
Mightyl: A compositional translation from mitl to timed
automata

BRIHAYE, T, GEERAERTS, G, HO, Hsi-Ming and MONMEGE, B

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/25237/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

BRIHAYE, T, GEERAERTS, G, HO, Hsi-Ming and MONMEGE, B (2017). Mightyl: A
compositional translation from mitl to timed automata. Computer Aided Verification
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I, 10426, 421-440.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

MightyL: A Compositional Translation
from MITL to Timed Automata?

Thomas Brihaye1, Gilles Geeraerts2, Hsi-Ming Ho1, Benjamin Monmege3

1 Université de Mons, Belgium, thomas.brihaye,hsi-ming.ho@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae@ulb.ac.be

3 Aix Marseille Univ, CNRS, LIF, France, benjamin.monmege@univ-amu.fr

Abstract. Metric Interval Temporal Logic (MITL) was first proposed in
the early 1990s as a specification formalism for real-time systems. Apart
from its appealing intuitive syntax, there are also theoretical evidences
that make MITL a prime real-time counterpart of Linear Temporal Logic
(LTL). Unfortunately, the tool support for MITL verification is still lack-
ing to this day. In this paper, we propose a new construction from MITL
to timed automata via very-weak one-clock alternating timed automata.
Our construction subsumes the well-known construction from LTL to
Büchi automata by Gastin and Oddoux and yet has the additional ben-
efits of being compositional and integrating easily with existing tools.
We implement the construction in our new tool MightyL and report on
experiments using Uppaal and LTSmin as back-ends.

1 Introduction

The design of critical software that respect real-time specifications is a notori-
ously difficult problem. In this context, verification of programs against formal
specifications is crucial, in order to handle the thin timing behaviours. In the
untimed setting, a logic widely used both in academia and industry is Linear
Temporal Logic (LTL) [32]. A crucial ingredient of its success is the possibility
to translate LTL formulae into (Büchi) automata. In the real-time counterpart,
Metric Interval Temporal Logic (MITL) [3] has been introduced twenty years ago
where it was established that it can be translated into (Büchi) timed automata
(TA). Beyond verification of real-time software, there are numerous interests in
MITL from other domains, e.g. automated planning and scheduling [39], con-
trol engineering [18] and systems biology [6]. The translation from MITL to TAs
is complicated and has led to some simplified constructions, e.g. [17, 28]. How-
ever, despite these efforts, the tool support for MITL is still lacking to this day.
To the best of our knowledge, the only implementation of an automata-based
construction is described in [10, 11], but is not publicly available. Since existing
verification tools based on timed automata have been around for quite some time
? This work has been supported by the FRS/F.N.R.S. PDR grant SyVeRLo, and (par-
tially) funded by the DeLTA project (ANR-16-CE40-0007) and the SensAS project
(INS2I JCJC’17).

and have been successful (e.g. Uppaal [27] first appeared in 1995), it would be
preferable if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a
more practical construction from MITL to (Büchi) timed automata. Compared
to [10,11], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [30] as an
intermediate formalism, our construction exploits the ‘very-weakness’ of the
structure of OCATAs obtained from MITL formulae to reduce state space. In
particular, our construction subsumes LTL2BA [19] in the case of LTL.

2. The number of clocks in the resulting TA is reduced by a factor of up to two.
This is achieved via a more fine-grained analysis of the possible clock values
(see Section 5).

3. The construction is compositional : for each location of the OCATA A ob-
tained from the input MITL formula, we construct a ‘component’ TA and es-
tablish a connection between the runs of A and the runs of the synchronous
product of these components. Thanks to this connection, we can give the out-
put TA in terms of components; this greatly simplifies the implementation,
and speeds up its execution.

4. The construction is compatible with off-the-shelf model-checkers: our tool
MightyL generates output automata in the Uppaal xml format which,
besides Uppaal [27] itself, can also be analysed by LTSmin [24] with opaal
front-end, TiAMo [9], ITS-tools [35], DiVinE [5], etc.

Related work. There is already a number of MITL-to-TA constructions in the
literature [3,17,28]. However, most of them interpret MITL over signals (i.e. the
continuous semantics of MITL) and hence generate signal automata. This choice
unfortunately hinders the possibility to leverage existing tools based on classical
timed automata over timed words [2] and is probably one of the reasons why the
aforementioned constructions have never been implemented.4 We, following [4,
10, 11, 37] (among others), interpret MITL over timed words (i.e. the pointwise
semantics of MITL). Note that there have been some implementations that deal
with peculiar specification patterns over timed words (e.g. [1]). For MITL, apart
from [10, 11] that we mentioned earlier, we are only aware of implementations
for rather restricted cases, such as the safety fragment of MITL0,∞ [12] or MITL
over untimed words [39]. Our construction subsumes all of these approaches.

Using alternating automata as an intermediate formalism is a standard ap-
proach in LTL model-checking [36]. However, the translation from alternating
automata to Büchi automata may incur an exponential blow-up if the output
automaton is constructed explicitly [19]. For this reason, an on-the-fly approach
is proposed in [21], but it requires a specialised model-checking algorithm. Al-
ternatively, [8] gives a symbolic encoding of alternating automata which can
be used directly with NuSMV [13], but minimality of transitions (which may

4 Nonetheless, it has been argued that a continuous model of time is preferable from
a theoretical point of view; see e.g. [22].

2

potentially improve the performance of verification algorithms, cf. [21]) is diffi-
cult to enforce in this setting (see also [14, 34]). Our construction combines the
advantages of these approaches—it can be regarded as a symbolic encoding of
OCATAs in TAs, enforcing some minimality criteria on transitions for efficiency
(see Section 6)—and provides compatibility with existing tools that construct
state spaces on-the-fly. By contrast, [17,28], not based on OCATAs, also give the
resulting automaton in terms of smaller component automata, but they have to
use specialised product constructions to synchronise the components.

Apart from automata-theoretic approaches, [7] considers ‘bounded model-
checking’ which encodes the satisfiability problem for MITL (in the continuous
semantics) into an SMT problem (Satisfiability Modulo Theories) [15]. This ap-
proach is complete when very large bounds (numbers of regions of equivalent
TA) are used, but such bounds are clearly impractical for current SMT solvers.

Outline. Section 2 starts with preliminary definitions of timed logics and (alter-
nating) timed automata. Sections 3, 4 and 5 then give our new translation from
formulae to generalised Büchi (timed) automata for LTL, MITL0,∞ (a fragment
of MITL where only intervals of the form [0, a], [0, a), [a,+∞), or (a,+∞) are
allowed), and full MITL, respectively. We report on our OCaml implementation
MightyL and some promising experiments on several benchmarks in Section 6.

2 Timed logics vs (alternating) timed automata

Timed languages. Let AP be a finite set of atomic propositions, and Σ = 2AP.
A timed word over Σ is an infinite sequence ρ = (σ1, τ1)(σ2, τ2) · · · over Σ×R+

with (τi)i≥1 a non-decreasing sequence of non-negative real numbers. We denote
by TΣω the set of timed words over Σ. A timed language is a subset of TΣω.

Timed logics. We consider the satisfiability and model-checking problem of
Metric Interval Temporal Logic (MITL), an extension of Linear Temporal Logic
(LTL) in which temporal operators can be labelled with non-singular timed
intervals (or [0, 0], which is the only singular interval we allow). Formally, MITL
formulae over AP are generated by the grammar

ϕ := p | ϕ ∧ ϕ | ¬ϕ | XIϕ | ϕUI ϕ

where p ∈ AP and I is either a non-singular interval over R+ with endpoints in
N ∪ {+∞} or [0, 0]. To simplify our explanations, we will only consider closed
non-singular intervals in the sequel, i.e. intervals of the form [a, b] or [a,+∞),
with 0 ≤ a < b < +∞. We let |I| be the length of the interval I: |[a, b]| = b− a
for 0 ≤ a < b < +∞ and |[a,+∞)| = +∞.

We consider the pointwise semantics and interpret MITL formulae over timed
words. The semantics of a formula ϕ in MITL is defined inductively: given ρ =
(σ1, τ1)(σ2, τ2) · · · ∈ TΣω, and a position i ≥ 1, we let

– (ρ, i) |= p if p ∈ σi;
– (ρ, i) |= ϕ1 ∧ ϕ2 if (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2;

3

– (ρ, i) |= ¬ϕ if (ρ, i) 6|= ϕ;
– (ρ, i) |= XIϕ if (ρ, i+ 1) |= ϕ and τi+1 − τi ∈ I;
– (ρ, i) |= ϕ1 UI ϕ2 if there exists j ≥ i, (ρ, j) |= ϕ2, τj − τi ∈ I, and, for all
i ≤ k < j, (ρ, k) |= ϕ1.

We derive other Boolean operators with the following macros: ϕ1 ∨ ϕ2 ≡
¬(¬ϕ1 ∧ ¬ϕ2), > ≡ p ∨ ¬p, ⊥ ≡ ¬>, and ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2. We also define
other temporal operators as usual: the ‘eventually’ operator FIϕ ≡ >UI ϕ, the
‘globally’ operator GIϕ ≡ ¬FI¬ϕ, the ‘release’ operator ϕ1RI ϕ2 ≡ ¬((¬ϕ1)UI

(¬ϕ2)), and the ‘dual-next’ operator XIϕ ≡ ¬XI¬ϕ (contrary to LTL, it is not
true that ¬XIϕ ≡ XI¬ϕ). With the release and dual-next operators, we can
transform every formula ϕ into negative normal form, i.e. formulae using only
predicates of AP, their negations, and the operators ∨, ∧, UI , RI , XI , and XI .
To help the understanding, let us detail the semantics of ϕ1 RI ϕ2:

– (ρ, i) |= ϕ1 RI ϕ2 if for all j ≥ i such that τj − τi ∈ I, either (ρ, j) |= ϕ2, or
there exists i ≤ k < j such that (ρ, k) |= ϕ1.

We say that ρ satisfies the formula ϕ, written ρ |= ϕ if (ρ, 1) |= ϕ, and we
denote by JϕK the set of all timed words satisfying ϕ. When writing formulae, we
omit the trivial interval [0,+∞). LTL is the fragment of MITL where all operators
are labelled by [0,∞); and MITL0,∞ is the fragment where, in all intervals, either
the left endpoint is 0 or the right endpoint is +∞.

Timed automata. Let X be a finite set of real valued variables, called clocks.
The set G(X) of clock constraints g over X is defined by g := > | g ∧ g | x ./ c,
where ./ ∈ {≤, <,≥, >}, x ∈ X and c ∈ N. A valuation over X is a mapping
v : X → R+. We denote by 0 the valuation that maps every clock to 0, and
we write the valuation simply as a value in R+ when X is a singleton. The
satisfaction of a constraint g by a valuation v is defined in the usual way and
noted v |= g, and we denote by JgK the set of valuations v satisfying g. For t ∈ R+,
we let v + t be the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For
R ⊆ X, we let v[R← 0] be the valuation defined by (v[R← 0])(x) = 0 if x ∈ R,
and (v[R← 0])(x) = v(x) otherwise.

We introduce the notion of generalised Büchi timed automaton (GBTA) as an
extension of classical timed automata [2] with a generalised acceptance condition
(used by [20] in the untimed setting). A GBTA is a tuple A = (L,Σ, `0, ∆,F)
where L is a finite set of locations, Σ is a finite alphabet, `0 ∈ L is the initial
location, ∆ ⊆ L × Σ × G(X) × 2X × L is the transition relation, and F =
{F1, . . . , Fn}, with Fi ⊆ L for all 1 ≤ i ≤ n, is the set of sets of final locations.
A timed automaton (TA), as described in [2], is a special case of GBTA where
F = {F} is a singleton (F contains the accepting locations of the TA). A state
of A is a pair (`, v) of a location ` ∈ L and a valuation v of the clocks in X. A
run of A over the timed word (σ1, τ1)(σ2, τ2) · · · ∈ TΣω is a sequence of states
C0, C1, . . . where (i) C0 = (`0,0) and (ii) for each i ≥ 0 such that Ci = (`, v),
there is a transition (`, σi+1, g, R, `

′) such that Ci+1 = (`′, v′), v+(τi+1−τi) |= g
(assuming τ0 = 0) and v′ = (v + (τi+1 − τi))[R ← 0]. By the generalised Büchi

4

acceptance condition, a run is accepting if and only if the set of locations that
it visits infinitely often contains at least one location from each set Fi, for all
1 ≤ i ≤ n. We let JAK be the set of timed words on which there exist accepting
runs of A.

Synchronisation of timed automata. In the following, we will consider
GBTAs described by synchronous products of several components. More pre-
cisely, given two GBTAs A1 = (L1, Σ, `10, ∆

1,F1) and A2 = (L2, Σ, `20, ∆
2,F2)

over disjoint sets of clocks, we define the GBTA A1 × A2 = (L,Σ, `0, ∆,F)
obtained by synchronising A1 and A2. Its set of locations is L = L1 × L2,
with `0 = (`10, `

2
0). The acceptance condition is obtained by mimicking a disjoint

union of the generalised Büchi conditions: assuming F1 = {F1, . . . , Fn} and
F2 = {G1, . . . , Gm}, we let F = {F1 ×L2, . . . , Fn ×L2, L1 ×G1, . . . , L

1 ×Gm}.
Finally, ((`11, `21), σ, g, R, (`12, `22)) ∈ ∆ if there exists (`11, σ, g

1, R1, `12) ∈ ∆1 and
(`21, σ, g

2, R2, `22) ∈ ∆2 such that g = g1 ∧ g2 and R = R1 ∪ R2. This definition
can be extended for the synchronisation of a set of GBTAs {Ai | i ∈ I}: the
product is then written as

∏
i∈I Ai.

One-clock alternating timed automata. One-clock alternating timed au-
tomata (OCATA) [30] extend (non-deterministic) one-clock timed automata by
adding conjunctive transitions. Intuitively, a conjunctive transition spawns sev-
eral copies of the automaton that run in parallel from the targets of the transi-
tion. A word is accepted if and only if all copies accept it. An example is shown
in Fig. 1, where the conjunctive transition is the hyperedge starting from `0.

Formally, we consider a single clock x and, for a set L of locations, let Γ (L)
be the set of formulae defined by

γ := > | ⊥ | γ ∨ γ | γ ∧ γ | ` | x ./ c | x.γ

where c ∈ N, ./ ∈ {≤, <,≥, >}, and ` ∈ L. Compared to the clock constraints
defined above for TAs, Γ (L) allows non-determinism (∨ operator), locations as
atoms, and expressions of the form x.γ (meaning that x is reset in γ). An OCATA
is a tuple A = (L,Σ, `0, δ, F) where L is a finite set of locations, Σ is a finite
alphabet, `0 ∈ L is the initial location, δ : L × Σ → Γ (L) is the transition
function, and F ⊆ L is the set of final locations. A state of A is a pair (`, v)
of a location in L and a valuation of the single clock x. Models of the formulae
in Γ (L), with respect to a clock valuation v ∈ R+, are sets of states M :

– M |=v >; M |=v ` if (`, v) ∈M ; M |=v x ./ c if v ./ c; M |=v x.γ if M |=0 γ;
– M |=v γ1 ∧ γ2 if M |=v γ1 and M |=v γ2;
– M |=v γ1 ∨ γ2 if M |=v γ1 or M |=v γ2.

A set M of states is said to be a minimal model of the formula γ ∈ Γ (S) with
respect to a clock valuation v ∈ R+ if and only if M |=v γ and there is no
proper subset M ′ ⊂ M with M ′ |=v γ. A run of A over a timed word ρ =
(σ1, τ1)(σ2, τ2) · · · ∈ TΣω is a rooted directed acyclic graph (DAG) G = (V,→)
with vertices of the form (`, v, i) ∈ L × R+ × N, (`0, 0, 0) as root, and edges as
follows: for every vertex (`, v, i), we choose a minimal model M of the formula

5

`0 ∧ `1

Σ \Σp

Σp \Σq

Σp ∩Σq

x := 0

Σ

x ≤ 1, Σq

Fig. 1. An OCATA accepting the language of G(p⇒ F[0,1]q).

(`0, 0, 0) (`0, 0.42, 1)

(`0, 0.42, 2)

(`1, 0, 2)

(`0, 0.7, 3) . . .

Fig. 2. A run of the OCATA of Fig. 1 over (∅, 0.42)({p}, 0.42)({q}, 0.7) · · · .

δ(`, σi+1) with respect to v + (τi+1 − τi) (again, τ0 = 0), and we have an edge
(`, v, i)→ (`′, v′, i+ 1) in G for every state (`′, v′) appearing in model M . Such
a run is accepting if and only if there is no infinite path in G that visit final
locations only finitely often. We let JAK be the set of timed words on which
there exist accepting runs of A.

It is also useful to see a run as a linear sequence of configurations (i.e. finite
sets of states) which gather all states at a given DAG level. Formally, from a
DAG G = (V,→) we extract the sequence of configurations K0,K1, . . . where
Ki = {(`, v) | (`, v, i) ∈ V } for all i ≥ 0.5

Example 1. Consider the OCATA of Fig. 1 on the alphabet Σ = 2{p,q}. For each
proposition π ∈ {p, q}, we write Σπ = {σ ∈ Σ | π ∈ σ}. A run over the timed
word (∅, 0.42)({p}, 0.42)({q}, 0.7) · · · is depicted in Fig. 2. It starts with the DAG
rooted in (`0, 0, 0) (initially, there is only one copy in `0 with the clock equal
to 0). This root has a single successor (`0, 0.42, 1), which has two successors
(`0, 0.42, 2) and (`1, 0, 2) (after firing the conjunctive transition from `0). Then,
(`1, 0, 2) has no successor since the empty model is a minimal model of the next
transition (the transition from `1 points to no location). The associated sequence
of configurations starts by: {(`0, 0)}, {(`0, 0.42)}, {(`0, 0.42), (`1, 0)} · · ·

Each formula ϕ of MITL can be translated into an OCATA Aϕ that accepts
the same language [11,30], and with a number of locations linear in the number
of subformulae of ϕ. We recall the definition of Aϕ for the sake of completeness.
The set of locations of Aϕ contains: (i) ϕinit; (ii) all the subformulae of ϕ (that
we suppose to be in negative normal form) whose outermost operator is UI or
RI ; and (iii) ψr for each subformulae ψ of ϕ whose outermost operator is XI

5 In the current (infinite-word) setting, we cannot define acceptance conditions in
terms of configurations as in [30].

6

or XI . Its initial location is ϕinit, and the accepting locations of F are all the
subformulae of the form ϕ1 RI ϕ2. Finally, δ is defined inductively:

– δ(ϕinit, σ) = x.δ(ϕ, σ), δ(>, σ) = >, and δ(⊥, σ) = ⊥;
– δ(p, σ) = > if p ∈ σ, δ(p, σ) = ⊥ otherwise;
– δ(¬p, σ) = > if p /∈ σ, δ(¬p, σ) = ⊥ otherwise;
– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ), and δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ);
– δ(ϕ1 UI ϕ2, σ) = (x.δ(ϕ2, σ) ∧ x ∈ I) ∨ (x.δ(ϕ1, σ) ∧ ϕ1 UI ϕ2 ∧ x ≤ sup I);
– δ(ϕ1 RI ϕ2, σ) = (x.δ(ϕ2, σ) ∨ x /∈ I) ∧ (x.δ(ϕ1, σ) ∨ ϕ1 RI ϕ2 ∨ x > sup I);
– δ(XIϕ, σ) = x.(XIϕ)

r, and δ((XIϕ)
r, σ) = x ∈ I ∧ x.δ(ϕ, σ);

– δ(XIϕ, σ) = x.(XIϕ)
r, and δ((XIϕ)

r, σ) = x /∈ I ∨ x.δ(ϕ, σ).

As already noticed in [11], the OCATA Aϕ produced from an MITL formula ϕ
is very-weak [19, 26, 29], i.e. it comes with a partial order on its locations such
that all locations appearing in δ(`, σ) are bounded above by ` in this order.
For an OCATA Aϕ obtained from an MITL formula ϕ, the order is given by the
subformula order: ϕinit is the greatest element in the order, and a location ψ
is less than χ if ψ is a subformula of χ. We will also make use of the following
properties of δ: (i) if `′ appears in δ(`, σ) then it is preceded by a clock reset if
and only if `′ 6= `; and (ii) each `′ either has no parent or has a unique parent,
i.e. there is a unique ` 6= `′ such that `′ appears in δ(`, σ) for some σ.

Theorem 2 ([11]). For all formulae ϕ of MITL, JAϕK = JϕK.

Remark 3. To ease the presentation, we use Boolean formulae over atomic propo-
sitions as transition labels. For instance, Σ \Σp will be written as ¬p.

3 Compositional removal of alternation

The current and next two sections are devoted to explaining the core idea of
our construction: simulate the OCATA Aϕ obtained from an MITL formula ϕ
by the synchronous product of component Büchi timed automata, one for each
temporal subformula (i.e. a subformula whose outermost operator is temporal).
The very-weakness of Aϕ is crucial for our construction to work: a run of Aϕ
is accepting if and only if Aϕ does not get stuck at a non-accepting location
in any branch. Therefore, we can keep track of each location with a separate
component and simply define a suitable Büchi acceptance condition on each
such component.6 Our compositional construction preserves the structure of the
formula, and thus we can hope that the model-checking tool (which is responsible
for the composition) takes this into account.7 At the very least, the model-
checking tool can use an on-the-fly approach in composition (as is indeed the
6 This is not possible for general (not very-weak) OCATAs since it might be the case
that a branch alternates between several non-accepting location without ever hitting
an accepting location.

7 The same idea underlies the antichain-based algorithms for LTL model-checking [38],
where the structure can be exploited to define a pre-order on the state space of the
resulting automaton.

7

case for Uppaal and LTSmin), which is often faster in practice: the explicit
construction of the whole product can be avoided when there is an accepting
run.

In what follows, let ϕ be an MITL formula over AP in negative normal form
and Aϕ be the OCATA obtained from ϕ with the translation described earlier.
For the sake of simplicity, we make the following assumptions:

– XI and XI do not appear in ϕ;
– each temporal subformula ψ of ϕ appears only once in ϕ.

Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic
proposition pψ for each subformula ψ ∈ Φ (i.e. for each non-initial location of
the OCATA Aϕ) and let APϕ be the set of these new atomic propositions. For
each (not necessarily temporal) subformula ψ of ϕ, we denote by Pψ the set
of atomic propositions pξ ∈ APϕ such that ξ is a top-level temporal subformula
of ψ, i.e. the outermost operator of ξ is UI or RI , yet ξ does not occur under the
scope of another UI or RI . For instance, PpUIq∨rUI(sRt) = {ppUIq, prUI(sRt)}.

Hintikka sequences and triggers. A Hintikka sequence of ϕ is a timed
word ρ′ over 2AP∪APϕ . Intuitively, Hintikka sequences can be regarded as an
instrumented version of timed words, where the extra atomic propositions from
APϕ are triggers that connect timed words to their runs in the OCATA Aϕ; this
is the central notion of our construction which, as we will prove, indeed sim-
ulates the runs of Aϕ. Pulling the trigger pψ (i.e. setting pψ to true) at some
point means that ψ is required to hold at this point. However, the absence of
a trigger pξ does not mean that subformula ξ must not be satisfied—its satis-
faction is simply not required at this point. We denote by projAP(ρ

′) the timed
word obtained by hiding all the atomic propositions in APϕ from ρ′. We also let
projAP(L) = {projAP(ρ

′) | ρ′ ∈ L} for a timed language L over 2AP∪APϕ .

Formulae over AP ∪ APϕ. We now introduce some syntactic operations on
Boolean combinations of atomic propositions in AP ∪ APϕ, that will be used to
construct the component Büchi automata later. Specifically, for a subformula ψ
of ϕ, we define formulae ψ, ∗ψ, ∼ψ, and ψ̂.

The formula ψ is obtained from ψ by replacing all top-level temporal sub-
formulae by their corresponding triggers. Formally, ψ is defined inductively as
follows (where p ∈ AP ∪ APϕ):

ψ1 ∧ ψ2 = ψ1 ∧ ψ2 ψ = ψ when ψ is > or ⊥ or p or ¬p
ψ1 ∨ ψ2 = ψ1 ∨ ψ2 ψ = pψ when ψ is ψ1 UI ψ2 or ψ1 RI ψ2 .

The formula ∗ψ, read as “do not pull the triggers of ψ”, will be used to ensure
that our component automata only follow the minimal models of the transition
function of Aϕ (we will see in Section 6 how crucial it is, for performance, to
generate only minimal models). It is the conjunction of negations of all the
atomic propositions in Pψ. As a concrete example,

∗((¬p ∨ ψ1 U ψ2) ∧ (q ∨ ψ3 R (ψ4 U ψ5))) = ¬pψ1Uψ2
∧ ¬pψ3R(ψ4Uψ5).

8

1 0
ϕ̂ ∗ϕa)

0 1

pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2

pχ ∧ ∗ϕ1 ∧ ϕ̂2

∗ϕ1 ∧ ϕ̂2

ϕ̂1 ∧ ∼ϕ2

b)

0 1

pχ ∧ ∼ϕ1 ∧ ϕ̂2

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2

pχ ∧ ϕ̂1 ∧ ϕ̂2

ϕ̂1 ∧ ϕ̂2

∼ϕ1 ∧ ϕ̂2

c)

Fig. 3. The automata a) Cinit and Cχ for b) χ = ϕ1 U ϕ2, and c) χ = ϕ1 R ϕ2.

The formula ∼ψ asserts that ψ is false and none of its triggers are activated:
∼ψ = ¬ψ ∧ ∗ψ. Finally, the formula ψ̂ is defined as mm(ψ) where mm(α) is
defined inductively as follows:

mm(p) = p mm(¬p) = ¬p mm(>) = > mm(⊥) = ⊥
mm(α1 ∨ α2) =

(
mm(α1) ∧ ∼α2

)
∨
(
mm(α2) ∧ ∼α1

)
∨
(
(α1 ∨ α2) ∧ ∗α1 ∧ ∗α2

)
mm(α1 ∧ α2) = mm(α1) ∧mm(α2) .

Intuitively, mm(α) is satisfiable if and only if α is satisfiable, but mm(α) only
permits models of α that are minimal with respect to the triggers it contains:
for mm(α1 ∨α2) to be true, either mm(α1) is true and α2 does not hold, or vice
versa, or α1∨α2 is indeed true, but not because of any of the triggers it contains.

Component Büchi automata for LTL. We are now ready to present the
construction for the case that ϕ is an LTL formula. Instead of building a mono-
lithic Büchi automaton Bϕ directly from the alternating automaton, as in [19],
we build small component Büchi automata that are language-equivalent to the
automaton Bϕ, once synchronised. There is an initial component Cinit, and a
component Büchi automaton Cχ, for each χ ∈ Φ (see Fig. 3). Consider, for in-
stance, the case χ = ϕ1 U ϕ2. Component Cχ has two locations 0 and 1 with
the following intended meaning: Cχ is in location 1 if and only if the trigger pχ
has been pulled in the past by Cinit, in which case pχ ∈ Pϕ, or by a unique
component Cψ1UIψ2

(or Cψ1RIψ2
) such that pχ ∈ Pψ1

or pχ ∈ Pψ2
, and χ has

not been satisfied yet. When component Cχ is in location 1, we say that we have
an obligation for χ. To satisfy this obligation, we must see a letter in the future
where ϕ2 holds. Thus, there is a self-loop on location 1 whose label ensures that
ϕ2 does not hold (because of ∼ϕ2), while ϕ1 still holds (this is ensured by ϕ̂1,

9

which also pulls a minimal set of triggers for ϕ1 to be satisfied). Cχ moves back
from 1 to 0 when ϕ2 holds, while no trigger of ϕ1 should be pulled at this instant
(which is translated by ∗ϕ1). From location 0, if we do not read trigger pχ, noth-
ing has to be checked and we do not pull any trigger. However, if pχ is pulled,
then, either ϕ2 holds right away and the obligation is fulfilled immediately, or
we jump to location 1. The component Cχ for the case χ = ϕ1 R ϕ2 is based on
a similar reasoning. We state the following proposition without proof as it will
be superseded by a stronger proposition in the next section.

Proposition 4. For all LTL formulae ϕ, projAP(JCinit ×
∏
χ∈Φ CχK) = JϕK.

Example 5. Consider the LTL formula G(p ⇒ Fq) that can be rewritten into
negative normal form as ϕ = ⊥ R (¬p ∨ > U q). Then, the three component
Büchi automata Cinit, Cϕ and CFq, after the constraints on the transitions are
simplified, are depicted on the top of Fig. 4, The automaton C = Cinit×Cϕ×CFq
is depicted in the middle of the figure. Once atomic propositions in APϕ are
projected away, one obtains an automaton isomorphic to the one at the bottom
of the figure that accepts JϕK.

4 The case of MITL0,∞

We now describe how to lift the translation we described earlier to the timed
operators of MITL0,∞. The new components for U[0,a], R[0,a], and R[a,∞) are
depicted in Fig. 5. They have the same shape as the components for untimed
U and R (see Fig. 3); only the guards are changed to reflect the more involved
semantics of the timed operators. Observe that these automata have only one
clock. To understand why this is sufficient, consider the formula G(p⇒ χ) with
χ = pU[0,2] q. After reading ({p}, 0)({p}, 0.4)({p}, 1), the OCATA Aϕ reaches the
configuration {(ϕ, 0), (χ, 0), (χ, 0.6), (χ, 1)}, meaning intuitively that, to satisfy
the formula, one must fulfil three obligations related to χ: to see q’s within 2,
1.4, and 1 time units, respectively. Hence, we can store the earliest obligation,
corresponding to (χ, 1), only (as already observed in [11]). Indeed, if the cor-
responding instance of χ is satisfied, it means that there will be a q occurring
within less that 1 time unit, which will also satisfy all the other obligations.
More generally, for operators U[0,a] and R[a,∞), it is always the case that only
the oldest obligation has to be stored, while for operators R[0,a] and U[a,∞), only
the earliest obligation has to be stored. This is translated in the components by
the absence/presence of resets on transitions that leave state 1 (which is reached
when an obligation is currently active) and read pχ.

For χ = ϕ1 U[a,∞) ϕ2, the situation is slightly more complicated, although
one clock is again sufficient. The corresponding component is in Fig. 6 and has
four locations. To understand why, consider the case when there is an obligation
for χ associated with the current valuation v ≥ a of clock x (Cχ is in location 1),
the current letter contains pχ and satisfies both ϕ̂1 and ϕ̂2. Since the trigger
has been pulled, Cχ should stay in the non-accepting location 1. On the other

10

a)
1 0

pϕ ¬pϕ

0 1
pϕ ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)¬pϕ ∧ ¬pFq ¬p ∧ ¬pFq ∨ p ∧ pFq

0 1

pFq ∧ ¬q
¬pFq

pFq ∧ q
q

¬q

⇓

b)

100 010 011

pϕ ∧ pFq ∧ p ∧ ¬q

pϕ ∧ ¬p ∧ ¬pFq
pϕ ∧ p ∧ pFq ∧ q

¬p ∧ ¬pFq
p ∧ pFq ∧ q

pFq ∧ p ∧ ¬q

¬q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)

q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq)

⇓

c) ¬p ∨ p ∧ q

p ∧ ¬q

¬q

q

Fig. 4. a) Component Büchi automata for the formula ϕ = ⊥R (¬p∨>U q); b) Büchi
automaton obtained by the product of the components; c) Büchi automaton obtained
by projecting away APϕ (and merging two identical locations).

11

a) 0 1

pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0
pχ ∧ ∗ϕ1 ∧ ϕ̂2, x := 0

∗ϕ1 ∧ ϕ̂2 ∧ x ≤ a, x := 0

ϕ̂1 ∧ ∼ϕ2 ∧ x ≤ a

b) 0 1

pχ ∧ ∼ϕ1 ∧ ϕ̂2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2 ∧ x > a, x := 0
¬pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≤ a, x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2, x := 0

¬pχ ∧ ∼ϕ1 ∧ ϕ̂2 ∧ x ≤ a
pχ ∧ ∼ϕ1 ∧ ϕ̂2, x := 0

c) 0 1

pχ ∧ ∼ϕ1 ∧ ∗ϕ2, x := 0
¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2, x := 0

ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0
ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

∼ϕ1 ∧ ∗ϕ2 ∧ x < a
∼ϕ1 ∧ ϕ̂2 ∧ x ≥ a

Fig. 5. One-clock TA for the subformulae: a) χ = ϕ1U[0,a] ϕ2, b) χ = ϕ1R[0,a] ϕ2, and
c) χ = ϕ1 R[a,∞) ϕ2.

hand, the pending obligation has also been fulfilled, and an accepting location
should be visited. So, instead of staying in 1, Cχ moves to 1′ in this case: 1′ is a
copy of 1 as far as transitions are concerned, but it is accepting. The location 1′′

is used to deal with the situation where pχ is launched infinitely often but no
two occurrences of pχ are separated by more than a time units; in this case, we
non-deterministically move to 1′′ and add a new obligation (by resetting x) after
the current obligation has been verified. Notice that this problem cannot occur
for ϕ1 U ϕ2, or ϕ1 U[0,a] ϕ2: in these cases, the new obligation is immediately
fulfilled, and the automaton moves to the initial, accepting, location.

We now present the extension of Proposition 4 to the case of MITL0,∞. The
proof relies on a function that, given a formula γ = δ(`, σ) (where δ is the
transition function of Aϕ, ` is a location of Aϕ, and σ ∈ Σ = 2AP) and a
minimal model M of γ with respect to a clock valuation v ∈ R+, recovers the
set of triggers activated. Formally, we write trigϕ(M,γ, v) for the subset of APϕ
inductively defined by (the rule for x.γ where γ = δ(`, σ) for some ` ∈ Φ has
precedence over the rule for x.(γ1 ∧ γ2) and x.(γ1 ∨ γ2)):
– trigϕ(M,γ1 ∧ γ2, v) = trigϕ(M,γ1, v) ∪ trigϕ(M,γ2, v);

– trigϕ(M,γ1 ∨ γ2, v) =

{
trigϕ(M,γ1, v) if M |=v γ1
trigϕ(M,γ2, v) otherwise;

– trigϕ(M,x.γ, v) = {p`} ∪ trigϕ(M,γ, 0) if γ = δ(`, σ) for some ` ∈ Φ;
– trigϕ(M,x.(γ1 ∧ γ2), v) = trigϕ(M,x.γ1, v) ∪ trigϕ(M,x.γ2, v);

– trigϕ(M,x.(γ1 ∨ γ2), v) =

{
trigϕ(M,x.γ1, v) if M |=v x.γ1
trigϕ(M,x.γ2, v) otherwise;

– trigϕ(M,γ, v) = ∅ otherwise.

Proposition 6. For all MITL0,∞ formulae ϕ, projAP(JCinit×
∏
χ∈Φ CχK) = JϕK.

12

0 1 1′

1′′

pχ ∧ ϕ̂1 ∧ ∗ϕ2, x := 0

¬pχ ∧ ∗ϕ1 ∧ ∗ϕ2,
x := 0

¬pχ ∧ ∗ϕ1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a
pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0

pχ ∧ ϕ̂1 ∧ ∼ϕ2

pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a

pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ∗ϕ1 ∧ ϕ̂2 ∧ x ≥ a, x := 0

¬pχ ∧ ϕ̂1 ∧ ∼ϕ2

¬pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a
pχ ∧ ϕ̂1 ∧ ∼ϕ2, x := 0
pχ ∧ ϕ̂1 ∧ ∗ϕ2 ∧ x < a, x := 0

ϕ̂1 ∧ ∼ϕ2

ϕ̂1 ∧ ∗ϕ2 ∧ x < a

ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a,
x := 0

pχ ∧ ϕ̂1 ∧ ϕ̂2 ∧ x ≥ a,
x := 0

Fig. 6. One-clock TA for the subformula χ = ϕ1 U[a,∞) ϕ2.

Proof (Sketch). Recall that Theorem 2 states that JϕK = JAϕK. Therefore, it
suffices to relate the accepting runs of the synchronous product of all component
Büchi timed automata C = Cinit ×

∏
χ∈Φ Cχ with the accepting runs of Aϕ. Let

us consider a timed word ρ ∈ JAϕK and an accepting run G = (V,→) of Aϕ
over ρ. Let K0,K1, . . . be the sequence of configurations associated with G.

We first construct the instrumented timed word ρ′ over 2AP∪APϕ from ρ and
G by adding the triggers in APϕ according to the minimal models selected in G.
More precisely, for all i ≥ 0, we associate with every state (`, v) of Ki the pair
(γ`,v,M`,v) where γ`,v = δ(`, σi+1) and M`,v is the minimal model of γ`,v with
respect to v + τi+1 − τi chosen in G. We then gather all the triggers in Qi =⋃

(`,v)∈Ki
trigϕ(M`,v, γ`,v, v+τi+1−τi), and let ρ′ = (σ1∪Q1, τ1)(σ2∪Q2, τ2) · · · .

Then, it can be shown that each component has an accepting run over ρ′. By
definition, the generalised Büchi acceptance condition on C is fulfilled exactly
when the Büchi acceptance condition on each of the components is fulfilled. It
follows that C accepts ρ′, and hence ρ ∈ projAP(JCK). The other direction of the
proof consists of building an accepting run G of Aϕ over projAP(ρ

′) from an
accepting run of C over ρ′ ∈ JCK. At each level of G, the truth values of the
triggers in ρ′ are used to guide the construction of minimal models. ut

5 Handling full MITL

We can now extend our translation to full MITL, i.e. allowing operators U[a,b]

and R[a,b] with 0 < a < b < +∞. For these two types of operators, we cannot
rely on a single clock in the components anymore. For instance, consider the
formula ϕ = G(p ⇒ χ) with χ = F[1,2]q. Imagine that Aϕ reads the prefix

13

×pχ
x1 := 0

τ1
[

x1 = a

τ1 + a
]

x1 = b

τ1 + b

×pχ
x2 := 0

τ2
[

x2 = a

τ2 + a
]

x2 = b

τ2 + b

×pχ
x3 := 0

τ3
[

x3 = a

τ3 + a
]

x3 = b

τ3 + b

Case 1: [
ϕ2

]

Case 2: [
ϕ2

) (
ϕ2

]

Case 3: [
ϕ2

) (
ϕ2

]

Case 4: [
ϕ2

)(
ϕ2

]

Fig. 7. How to split cases to satisfy the formula χ = ϕ1 U[a,b] ϕ2.

({p}, 0)({p}, 0.5). At this point, its configuration is {(ϕ, 0), (χ, 0), (χ, 0.5)}. It
is not possible, as before, to drop one of the two states in location χ as the
following futures can happen: if we read ({q}, 1), obligation (χ, 0) is fulfilled but
not (χ, 0.5); if we read ({q}, 2.5) then the obligation (χ, 0.5) is fuilfilled but not
(χ, 0). Therefore, we must keep track of the two obligations separately. It is,
however, not clear how to find an a priori bound on the number of clocks. This
is the role of the interval semantics introduced in [11] for OCATAs resulting from
MITL formulae over infinite words. In this interpretation of OCATAs, valuations
of the clocks are no longer points but intervals meant to approximate sets of
(singular) valuations: (`, [α, β]) means that there are clock copies with valuations
α and β in `, yet there could be more copies in ` with valuations in (α, β). In
this semantics, we can merge non-deterministically two copies (`, [α1, β1]) and
(`, [α2, β2]) into a single copy (`, [α1, β2]) (assuming α1 ≤ β2), in order to keep the
number of clock copies below a fixed threshold, and thus obtain an equivalent TA.
It has been shown in [11] that, for the OCATA Aϕ, with ϕ ∈ MITL, the interval
semantics is sufficient to retain the language of the formula, with TAs having at
mostM(ϕ) = |ϕ|×maxI∈Iϕ(max(4×dinf(I)/|I|e+2, 2×dsup(I)/|I|e+2)) clocks,
where Iϕ is the set of intervals that appear in ϕ: more precisely, each subformula
with topmost operator UI (respectively, RI) contributes to 4× dinf(I)/|I|e+ 2
(respectively, 2× dsup(I)/|I|e+ 2) more clocks.

Our solution is twofold in this context: (i) we propose a better approximation
by intervals that allows us to cut, up to a factor of two, the number of clock
copies we must keep in memory; (ii) instead of a single TA, as in [11], we provide
a GBTA, with one component per temporal subformula of ϕ. The component TA
are much more involved than for MITL0,∞, thus we do not give them explicitly,
but rather explain the main ideas.

We start by developing our new merging strategy on an example, to explain
how it is different from [11]. Consider χ = ϕ1U[a,b]ϕ2 with 0 < a < b < +∞ and

14

the situation depicted in Fig. 7, where the trigger pχ is pulled at three positions
of time stamps τ1, τ2, and τ3. We suppose that ϕ1 holds at all three positions. The
picture presents four different cases corresponding to the four possible situations
where the occurrences of ϕ2 fulfil the three pending obligations. Case 1 is when
a position in [τ3 + a, τ1 + b] satisfies ϕ2, hence all three obligations are resolved
at once. This case can be checked using only clocks x3 and x1. In case 2, the first
obligation is resolved by an occurrence of ϕ2 with time stamp in [τ1 + a, τ2 + a),
while the two others are resolved by an occurrence in (τ1+b, τ2+b]. Thus, case 2
can be checked using only clocks x1 and x2. Now consider the remaining cases:
if no occurrences of ϕ2 appear in [τ1 + a, τ2 + a)∪ [τ3 + a, τ1 + b], one occurrence
of ϕ2 must necessarily happen in [τ2 + a, τ3 + a), while the other should be in
(τ1 + b, τ3 + b], which can only be checked using three clocks x1, x2 and x3. We
avoid this by splitting this case into two further cases (cases 3 and 4) that can
be checked with only two clocks. Specifically, case 3 can be checked using only
clocks x2 and x3; and case 4 using only clocks x2 and x1.

Observe that these cases can be categorised into two groups: one where ϕ2

should occur in a single interval whose endpoints use two distinct clocks (case 1),
another where ϕ2 should occur in two half-open intervals whose both endpoints
use the same two distinct clocks (cases 2, 3 and 4). In each of the two groups,
it must be understood how a new obligation (added by pulling the trigger pχ)
modifies the situation. With only one interval, if a new obligation for ϕ2 appear
as a new interval [τ + a, τ + b], either the new obligation is implied by the
current one, in which case we are done, or the two intervals intersect and we do
a further split (non-deterministically) into cases 1, 3 and 4, or they are disjoint
and we keep both intervals in memory. The latter situation cannot happen too
often since intervals are non-singular; more precisely, this will happen at most
d(inf(I)/|I|)+1e times (I = [a, b]). With two intervals, either the new obligation
is already implied by current obligations, or [τ + a, τ + b] is not implied by the
current obligations and we add this new interval in memory as before (again,
this cannot happen more than d(inf(I)/|I|) + 1e times).

In the end, following the same lines as [11], we can build a component Cχ for
each subformula χ = ϕ1U[a,b]ϕ2 with N(χ) = 2×d(inf(I)/|I|)+1e+2 clocks (the
two additional clocks are used to deal easily with some special cases), which is
roughly half of the previous bound on the number of clocks [11]. In the locations,
we can handle the clocks in pairs and use a queue of size N(χ)/2 to keep track
of which case we fall into and which clocks are used to represent the endpoints
of intervals. It follows that the number of locations is exponential in N(χ). A
similar construction, using 2× d(inf(I)/|I|) + 1e clocks, builds a component Cχ
for each subformula χ = ϕ1 R[a,b] ϕ2. In this case, we have to consider unions of
intervals, which are easier to deal with.

Theorem 7. For all MITL formulae ϕ, projAP(JCinit ×
∏
χ∈Φ CχK) = JϕK.

Proof (Sketch.). We follow the same lines of the proof of Proposition 6, i.e.
relating the accepting runs of Aϕ with the accepting runs of C = Cinit×

∏
χ∈Φ Cχ.

To show that JAϕK ⊆ projAP(JCK), we use the same construction of the Hintikka

15

sequence over 2AP∪APϕ . Note that we have the accepting run G, so that we know
in advance how each obligation is to be fulfilled in the future. In particular, we
use this knowledge to resolve the non-determinism in components of the form
Cϕ1U[a,b]ϕ2

or Cϕ1R[a,b]ϕ2
. The other direction is also similar. ut

6 Implementation

We have implemented our translation from MITL formulae to generalised Büchi
timed automata in a tool called MightyL, written in OCaml. From a formula ϕ,
it produces the GBTA C, described in previous sections, in the xml format used
by Uppaal, as well as the generalised Büchi condition written as a very simple
LTL formula. When the input formula is in MITL0,∞, the translation can be done
in polynomial time. For the general case, it runs in exponential time (assuming
a succinct encoding of constants, as is the case here). We can then use Up-
paal [27] to check the satisfiability of ϕ over finite timed words, or LTSmin [24]
with opaal front-end to check satisfiability over infinite timed words. To max-
imise compatibility with model-checking tools, we use several helper variables in
the output xml file, e.g. a Boolean variable for each atomic proposition and a
loc variable in each component for the current location. The synchronisation is
done in a round-robin fashion with a counter variable N: initially, N is set to 0,
allowing the model (to be model-checked) to take a transition and set the truth
values of the atomic propositions. Then, N loops from 1 to the number of compo-
nents of C, allowing each component to read the atomic propositions and take a
corresponding transition. Finally, N is set back to 0 and we start over again. For
the finite-word case, this also enables to check that all components have been
synchronised properly (N = 0) while in the final location. Our tool is publicly
available, and can even be executed directly on the website

http://www.ulb.ac.be/di/verif/mightyl

Compared to the simplified version we studied in this article, MightyL also
allows for (semi-)open intervals. Since it can also deal with next and dual-next
operators, we can verify formulae like ¬X[1,2)p. All the following tests have been
performed on a MacBook Pro 2.7GHz with 8Go RAM.

We check the satisfiability of MITL formulae on examples, inspired by the
benchmarks of [11, 19]. For k ∈ N and an interval I, we consider the satisfiable
formulae: F (k, I) =

∧k
i=1FIpi, G(k, I) =

∧k
i=1GIpi, U(k, I) = (· · · (p1UI p2)UI

· · ·)UI pk, R(k, I) = (· · · (p1RI p2)RI · · ·)RI pk, and θ(k, I) = ¬((
∧k
i=1GFpi)⇒

G(q ⇒ FIr)). We also consider an example inspired from motion planning
problems via MITL specifications as in [25, 31]. In this benchmark, a robot
must visit some target points t1, t2, t3, . . . , tk within given time frames (in our
case, ti must be seen in time frame [3(i − 1), 3i]), while enforcing a safety
condition G¬p. This specification is modelled by the satisfiable MITL formula
µ(k) =

∧k
i=1F[3(i−1),3i]ti ∧G¬p. In Table 1, we report on the time taken by the

execution of MightyL; LTSmin (split into the time taken by opaal front-end
to translate the model into C++ code, the compilation time of the resulting

16

http://www.ulb.ac.be/di/verif/mightyl

Table 1. Execution time for the satisfiability check of benchmarks of [11, 19]. For
LTSmin, the three columns reported correspond to the translation into C++, the
compilation and the actual model-checking, respectively.

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

Table 2. Validity and redundancy checking of MITL formulae.

Formula MightyL LTSmin Uppaal [16]
F[0,30](p⇒ G[0,20]p) (tautology) 7ms 0.98s 0.32s 7s

G[0,30]¬p ∨ F[0,20]p (valid, i.e. satisfiable and not tautology) 13ms 1.66s 0.30s not considered
F[0,30]p ∧ F[0,20]p (valid but redundant) 24ms 3.39s 0.79s 14s

G[0,20]F[0,20]p ∧G[0,40]p ∧ F[20,40]> (valid but redundant) 60ms 2m58s 4.94s not considered

C++ code, and the time taken by LTSmin for the actual model-checking); and
Uppaal, on all these examples (for the motion planning, only finite words are
relevant, hence we report only on the Uppaal running time).

We also report on the benchmarks found in [16], where the debugging of for-
mal specifications of cyber-physical systems is reduced to MITL non-satisfiability.
More precisely, we check formulae for validity and redundancy. In [16], a formula
ϕ is called valid (with respect to a specification goal) if ϕ is neither unsatisfiable
nor a tautology, i.e. ϕ and ¬ϕ are both satisfiable. A conjunct ϕ1 of formula
ϕ =

∧k
i=1 ϕi is redundant if and only if

∧k
i=2 ϕi implies ϕ1. This is true if and

only if ψ =
∧k
i=2 ϕi ⇒ ϕ1 is valid, i.e. if and only if ¬ψ is not satisfiable. For in-

stance, F[0,30]p is redundant in F[0,30]p∧F[0,20]p, and G[0,20]F[0,20]p is redundant
in G[0,20]F[0,20]p ∧ G[0,40]p ∧ F[20,40]>. We check the validity and redundancy
of several formulae considered in [16] and report the results in Table 2. For ref-
erence, we copy the execution time reported in [16] for these checks.8 We also
consider some new formulae specific to our pointwise semantics.

Finally, recall that one technical part of the constructions of component Büchi
timed automata is the minimal model simplification mm(ϕ). Our components re-
main correct if we replace everywhere mm(ϕ) by ϕ (i.e. ϕ̂ simply becomes ϕ).
On some instances of the previous benchmarks, the influence on the execution
time of the satisfiability checks is tremendous (differences on the execution time
of MightyL negligible, since the tool always answers in less than a second).
For instance, over F (5, [0,∞)), LTSmin shows a 17% overhead. For F (5, [0, 2]),
8 These numbers are only for reference and should not be taken as a direct comparison
since, contrary to us, [16] considers a bounded continuous semantics of MITL.

17

LTSmin experiences a 5% overhead, while Uppaal has a 12% overhead. For
formulae F (5, [2,∞)), F (3, [1, 2]), F (5, [1, 2]), the situation is even worse since
Uppaal stops responding before the timeout of fifteen minutes. LTSmin also
hangs on F (3, [1, 2]) before the timeout. On the motion planning example, the
overhead is also significant for Uppaal, e.g. 80% for µ2, and, for µ3 and µ4, Up-
paal does not respond anymore before the timeout. Finally, on the two unsatis-
fiable examples of the redundancy check, LTSmin and Uppaal have overheads
of 70%/3% and 630%/230%, respectively.

7 Conclusion and perspectives

In this work, we proposed a new compositional construction from MITL to timed
automata which we implemented the tool MightyL, enabling easy automata-
based model-checking of full MITL. For future work, since the structure of the
formula is preserved in our construction, we want to investigate antichain-based
heuristics to allow more performance boost. For MightyL, we plan to add native
support for ECL [33] operators which eases the writing of specifications, as well
as past operators and counting operators [23].

Acknowledgements. We thank the reviewers of this article that help us clarify
its overall presentation. The third author would like to thank Andreas Engel-
bredt Dalsgaard, Alfons Laarman and Jeroen Meijer for their technical help with
opaal and LTSmin.

References

1. Abid, N., Dal-Zilio, S., Botlan, D.L.: A formal framework to specify and verify real-
time properties on critical systems. International Journal of Critical Computer-
Based Systems 5(1/2), 4–30 (2014)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996)

4. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Infor-
mation and Computation 104(1), 35–77 (1993)

5. Barnat, J., Brim, L., Havel, V., Havlícek, J., Kriho, J., Lenco, M., Rockai, P., Still,
V., Weiser, J.: DivinE 3.0 - an explicit-state model checker for multithreaded C &
C++ programs. In: CAV’13. LNCS, vol. 8044, pp. 863–868. Springer (2013)

6. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular de-
sign of synthetic biological circuits. In: CMSB’13. LNCS, vol. 8130, pp. 164–177.
Springer (2013)

7. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

8. Bloem, R., Cimatti, A., Pill, I., Roveri, M.: Symbolic implementation of alternating
automata. International Journal of Foundations of Computer Science 18(4), 727–
743 (2007)

18

9. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: CAV’16. LNCS, vol. 9779, pp. 513–530. Springer (2016)

10. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata. In: FORMATS’13. LNCS, vol. 8053, pp. 47–61. Springer (2013)

11. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata of infinite words. In: FORMATS’14. LNCS, vol. 8711. Springer (2014)

12. Bulychev, P.E., David, A., Larsen, K.G., Li, G.: Efficient controller synthesis for a
fragment of MTL0,∞. Acta Informatica 51(3-4), 165–192 (2014)

13. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV2: An opensource tool for symbolic model
checking. In: CAV’02. LNCS, vol. 2404, pp. 359–364. Springer (2002)

14. Claessen, K., Een, N., Sterin, B.: A circuit approach to LTL model checking. In:
FMCAD’13. IEEE (2013)

15. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Communications of the ACM 54(9), 69–77 (Sep 2011)

16. Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for test-
ing and verification of cyber-physical systems. Research Report 1607.02549, arXiv
(2016)

17. D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton
construction for mitl. Research Report 2013-1, IIS (2013), http://www.csa.iisc.
ernet.in/TR/2013/1/lics2013-tr.pdf

18. Fu, J., Topcu, U.: Computational methods for stochastic control with metric in-
terval temporal logic specifications. In: CDC’15. pp. 7440–7447. IEEE (2015)

19. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: CAV’01.
LNCS, vol. 2102, pp. 53–65. Springer (2001)

20. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV’95. pp. 3–18. Chapman & Hall (1995)

21. Hammer, M., Knapp, A., Merz, S.: Truly on-the-fly LTL model checking. In:
TACAS’05. LNCS, vol. 3440, pp. 191–205. Springer (2005)

22. Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity.
Fundamenta Informaticae 62(1), 1–28 (2004)

23. Hirshfeld, Y., Rabinovich, A.M.: An expressive temporal logic for real time. In:
MFCS’06. LNCS, vol. 4162, pp. 492–504. Springer (2006)

24. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
High-performance language-independent model checking. In: TACAS’15. LNCS,
vol. 9035, pp. 692–707. Springer (2015)

25. Karaman, S.: Optimal Planning with Temporal Logic Specifications. Master’s the-
sis, Massachussetts Institute of Technology (2009)

26. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. In:
ISTCS’97. pp. 147–158. IEEE (1997)

27. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

28. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: FOR-
MATS’06. LNCS, vol. 4202, pp. 274–289. Springer (2006)

29. Muller, D.E., Saoudi, A., Schupp, P.E.: Alternating automata, the weak monadic
theory of the tree, and its complexity. In: ICALP’86. LNCS, vol. 226, pp. 275–283.
Springer (1986)

30. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science 3(1) (2007)

31. Plaku, E., Karaman, S.: Motion planning with temporal-logic specifications:
Progress and challenges. AI Communications 29, 151–162 (2016)

19

http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf
http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf

32. Pnueli, A.: The temporal logic of programs. In: FOCS’77. pp. 46–57. IEEE (1977)
33. Raskin, J.F., Schobbens, P.Y.: The logic of event clocks: Decidability, complexity

and expressiveness. Journal of Automata, Languages and Combinatorics 4(3), 247–
282 (1999)

34. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: FM’11. LNCS, vol. 6664, pp. 417–431. Springer (2011)

35. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: TACAS’15. LNCS,
vol. 9035, pp. 231–237. Springer (2015)

36. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Logics
for Concurrency, LNCS, vol. 1043, pp. 238–266. Springer (1996)

37. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: FTRTFT’94. LNCS, vol. 863, pp. 694–715. Springer (1994)

38. Wulf, M.D., Doyen, L., Maquet, N., Raskin, J.F.: Antichains: Alternative algo-
rithms for LTL satisfiability and model-checking. In: TACAS’08. LNCS, vol. 4963,
pp. 63–77. Springer (2008)

39. Zhou, Y., Maity, D., Baras, J.S.: Timed automata approach for motion planning
using metric interval temporal logic. Research Report 1603.08246, arXiv (2016)

20

