there is a j ≥ i such that tpu(j) = t,
tcu,I(i, j) = t, Ju, j, µ |≈ βK = t, and tpu(k) → Ju, k, µ |≈ αK = t, for all k
with i ≤ k < j. As j is a time point in u, there is a time point j′ in v such
that π(j′) = j. From (R1) we have that τj′ = tsu(j). As tcu,I(i, j) = t and
Ij = {τj′}, we have that τj′ − τ ∈ I, for all τ ∈ Ii. From (R1), we have that
τi′ ∈ Ii. Thus τj′ − τi′ ∈ I (I1). From the induction hypothesis, we have that
Ju, j, µ |≈ βK � Jv, j′, ν |= βK. Hence Jv, j′, ν |= βK = t (I2). From the induction
hypothesis, we also have that Ju, π(k′), µ |≈ αK � Jv, k′, ν |= αK, for any k′ ∈ N.
Let k′ ∈ N such that i′ ≤ k′ < j′, and let k = π(k′). From the monotonicity
of π we have that i ≤ k ≤ j. Since j is a time point in u we also have that
k < j. As tpu(k) → Ju, k, µ |≈ αK = t and tp is never f by definition, we have
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that Ju, k, µ |≈ αK = t. Then Jv, k′, µ |= αK = t (I3). Summing up, from (I1), (I2),
(I3), and as k′ was chosen arbitrarily, we obtain that Jv, i′, ν |= α UI βK = t.

The case Ju, i, µ |≈ α UI βK = f is as follows. Note that each disjunct in the
definition of Ju, i, µ |≈ α UI βK is f. We fix an arbitrary j′ ≥ i′ and let j = π(j′). It
holds that tpu(j)∧tcu,I(i, j)∧Ju, j, µ |≈ βK∧

∧
i≤k<j(tpu(k)→ Ju, k, µ |≈ αK) = f.

Since tpu(j) 6= f, one of the remaining conjuncts must be f.
(1) If tcu,I(i, j) = f, then τ ′ − τ ′′ 6∈ I, for all τ ′′ ∈ Ii and τ ′ ∈ Ij . From (R1),

τi′ ∈ Ii and τj′ ∈ Ij . It follows that τj′ − τi′ 6∈ I.
(2) If Ju, j, µ |≈ βK = f, then Jv, j′, ν |= βK = f, by induction hypothesis.
(3) If tpu(k) → Ju, k, µ |≈ αK = f, for some k with i ≤ k < j, then tpu(k) = t

and Ju, k, µ |≈ αK = f. It follows as before that there is a k′ with i′ ≤ k′ < j′

such that Jv, k′, ν |= αK = f.
We have thus obtained that either τi′ − τj′ 6∈ I or one of the conjuncts of
Jv, j′, ν |= βK ∧

∧
i′≤k′<j′Jv, k

′, ν |= αK is f. In other words, if j′ is such that
τj′ − τi′ ∈ I, then Jv, j′, ν |= βK ∧

∧
i′≤k′<j′Jv, k

′, ν |= αK = f. As j′ was chosen
arbitrarily, we conclude that Jv, i′, ν |= α UI βK = f. ut

A.2 Correctness Requirements

In this section, we formulate similar monitoring requirements as in Section 4.1,
formulating them this time with respect to the Boolean MTL↓ semantics. We
then argue that these requirements are too strong.

For an observation w, we define Uw := {v | v a timed word with w Ď v}.
Intuitively, Uw contains all the timed words that are compatible with the reported
system behavior that a monitor received so far, represented by w.

Definition 17. Let M be a monitor, ϕ a formula, and w̄ a valid observation
sequence.
– M is sound for w̄ and ϕ if for all valuations ν and i ∈ N, whenever (τ, b) ∈
M(wi) then

c
v∈Uwi

[v, τ, ν |= ϕ] = b.

– M is complete for w̄ and ϕ if for all valuations ν, i ∈ N, and τ ∈ Q≥0,
whenever

c
v∈Uwi

[v, τ, ν |= ϕ] ∈ 2 then (τ, b) ∈
⋃
j≤iM(wj), for some b ∈ 2.

We say that M is sound if M is sound for all valid observation sequences w̄ and
formulas ϕ. The definition of M being complete is analogous.

The correctness requirements in Definition 17 are related to the use of a
three-valued “runtime-verification” semantics for a specification language, as
introduced by Bauer et al. [10] for LTL and adopted by other runtime-verification
approaches (e.g. [8]). Intuitively speaking, both a sound and complete monitor
and a monitor implementing a three-valued “runtime-verification” semantics
output a verdict as soon as the specification has the same Boolean value on every
extension of the monitor’s current knowledge. However, Bauer et al. [10] make no
distinction between a monitor’s soundness and its completeness. Distinguishing
these two requirements separates concerns and this is important, as explained
next. Ideally, a monitor is both sound and complete. However, achieving both
of these properties can be hard or even impossible for non-trivial specification
languages, as we now explain, when relying on the standard Boolean semantics.
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Remark 18. For a specification language, having a sound and complete monitor
M for a specification language is at least as hard as checking satisfiability for this
language. For MTL↓, a closed formula ϕ is satisfiable iff (0, f) 6∈M(w1), assuming
that 0 is always the timestamp of the first time point of a timed word and the
observation w1 is obtained from the monitor’s initial knowledge w0 by (T1) for
the timestamp 0. Note that w0 = ([0,∞), [ ], [ ]), Uw0

is the set of all timed words,
and Uw1

= Uw0
. The propositional fragment of MTL↓ is already undecidable [20].

There are fragments that are decidable but the complexity is usually high. Recall
that for LTL, checking satisfiability is already PSPACE-complete.7

Some monitoring approaches try to compensate for this complexity burden
with a pre-processing step. For instance, the monitoring approach of Bauer et
al. [10] translates an LTL formula into an automaton prior to monitoring. The
resulting automaton can be directly used for sound and complete monitoring in
environments where messages are neither delayed nor lost. However, there are no
obvious extensions for handling out-of-order message delivery. Furthermore, not
every specification language has such a corresponding automaton model and, for
the ones where translations are known, the automaton construction can be very
costly. For LTL, the size of the automaton is already in the worst case doubly
exponential in the size of the formula [10].

In contrast the correctness requirements from Definition 9 are weaker and achiev-
able. This is due to the three-valued semantics, based on Kleene logic, for MTL↓

over observations. Furthermore, note that the three-valued semantics for MTL↓

conservatively extends the standard Boolean semantics, as shown by Theorem 16.
Theorem 16 allows us to prove that the completeness requirement from

Definition 9 is indeed a weaker notion than completeness requirement from
Definition 17, while the soundness requirement from Definition 17 offers the same
correctness guarantees as the one from Definition 9.

Theorem 19. Let M be a monitor. If M is observationally sound, then M is
sound. If M is complete, then M is observationally complete.

Proof. First, let M be an observationally sound monitor. Let ϕ be a formula and
w̄ a valid observation sequence. Furthermore, let ν be a total valuation, i ∈ N,
τ ∈ Q≥0, and b ∈ 2 such that (τ, b) ∈M(i). Then, by definition, [wi, τ, ν |≈ ϕ] = b.
Now, let v ∈ Uwi . We have that wi Ď v. Then from Theorem 16 we have that
[v, τ, ν |= ϕ] = b. As v was chosen arbitrarily, we get

c
v∈Uwi

[v, τ, ν |= ϕ] = b.

Thus M is a sound monitor.
Now, let M be a complete monitor. Let ϕ be a formula and w̄ a valid

observation sequence. Furthermore, let ν be a partial valuation, i ∈ N, τ ∈ Q≥0

such that [wi, τ, ν |= ϕ] = b′ for some b′ ∈ 2. Let ν′ be a total valuation with

7 In contrast to model checking, runtime verification is often advertised as a “light-
weight” verification technique. In terms of complexity classes, the problem of soundly
and completely monitoring finite-state systems with respect to LTL specifications
is however at least as hard as the corresponding model-checking problem, which is
PSPACE-complete.
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ν Ď ν′. Also, let v ∈ Uwi . Then, as wi Ď v, from Theorem 16 we obtain that
[v, τ ′, ν |= ϕ] = b′. As v was chosen arbitrarily, we get

c
v∈Uwi

[v, τ, ν′ |= ϕ] = b′.

As M is complete, it follows, by definition, that there is b ∈ 2 and j ≤ i such
that (τ, b) ∈M(wj). Thus M is an observationally complete monitor. ut

A.3 Proof of Theorem 6

The following lemma characterizes the Ď relation on observations.

Lemma 20. Let w and w′ be observations with letters (Ii, σi, %i) and respectively
(I ′j , σ

′
j , %
′
j), for i ∈ pos(w) and j ∈ pos(w′). If w Ď w′ then there is a monotonic

function π : pos(w′)→ pos(w) with the following properties.
(R1) I ′j ⊆ Iπ(j), for all j ∈ pos(w′).
(R2) σπ(j) Ď σ′j(p), for all j ∈ pos(w′) and p ∈ P .
(R3) %π(j) Ď %′j, for all j ∈ pos(w′) and r ∈ R.

Proof (sketch). If w = w′ then take π to be the identity. If w′ is obtained
from w using one of the transformations, that is, if w Ă w′, then, for each
transformation it is easy to construct a function π satisfying the stated properties.
If w Ĺ w′, then there is a sequence (wi)0≤i≤n of observations, with n ≥ 1, such
that w = w0 Ă w1 Ă · · · Ă wn = w′. From the previous observation there is a
sequence of functions πi : pos(wi)→ pos(wi−1), with 1 ≤ i ≤ n, each satisfying
the stated properties. Then it is easy to see that their composition π = π1◦· · ·◦πn
also satisfies these properties. ut

The proof of Theorem 6 is similar to that of Theorem 16 and is thus omitted.
We just note that the omitted proof uses properties (R1) to (R3) from Lemma 20,
which correspond to the ones given in the proof of Theorem 16.

A.4 Proof of Theorem 7

We first show that the problem is PSPACE-hard by reducing the satisfiability
problem for quantified Boolean logic (QBL) to it. For simplicity, we assume that
MTL↓ comprises the temporal past-time connectives � (“once”) and � (“histori-
cally”), which are the counterparts of � and �. Their semantics is as expected. A
slightly more involved reduction without these temporal connectives is possible.

Let α be a closed QBL formula over propositions p1, . . . , pn. We define the
set P of predicate symbols as {P1, . . . , Pn}, where each predicate symbol has
arity 1. Moreover, let R := {r} and D := {0, 1}, and let w be the observation
({0}, σ, %0)({1}, σ, %1)({3}, [ ], [ ])((3,∞), [ ] [ ]), with σ(Pi) = {1}, for each i ∈
{1, . . . , n}, and %i(r) = i, for i ∈ {0, 1}. Finally, we translate the QBL formula α
to an MTL↓ formula α∗ as follows.

p∗i := Pi(xi) (¬β)∗ := ¬β∗ (β ∨ γ)∗ := β∗ ∨ γ∗
(∃pi. β)∗ := � �[0,1] ↓xi . β∗ (∀pi. β)∗ := � �[0,1] ↓xi . β∗

It is easy to see that α is satisfiable iff [w, 0, [ ] |≈ α∗] = t.
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Listing 2.
procedure Init(ϕ)

verdicts := ∅
J := [0,∞)
foreach ψ ∈ Sub(ϕ) # in a bottom−up manner

case ψ = p(x̄): Ψψ,J,[ ] := ψJ

case ψ = ¬α: Ψψ,J,[ ] := ¬αJ

case ψ = α ∨ β: Ψψ,J,[ ] := αJ ∨ βJ

case ψ = ↓x. α: Ψψ,J,[ ] := αJ

case ψ = α UI β:

if I = [0,∞) then tc := t else tc := tcJ,J

Ψψ,J,[ ] := tc ∧ β̄J ∧ ¯̄αJ

foreach α in Atoms(ϕ) with α = t do
PropagateUp(α, J, t)

We only sketch the problem’s membership in PSPACE. Note that w is finite.
If there is no time point in w with timestamp τ , then [w, τ, ν |≈ ϕ] = ⊥. Suppose
that i ∈ pos(w) is a time point in w with timestamp τ . A computation of ϕ’s
truth value at position i can be easily obtained from the inductive definition of
the satisfaction relation |≈. This computation can be done in polynomial space
when traversing the formula structure depth-first. Note that for a position, a
subformula of ϕ might be visited multiple times with possibly different partial
valuations.

B Additional Algorithmic Details

We present in this section the procedures Init, NewTimePoint, PropagateDown,
and PropagateUp, which are called from the main procedure. Their pseudo-code
is given in the Listings 2 to 5, respectively.

The procedure Init initializes the state of the monitor, which consists of the
formulas Ψγ,[0,∞),[ ], for each subformula γ of the monitored formula ϕ. These
formulas are as defined in Section 4.2.1. The procedure also propagates the
Boolean value t from the atoms t of ϕ.

The procedure NewTimePoint transforms formulas Ψγ,K,ν so that they reflect
the interval structure of the new observation, the one obtained after receiving
the current message. Recall that, in the pseudo-code, J is the interval that is
split at the current iteration and the sequence new consists of those intervals
among J ∩ [0, τ), {τ}, and J ∩ (τ,∞) that are not complete. NewTimePoint
creates a new formula Ψγ,K,ν for each K ∈ new and each each ν such that the
variable Ψγ,J,ν is defined. The new formula is obtained by applying a substitution
which translates atomic propositions αJ into propositional formulas over atomic
propositions αK

′
with K ′ ∈ new. For non-temporal formulas this propositional

formula is simply αK . That is the substitution is [αJ 7→ αK ]. For temporal
formulas the substitution is obtained in two steps: a first substitution replaces
atomic propositions of the form tcH,J with atomic substitutions of the form tcH,K ,
and a second substitution, obtained by calling the procedure RefinementUntil,
deals with atomic propositions of the form αJ .
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Listing 3.
procedure NewTimePoint(ϕ, J, new)

foreach ψ ∈ Sub(ϕ) # in a top−down manner

foreach ν with Ψψ,J,ν 6= nil do
foreach K in new do

case ψ = p(x̄):

Ψψ,K,ν := Apply(Ψψ,J,ν , [ψJ 7→ ψK ])
case ψ = ¬α:

Ψψ,K,ν := Apply(Ψψ,J,ν , [αJ 7→ αK ])
case ψ = α ∨ β:

Ψψ,K,ν := Apply(Ψψ,J,ν , [αJ 7→ αK , βJ 7→ βK ])
case ψ = ↓x. α:

Ψψ,K,ν := Apply(Ψψ,J,ν , [αJ 7→ αK ])
case ψ = α UI β:

Ψψ,K,ν := Apply(Ψψ,J,ν , [tcH,J 7→ tcH,K ]
tcH,J∈AP(Ψψ,J,ν )

)

foreach γ,H, µ with ψJ ∈ AP(Ψγ,H,µ) and (γ = ψ UI or γ = ψ UI )
θ := RefinementUntil(γ, H, J, new)

Ψγ,H,µ := Apply(Ψγ,H,µ, θ)

procedure RefinementUntil(α UI β, H, J, new)
anchor, continuation := f, t
for K in new with K ≥ H do

if Singleton(K) then cont := t else ¯̄αK

anchor := anchor ∨ β̄K ∧ tcK,H ∧ cont ∧ continuation

continuation := continuation ∧ ᾱK

return [tcJ,K 7→ t, β̄J 7→ anchor, ᾱJ 7→ continuation, ¯̄αJ 7→ t]

NewTimePoint also transforms some formulas Ψγ,K,ν with K 6∈ new, that is
for intervals K that occur in the letters of the old observation, that is, the one
from the previous iteration. It does that for those formulas that have atomic
propositions of the form αJ . Note that then it is necessarily the case that
γ is a temporal formula. The required substitution is also computed by the
RefinementUntil procedure.

The RefinementUntil procedure produces the necessary substitution to update
the atomic propositions ᾱJ , ¯̄αJ , and β̄J that may occur in formulas Ψγ,H,ν for
some interval H of the new observation, where γ = α UI β. (Note that before
calling RefinementUntil the new formulas Ψγ,K,ν with K ∈ new have already been
created.) The substitution of the proposition ᾱJ is straightforward. Namely, we
replace ᾱJ by the conjunction

∧
K∈new,K≥H ᾱ

K . Next, the atomic propositions

tcJ,K and ¯̄αJ are discarded: they appeared in Ψγ,H,ν as conjuncts and thus
replacing them by t effectively discards them. The substitution of β̄J is more
involved. We illustrate it with an example. Suppose that new = (K1,K2,K3) and
that H ≤ K1. Note that K2 is a singleton. In this case, β̄J is substituted by the
following formula.

β̄K1 ∧ tcK1,H ∧ ¯̄αK1 ∨
β̄K2 ∧ tcK2,H ∧ ᾱK1 ∨
β̄K3 ∧ tcK3,H ∧ ¯̄αK3 ∧ ᾱK2 ∧ ᾱK1

The application of the computed substitution is performed by the proce-
dure Apply given in Listing 5. Apply actually does more than just applying the
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Listing 4.
procedure PropagateDown(ψ, J, x, d)

foreach ν with Ψψ,J,ν 6= nil

Ψψ,J,ν[x 7→d] := Ψψ,J,ν

if ψ 6∈ Atoms(ϕ) then

foreach αK ∈ AP(Ψψ,J,ν)
PropagateDown(α, K, x, d)

Listing 5. procedure Apply(Ψψ,J,ν , θ)

f := Substitute(Ψψ,J,ν , θ)
if f ∈ 2 then PropagateUp(ψ, J, ν, f)
return f

procedure PropagateUp(ψ, J, b)
γ := Parent(ψ)
if γ = nil then

if Singleton(J) then verdicts := verdicts ∪ {(Timestamp(J), b)}
else if CanPropagateUp(ψ, J, b)

θ := [ψJ 7→ b]

foreach K,µ with ψJ ∈ AP(Ψγ,K,µ)

Ψγ,K,µ := Apply(Ψγ,K,µ, θ)

procedure CanPropagateUp(ψ, J, b)
γ := Parent(ψ)
case γ = nil or γ 6= UI : return t
case γ = UI ψ: return (Singleton(J) or not b)
case γ = ψ UI : return (Singleton(J) or b)

substitution given as an argument. First, it also simplifies the resulting for-
mula. The actual application and the simplification are performed by procedure
Substitute, which is as expected and thus not detailed further. Second, Apply
checks whether the resulting formula is a Boolean constant. If this is the case,
then propagation is initiated by calling the PropagateUp procedure.

Note that if Ψγ,J,ν is already a Boolean constant that has not yet been
propagated, because for instance the γ = β̄ and the constant is t, then, since
Apply tries again to propagate it, this Boolean value will actually be propagated
for the new interval {τ}, as it is a singleton and thus corresponds to a time point.

The pseudo-code of the procedures PropagateDown and PropagateUp is straight-
forward in that it implements downward and upward propagation exactly as
described in Section 4.2.2.

C Soundness and Completeness Proof

In this section, we will consider many substitutions from atomic propositions to
propositional formulas. Given such a substitution θ and a propositional formula ψ,
we denote by θ(ψ) and ψθ the formula obtained by replacing in ψ the atomic
propositions p that occur in both ψ and in def(θi) by θi(p).
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C.1 Overview

Let w̄ be valid observation sequence and let ϕ be the monitored formula. We
assume that ϕ is not an atomic formula. We let (J ij , σ

i
j , %

i
j) be the jth letter of wi.

We drop the superscript i if it is clear from the context. Also, given an interval J
in wi, we denote by Ĵ the index j ∈ pos(wi) such that Jj = J , assuming that
the iteration i is clear from the context.

We first state a lemma from which correctness follows, and only later prove
the lemma. We recall that Ψψ,J,νi denotes the the value of the variable Ψψ,J,ν

from the pseudo-code at the end of iteration i.

Lemma 21. For any i ∈ N, j ∈ pos(wi), and b ∈ 2, we have that

θ
[ ]
i (Φϕ,Ji ) = b iff Ψ

ϕ,J,[ ]
i = b,

where J is the interval of the jth letter of wi.

We show next how observational soundness and completeness follow from
this lemma. We first note that for any iteration i ∈ N, the variable Ψψ,J,ν is
defined at the end of iteration i for some8 ν if and only if ψ is a subformula
of ϕ and J is an interval in wi. Next, we note that the global variable verdicts
is only updated in the execution of PropagateUp(ψ, J , b) when ψ = ϕ and J is
a singleton. Furthermore, by analyzing where it is called from, we see that all
calls are preceded by setting Ψψ,J,ν to b. Moreover, ν has to be [ ] because for
any defined variable Ψψ,J,ν with ν 6= [ ] we have that ψ 6= ϕ. Indeed, Ψψ,J,ν is
only used with a “new” ν in PropagateDown and this procedure is never called
for ψ = ϕ. We thus obtain that if some tuple (τ, b) is added to verdicts then
Ψϕ,{τ},[ ] = b.

Observational soundness follows directly from the lemma, the above stated
properties of θνi and Φi, and the observations made in the previous paragraph.
Note that, since ϕ is closed, then Jwi, j, ν |≈ ϕK = Jwi, j, [ ] |≈ ϕK, for any partial
valuation ν.

Consider now completeness. Say that Jwi, j, ν |≈ ϕK = b ∈ 2 and j is a
time point with timestamp τ . Let J = {τ}. Then Jwi, j, [ ] |≈ ϕK = b and thus

θ
[ ]
i (Φϕ,Ji ) = b. By the lemma, we have that Ψ

ϕ,J,[ ]
i = b. Then there is an iteration

i′ ≤ i when Ψ
ϕ,J′,[ ]
i′ has been set to b, where J ′ is the interval in wi′ from which

J originates. Let i′′ be the first iteration when J is a letter of wk for some k. At

this iteration Ψ
ϕ,J,[ ]
i′′ is set to Ψ

ϕ,J′,[ ]
i′ (see the NewTimePoint procedure). Clearly

i′ ≤ i′′ ≤ i. The setting of Ψ
ψ,J,[ ]
i′′ to a new value is preceded by a call to Apply,

and since this new value is a Boolean value, Apply calls PropagateUp which adds
(τ, b) to verdicts.

C.2 The Key Lemma

We state next the key lemma of the proof, from which Lemma 21 follows. In order
to state this more general lemma, we first introduce some additional notation.

8 We will later, in Lemma 22, also characterize for which ν is Ψψ,J,νi defined.
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C.2.1 Additional Notation. Given an i ∈ N, a subformula ψ of ϕ, and a
j ∈ pos(wi), we define inductively the set Val i(ψ, j) of relevant valuations for
ψ at iteration i and position j. For i = 0, we set Val i(ψ, 0) := {[ ]}, for any
subformula ψ of ϕ, and for i > 0 we let

Val ′i(ψ, j) :=


{[ ]} if ψ = ϕ,
Val i(γ, j) if γ = ¬ψ, γ = ψ ∨ ψ′, or γ = ψ′ ∨ ψ,
{ν[x 7→ %ij(r)] | ν ∈ Val i(γ, j)} if γ = ↓xr. ψ
∪h∈AVal i(γ, h) if γ = ψ UI ψ

′

∪k∈BVal i(γ, k) if γ = ψ′ UI ψ

and

Val i(ψ, j) := {ν ∈ Val ′i(ψ, j) | Jwi, j, ν |≈ ψK 6∈ 2},

where γ is the “parent” of ψ (i.e. the subformula of ϕ that has ψ as a direct
subformula) and

A := {h ∈ N | k < h ≤ j where k ∈ N is such that k ≤ j and tcwi,I(j, k) 6= f},
B := {k ∈ N | k ≤ j and tcwi,I(j, k) 6= f}.

We denote by AP i the set of the atomic propositions used by the formulas Φγ,Ji .
We let AP i be the set of atomic propositions obtained from AP i be removing
the atomic propositions of the form tpJ and replacing atomic propositions of the
form βJ and αJ where α UI β is an subformula of ϕ for some I, by the atomic
propositions β̄J and respectively ᾱJ and ¯̄αJ . Note that AP i represents the set of
atomic propositions of the formulas Ψγ,J,νi from the pseudo-code.

We also let δ̂νi be the following substitution:

δ̂νi (β̄J) :=


tpJ ∧ βJ if J not a singleton and Ψβ,J,νi /∈ 2

tpJ if J not a singleton and Ψβ,J,νi = t

βJ if J is a singleton and Ψβ,J,νi /∈ 2
undefined otherwise

δ̂νi (ᾱJ) :=


tpJ → αJ if J not a singleton and Ψα,J,νi /∈ 2

¬tpJ if J not a singleton and Ψα,J,νi = f

αJ if J is a singleton and Ψα,J,νi /∈ 2
undefined otherwise

δ̂νi ( ¯̄αJ) :=


tpJ ∨ αJ if J not a singleton and Ψα,J,νi /∈ 2

tpJ if J not a singleton and Ψα,J,νi = f

αJ if J is a singleton and Ψα,J,νi /∈ 2
undefined otherwise

Note that, for instance when J is a singleton and Ψα,J,νi = t, there is no need to

define δ̂νi (ᾱJ ), because in this case ᾱJ is not an atomic proposition of ΨαUIβ,K,ν
i :

that atomic proposition has already been instantiated.
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C.2.2 The Lemma and its Proof. The following key lemma states the main
invariant of the monitoring algorithm.

Lemma 22. For any non-atomic subformula ψ of ϕ, i ∈ N, j ∈ pos(wi), partial
valuation ν ∈ Val i(ψ, j), we have that

θµi (Φψ,Ji ) ≡ δ̂µi (Ψψ,J,νi ),

where J is the interval of the jth letter of wi and µ = ν[x 7→ %ij(r)] if ψ = ↓rx. α
and µ = ν otherwise.

We first note that Lemma 21 follows easily from Lemma 22. Indeed, we just

need to show that, δ̂µi (Ψ
ϕ,J,[ ]
i ) = b iff Ψ

ϕ,J,[ ]
i = b, for any b ∈ 2 where µ is an in

the lemma statement. The right to left direction is trivial, while the left to right

direction also follows easily: if Ψ
ϕ,J,[ ]
i /∈ 2 then it contains at least an atomic

proposition, and then δ̂
[ ]
i (Ψ

ϕ,J,[ ]
i ) also contains an atomic proposition, by the

definition of δ̂µi , and thus δ̂µi (Ψ
ϕ,J,[ ]
i ) /∈ 2 too.

We devote the rest of this section to the proof of Lemma 22. We start with
an assumption and continue with a series of definitions.

We assume in the pseudo-code that formula rewriting (that is, applying
substitutions) and propagations are separated into two distinct phases. Note
that this can be easily achieved by postponing propagations, that is, by storing
all tuples (ϕ, J, f) with f ∈ 2 that occur during the execution of Apply, and
by performing the corresponding propagations at the end of the NewTimePoint
procedure. We choose not to present this two-phase version of the pseudo-code
in order to keep the pseudo-code more compact.

Let newi be the value of new at iteration i > 0. Given an interval J ∈ newi, we
let ζJi be the substitution computed by the pseudo-code at some iteration i > 0
during the formula rewriting phase. Note that there is no formula rewriting phase
at iteration i = 0. For i > 0, for instance when α is such that its parent is ψ = ¬α,
we have that ζJi (αJ

′
) = αJ when J is a new interval in wi obtained by splitting

the interval J ′ in wi−1.9

We let ξ̄νi be the substitution computed by the pseudo-code at iteration i
during the propagation phase for the partial valuation ν. Formally, ξ̄νi is a partial
valuation over AP i defined as follows:

ξνi (p(x̄)J) := t if x̄ ∈ def(ϕ), p ∈ def(σ), and ν(x̄) ∈ σ(p),

ξνi (p(x̄)J) := f if x̄ ∈ def(ϕ), p ∈ def(σ), and ν(x̄) 6∈ σ(p),

ξ̄νi (γJ) := b if γ is non-atomic and Ψγ,J,νi = b ∈ 2,

ξ̄νi (β̄J) :=

{
t if J is a singleton and Ψβ,J,νi = t,

f if Ψβ,J,νi = f,

ξ̄νi (ᾱJ) := ξ̄νi ( ¯̄αJ) :=

{
t if Ψα,J,νi = t,

f if J is a singleton and Ψα,J,νi = f,

9 Note that in the case of temporal subformulas, this is the composition of two
substitutions: the unnamed one and the substitution θ computed by RefinementUntil.
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ξ̄νi (tcK,JαUIβ
) :=

{
t if (K − J) ⊆ I,
f if (K − J) ∩ I = ∅.

For any i > 0, subformula ψ of ϕ, and interval J in wi, we have

Ψψ,J,νi := ξ̄µi (ζJi (Ψψ,J
′,ν

i−1 )), (1)

where J ′ is the interval in wi−1 from which J originates and µ = ν[x 7→ %ij(r)] if
ψ = ↓rx. α and µ = ν otherwise.

We define next the substitution ξνi over AP i and which is a variant of ξ̄νi :

ξνi (γJ) := ξ̄νi (γJ) if γ ∈ Sub(ϕ),

ξνi (tpJ) := t if J is a singleton,

ξνi (tcK,Jψ ) := ξ̄νi (tcK,Jψ ).

We also let δ̄i be the following substitution:

δ̄i(β̄
J) := tpJ ∧ βJ ,

δ̄i(ᾱ
J) := tpJ → αJ ,

δ̄i( ¯̄αJ) := tpJ ∨ αJ .

Note that we do not have that δ̂νi = ξνi ◦ δ̄i. Indeed, if Ψβ,J,νi = f then β̄J δ̂νi = β̄J ,

while β̄J δ̄i ξ
ν
i = f. However, as we will prove later, we have that δ̂νi ◦ ξ̄νi = ξνi ◦ δ̄i.

For i > 0 and partial valuation ν, we define the substitution θνi−1,i such
that it behaves as θνi−1, but it acts however on the atomic propositions of

formulas Φγ,J,νi . In other words, in contrast to θνi , it does not take into account
the new interpretations received at iteration i. Formally, θνi−1,i is a partial function
over AP i defined by

θνi−1,i(α
J) := θνi−1(αJ

′
)

θνi−1,i(tp
J) := θνi−1(tpJ

′
)

θνi−1,i(tcH,K) := θνi−1(tcH
′,K′

),

where J ′, H ′, and K ′ are the intervals in wi−1 from which the intervals J , H,
and respectively K originate.

Finally, we let θi,∆ be the substitution defined over AP i by

θνi,∆(αJ) := θνi (αJ) if i = 0 or θνi−1 is undefined on αJ
′
,

θνi,∆(tpJ) := θνi (tpJ) if i = 0 or θνi−1 is undefined on tpJ
′
,

θνi,∆(tcH,K) := θνi (tcH,K) if i = 0 or θνi−1 is undefined on tcH
′,K′

,

where, when i > 0, J ′, H ′, and K ′ are the intervals in wi−1 from which the
intervals J , H, and respectively K originate.

Clearly, we have that

θνi = θνi−1,i θ
ν
i,∆, for i > 0, (2)
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Table 2. Summary of substitutions used in the proof.

notation domain intuition

θνi AP i γJ 7→ Jwi, Ĵ , ν |≈ γK if in 2

θνi−1,i AP i ”extension” of θνi−1 from Ai−1 to AP i

θνi,∆ AP i a substitution such that θνi = θνi−1,i θ
ν
i,∆

ζ̄Ji AP i−1 the substitution of the rewriting phase

ζJi AP i−1 variant of ζ̄Ji over AP i−1 such that ζ̄Ji δ̄i ≡ δ̄i−1 ζ
J
i

ξ̄νi AP i the substitution of the propagation phase

ξνi AP i γJ 7→ Ψγ,J,νi if in 2

δ̄i AP i e.g. β̄J 7→ tpJ ∧ βJ

δ̂νi AP i variant of δ̄i, taking propagations into account

θν0 = θν0,∆. (3)

The following easy to prove equivalence will also be useful:

Φψ,Ji θµi = b iff ψJθνi = b, (4)

for any formula ψ that is a subformula of ϕ and any b ∈ 2, and where µ = ν[x 7→
%ij(r)] if ψ = ↓rx. α and µ = ν otherwise.

We summarize in Table 2 all substitutions used in the proof together with
their informal meaning.

In the remaining proof, we will use equivalences between substitutions, with
the following meaning. Given two substitutions θ and θ′ from atomic propositions
to propositional formulas, we write that θ ≡ θ′ iff def(θ) = def(θ′) and pθ ≡ pθ′,
for any p ∈ def(θ).

Next, we prove Lemma 22 by nested induction, the outer induction being on
the iteration i and the inner induction being a structural induction on ψ.

Outer base case: i = 0. We have a single letter in w0 with the interval

J = [0,∞). Let Ψ̄
ψ,J,[ ]
0 be the value of Ψψ,J,[ ] at the point of execution of the Init

procedure (thus at iteration 0) between the two foreach loops, that is, before
propagation of the t atoms. We thus have that

Ψ
γ,J,[ ]
0 = Ψ̄

γ,J,[ ]
0 ξ̄

[ ]
0 . (5)

We also have that

Ψ̄
γ,J,[ ]
0 δ̄0 ≡ Φγ,J0 . (6)

This is easy to check by inspecting the Init procedure. For instance, for formulas
γ = α UI β, we have that Ψ̄γ,J0 = tcJ,J ∧ β̄J ∧ ¯̄αJ and thus

Ψ̄γ,J0 δ̄0 = tcJ,J ∧ (tpJ ∧ βJ) ∧ (tpJ ∨ αJ) ≡ tpJ ∧ tcJ,J ∧ βJ = Φγ,J0 .



Runtime Verification over Out-of-order Data Streams 35

This case then follows from the following sequence of equivalences:

Ψ
γ,J,[ ]
0 δ̂

[ ]
0 ≡ [by (5): Ψ

γ,J,[ ]
0 = Ψ̄

γ,J,[ ]
0 ξ̄0]

Ψ̄γ,J0 ξ̄
[ ]
0 δ̂0 ≡ [by (8): ξ̄νi δ̂

ν
i ≡ δ̄i ξνi ]

Ψ̄
γ,J,[ ]
0 δ̄0 ξ

[ ]
0 ≡ [by (6): Ψ̄

γ,J,[ ]
0 δ̄0 ≡ Φγ,J0 ]

Φγ,J0 ξ
[ ]
0 ≡ [by (3) and (IH’): ξ

[ ]
0 ≡ θ

[ ]
0 ]

Φγ,Ji θ
[ ]
0

We postpone the proof of the not yet justified equivalences (namely the 2nd and
4th), as similar ones are also used in the inductive case, and are proved together.

Outer inductive case: i > 0. We assume that the equivalence from the lemma
statement holds for i− 1:

Ψγ,J
′,ν

i−1 δ̂νi−1 ≡ Φ
γ,J ′

i−1 θ
ν
i−1, (IH)

where J ′ is the intervals in wi−1 from which J originates. The inductive case
follows from the following sequence of equivalences:

Ψγ,J,νi δ̂µi ≡ [by (1): Ψγ,J,νi = Ψγ,J
′,ν

i−1 ζ̄Ji ξ̄
µ
i ]

Ψγ,J
′,ν

i−1 ζ̄Ji ξ̄
µ
i δ̂

µ
i ≡ [by (8): ξ̄µi δ̂

µ
i ≡ δ̄i ξ

µ
i ]

Ψγ,J
′,ν

i−1 ζ̄Ji δ̄i ξ
µ
i ≡ [by (7): ξµi ≡ ξ

µ
i ξ

µ
i ]

Ψγ,J
′,ν

i−1 ζ̄Ji δ̄i ξ
µ
i ξ

µ
i ≡ [by (12): ζ̄Ji δ̄i ≡ δ̄i−1 ζ

J
i ]

Ψγ,J
′,ν

i−1 δ̄i−1 ζ
J
i ξ

µ
i ξ

µ
i ≡ [by (10): ζJi ξ

µ
i ≡ ξi−1 ζ

J
i ]

Ψγ,J
′,ν

i−1 δ̄i−1 ξi−1 ζ
J
i ξ

µ
i ≡ [by (9): Ψγ,J

′,ν
i−1 δ̄i−1 ξi−1 ≡ Ψγ,J

′,ν
i−1 δ̂i−1]

Ψγ,J
′,ν

i−1 δ̂i−1 ζ
J
i ξ

µ
i ≡ [by (IH): Ψγ,J

′,ν
i−1 δ̂i−1 ≡ Φγ,J

′

i−1 θ
µ
i−1]

Φγ,J
′

i−1 θ
µ
i−1 ζ

J
i ξ

µ
i ≡ [by (IH’): x ξµi ≡ x θ

µ
i,∆, for any q ∈ AP(Φγ,J

′

i−1 θ
µ
i−1 ζ

J
i )]

Φγ,J
′

i−1 θ
µ
i−1 ζ

J
i θ

µ
i,∆ ≡ [by (11): θµi−1 ζ

J
i ≡ ζJi θµi−1,i]

Φγ,J
′

i−1 ζ
J
i θ

µ
i−1,i θ

µ
i,∆ ≡ [by (13): Φγ,J

′

i−1 ζ
J
i ≡ Φγ,Ji ]

Φγ,Ji θµi−1,i θ
µ
i,∆ ≡ [by (2): θµi−1,i θ

µ
i,∆ ≡ θ

µ
i ]

Φγ,Ji θµi

where µ = ν[x 7→ %ij(r)] if ψ = ↓rx.α and µ = ν otherwise, and ζJi is a substitution

depending on ζ̄Ji .
We now complete the proof by proving the not yet justified equivalences

occurring in the above two sequences of equivalences. We start with the following
statement. For any q ∈ AP i such that q = tpK or q = tcH,K , or q = ψK with ψ
a direct subformula of γ, the following holds:

q ξµi ≡ q θ
µ
i,∆. (IH’)

The case when q is one of the atomic propositions p(x̄)J with p(x̄), tpJ , and
tcH,K , follows directly from the definitions of ξµi and θµi,∆. So let q = ψK . We

have that ψK ξµi equals Ψψ,K,µi if Ψψ,K,µi ∈ 2 and equals ψK otherwise.
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Suppose first that Ψψ,K,µi = b, for some b ∈ 2. Then, by the inner induction

hypothesis, we have that Φψ,Ki θηi ≡ Ψψ,K,µi δ̂ηi = b, where η = µ[x 7→ %ij(r)] if

ψ = ↓rx. α and η = ν otherwise. From (4), we know that Φψ,Ki θηi ≡ ψKθ
µ
i , and

thus we obtain that ψKθµi = b.

Suppose now that Ψψ,K,µi 6∈ 2. Then, reasoning similarly to the previous case,
we obtain that ψKθµi /∈ 2. Thus ψKθµi = ψK and hence also ψKθµi,∆ = ψK .

C.2.3 Remaining Details. The following two equivalences follow directly
from the definitions of the four involved substitutions.

ξνi ≡ ξνi ξνi(7)

ξ̄νi δ̂
ν
i ≡ δ̄i ξνi(8)

Furthermore, for any i ∈ N, J interval in wi, partial evaluations ν and
subformula γ of ϕ, the following equivalence holds:

Ψγ,J,νi δ̂µi ≡ Ψ
γ,J,ν
i δ̄i ξ

µ
i .(9)

Indeed, let Ψ̄γ,J,νi := Ψγ,J
′,ν

i−1 ζ̄J , for i > 0. From (1) and (5), we get that, for any

i ≥ 0, we need to prove that Ψ̄γ,J,νi ξ̄νi δ̂
ν
i ≡ Ψ̄γ,J,νi ξ̄νi δ̄i ξ

ν
i . This follows directly

from equivalence (8) and the equivalence ξ̄νi ≡ ξ̄νi ξ̄νi .

Lemma 23. For any i > 0 and J in newi, there is a substitution ζJi such that,
for any formula γ and partial valuation ν, the following equivalences hold:

ζJi ξ
ν
i ≡ ξνi−1 ζ

J
i(10)

ζJi θ
ν
i−1,i ≡ θνi−1 ζ

J
i(11)

ζ̄Ji δ̄i ≡ δ̄i−1 ζ
J
i(12)

Φγ,Ji ≡ Φγ,J
′

i−1 ζ
J
i ,(13)

where J ′ is the interval in wi−1 from which J originates.

Proof. Let ψ be a proper subformula of ϕ and γ its parent. For readability, in this
proof we drop the index i from ζ̄Ji and ζJi . If ψ is a direct subformula of a non-

temporal subformula of ϕ, then ζ̄J (ψJ
′
) = ψJ . In this case we let ζJ (ψJ

′
) := ψJ .

It is easy to check that the four equivalences hold in this case.
We consider now the case when γ is a temporal formula, with γ = α UI β.

We first note that for atomic propositions β̄J
′
, ᾱJ

′
, and ¯̄αJ

′
, the substitution ζ̄Ji

depends on whether J is L, N , or R, where (L,N,R) are the intervals obtained
by splitting J . Thus, we make a case distinction based on the value of J . We only
consider one case, namely when J = N , the other ones being treated similarly.
In this case we have the following equalities:

ζ̄N (β̄J
′
) = (β̄N ∧ tcN,N ) ∨ (β̄R ∧ tcR,N ∧ ¯̄αR ∧ ᾱN ),
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ζ̄N (ᾱJ
′
) = ᾱN ∧ ᾱR,

ζ̄N ( ¯̄αJ
′
) = t,

ζ̄N (tcJ
′,J′

) = t,

ζ̄N (tcH,J
′
) = tcH,N , for H > J ′,

and the substitution ζN is defined as follows

ζN (βJ
′
) := (βN ∧ tpN ∧ tcN,N ) ∨

(βR ∧ tpR ∧ tcR,N ∧ (tpR ∨ αR) ∧ (tpN → αN )),

ζN (αJ
′
) := (tpN → αN ) ∧ (tpR → αR),

ζN (tpJ
′
) := t,

ζN (tcJ
′,J′

) := t,

ζ̄N (tcH,J
′
) := tcH,N , for H > J ′.

By just using the definitions, it is easy to check that the equivalences (10),
(11), and (12) hold. For instance, we check next that β̄J

′
ζ̄J δ̄i ≡ β̄J

′
δ̄i−1 ζ

J :

δ̄i(ζ̄
N (β̄J

′
)) = δ̄i

(
(β̄N ∧ tcN,N ) ∨ (β̄R ∧ tcR,N ∧ ¯̄αR ∧ ᾱN )

)
= ((tpN ∧ βN ) ∧ tcN,N ) ∨

((tpR ∧ βR) ∧ tcR,N ∧ (tpR ∨ αR) ∧ (tpN → αN ))

= ζN (βJ
′
) = ζN (tpJ

′
∧ βJ

′
) = ζN (δ̄i−1(β̄J

′
)).

For (13), we check next that Φγ,Ni ≡ Φγ,J
′

i−1 ζ
N :

Φγ,Ni ≡
∨
K≥N

(
tpK ∧ tcK,N ∧ βK ∧

∧
N≤H<K

(tpH → αH)
)

≡
(
tpN ∧ tcN,N ∧ βN

)
∨(

tpR ∧ tcR,N ∧ βR ∧ (tpR ∨ αR) ∧ (tpN → αN )
)
∨∨

K>R

(
tpK ∧ tcK,N ∧ βK∧

∧ (tpN → αN ) ∧ (tpR → αR) ∧
∧

R<H<K

(tpH → αH)
)

≡ ζN
((

tpJ ∧ tcJ,J ∧ βJ
)
∨∨

K>J

(
tpK ∧ tcK,J ∧ βK ∧ (tpJ → αJ) ∧

∧
J<H<K

(tpH → αH)
))

≡ ζN (Φγ,Ji−1).

ut
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� transaction ∧ suspicious → �[0,3] report(P1′)

� transaction ∧ suspicious → �(0,3] transaction → ¬suspicious(P2′)

� transaction ∧ suspicious →
(
(transaction → �[0,3] report) W unflag

)
(P3′)

� transaction ∧ suspicious → �[0,6] transaction → �[0,3] report(P4′)

Fig. 4. MTL formulas.

D Additional Evaluation Details

D.1 Compliance Policy Description

We start by explaining the predicate symbols that model the events that the
banking system is assumed to log or transmit to the monitor. The predicate
trans(c, t, a) represents the execution of the transaction t of the customer c trans-
ferring the amount a of money. The predicate report(t) classifies the transaction t
as suspicious. Note that a message sent to the monitor describes an event and
the register values. For instance, when executing a transaction, the registers tid
and cid store the identifiers of the transaction and the customer; the amount
of the transaction is stored in the register sum. For a report event, the register
tid stores the identifier of the transaction whereas the other registers for the
customer and the amount store the default value 0.

The formula (P1) requires that a transaction t of a customer c must be
reported within at most three time units if the transferred amount a exceeds the
threshold of $2,000. The formulas (P2) to (P4) are variants of (P1). (P2) requires
that whenever a customer c makes a transaction that exceeds the threshold, then
any of c’s future transactions (within a specified period of time) must eventually
be reported (within a specified time bound). (P3) requires that whenever a
customer c makes a transaction t that exceeds the threshold, then c is not allowed
to make further transactions until the transaction t is reported. Note that the
syntactic sugar W (“weak until”) is used here instead of the primitive temporal
connective U. We not require that the transaction must eventually be reported.
Finally, (P4) requires that whenever a customer c makes a transaction that
exceeds the threshold, then any of c’s transactions in a given time period must
be reported.

D.2 Evaluation in a Propositional Setting

We consider the formulas in Figure 4 for comparing our experimental results in
Section 5 with the simpler settings where no data values are involved. These
formulas are propositional versions of the MTL↓ formula in Figure 2, except (P3′),
which has an additional temporal connective and accounts for the additional
event unflag .

Figure 5(a) shows the running times on logs with different event rates for
the formulas (P1′) to (P4′). Figure 5(b) shows the impact when messages are
received out of order for logs with an event rate 1000. We remark that some
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Fig. 5. Running times in a propositional setting (where each data point shows the
mean of five logs together with the minimum and maximum).

care must be taken when comparing these figures with the Figures 3(a) and (b).
First, the formulas express different policies. For instance, in (P2′) a report might
discharge multiple transactions. Second, the logs for the propositional settings
differ from the logs for the formulas (P1) to (P4). In particular, the events in
the log files generated for the propositional settings do not account for different
customers. Furthermore, we have chosen event rates that are 10 times higher.
However, the running times in the propositional setting are significantly faster. In
the propositional setting, our prototype usually processes an event in a fraction
of a millisecond.


