
ar
X

iv
:1

70
4.

06
64

8v
2

 [
cs

.L
O

]
 1

0
M

ay
 2

01
7

Markov Automata with Multiple Objectives

Tim Quatmann, Sebastian Junges, and Joost-Pieter Katoen

RWTH Aachen University, Aachen, Germany

Abstract. Markov automata combine non-determinism, probabilistic
branching, and exponentially distributed delays. This compositional vari-
ant of continuous-time Markov decision processes is used in reliability en-
gineering, performance evaluation and stochastic scheduling. Their veri-
fication so far focused on single objectives such as (timed) reachability,
and expected costs. In practice, often the objectives are mutually depen-
dent and the aim is to reveal trade-offs. We present algorithms to analyze
several objectives simultaneously and approximate Pareto curves. This
includes, e.g., several (timed) reachability objectives, or various expected
cost objectives. We also consider combinations thereof, such as on-time-
within-budget objectives—which policies guarantee reaching a goal state
within a deadline with at least probability p while keeping the allowed
average costs below a threshold? We adopt existing approaches for clas-
sical Markov decision processes. The main challenge is to treat policies
exploiting state residence times, even for untimed objectives. Experimen-
tal results show the feasibility and scalability of our approach.

1 Introduction

Markov automata [1,2] extend labeled transition systems with probabilistic branch-
ing and exponentially distributed delays. They are a compositional variant of
continuous-time Markov decision processes (CTMDPs), in a similar vein as
Segala’s probabilistic automata extend classical MDPs. Transitions of a Markov
automaton (MA) lead from states to probability distributions over states, and
are either labeled with actions (allowing for interaction) or real numbers (rates of
exponential distributions). MAs are used in reliability engineering [3], hardware
design [4], data-flow computation [5], dependability [6] and performance eval-
uation [7], as MAs are a natural semantic framework for modeling formalisms
such as AADL, dynamic fault trees, stochastic Petri nets, stochastic activity
networks, SADF etc. The verification of MAs so far focused on single objec-
tives such as reachability, timed reachability, expected costs, and long-run av-
erages [8,9,10,11,12]. These analyses cannot treat objectives that are mutually
influencing each other, like quickly reaching a target is more costly. The aim
of this paper is to analyze multiple objectives on MAs at once and to facilitate
trade–off analysis by approximating Pareto curves.

Consider the stochastic job scheduling problem of [13]: perform n jobs with ex-
ponential service times on k identical processors under a pre-emptive scheduling
policy. Once a job finishes, all k processors can be assigned any of the m remain-
ing jobs. When n−m jobs are finished, this yields

(
m
k

)
non-deterministic choices.

http://arxiv.org/abs/1704.06648v2

achievable

not achievable

2.6 2.7 2.8 2.9 3
0

0.2

0.4

0.6

0.8

Expected completion time

P
ro
b
.
6
jo
b
s
w
it
h
in

1
h
o
u
r

Fig. 1. Approx. Pareto curve
for stochastic job scheduling.

The largest-expected-service-time-first-policy is op-
timal to minimize the expected time to complete
all jobs [13]. It is unclear how to schedule when
imposing extra constraints, e.g., requiring a high
probability to finish a batch of c jobs within a tight
deadline (to accelerate their post-processing), or
having a low average waiting time. These multiple
objectives involve non-trivial trade–offs. Our algo-
rithms analyze such trade–offs. Fig. 1, e.g., shows
the obtained result for 12 jobs and 3 processors. It
approximates the set of points (p1, p2) for sched-
ules achieving that (1) the expected time to complete all jobs is at most p1 and
(2) the probability to finish half of the jobs within an hour is at least p2.

This paper presents techniques to verify MAs with multiple objectives. We
consider multiple (un)timed reachability and expected reward objectives as well
as their combinations. Put shortly, we reduce all these problems to instances
of multi-objective verification problems on classical MDPs. For multi-objective
queries involving (combinations of) untimed reachability and expected reward
objectives, corresponding algorithms on the underlying MDP can be used. In
this case, the MDP is simply obtained by ignoring the timing information, see
Fig. 2(b). The crux is in relating MA schedulers—that can exploit state sojourn
times to optimize their decisions—to MDP schedulers. For multiple timed reach-
ability objectives, digitization [8,9] is employed to obtain an MDP, see Fig. 2(c).
The key is to mimic sojourn times by self-loops with appropriate probabilities.
This provides a sound arbitrary close approximation of the timed behavior and
also allows to combine timed reachability objectives with other types of objec-
tives. The main contribution is to show that digitization is sound for all possible
MA schedulers. This requires a new proof strategy as the existing ones are tai-
lored to optimizing a single objective. All proofs can be found in the appendix.
Experiments on instances of four MA benchmarks show encouraging results.
Multiple untimed reachability and expected reward objectives can be efficiently
treated for models with millions of states. As for single objectives [9], timed
reachability is more expensive. Our implementation is competitive to PRISM for
multi-objective MDPs [14,15] and to IMCA [9] for single-objective MAs.

Related work. Multi-objective decision making for MDPs with discounting and
long-run objectives has been well investigated; for a recent survey, see [16]. Etes-
sami et al. [17] consider verifying finite MDPs with multiple ω-regular objectives.
Other multiple objectives include expected rewards under worst-case reachabil-
ity [18,19], quantiles and conditional probabilities [20], mean pay-offs and sta-
bility [21], long-run objectives [22,23], total average discounted rewards under
PCTL [24], and stochastic shortest path objectives [25]. This has been extended
to MDPs with unknown cost function [26], infinite-state MDPs [27] arising from
two-player timed games in a stochastic environment, and stochastic two-player
games [28]. To the best of our knowledge, this is the first work on multi-objective
MDPs extended with random timing.

2

s0 s1 s2

s3 s4

s5

s6

1

1 1

α

β

γ

η

0.7

0.3

50.4

0.61

(a) MA M.

s0 s1 s2

s3 s4

s5

s6

⊥

⊥ ⊥

α

β

γ

η

0.7

0.3

⊥0.4

0.6⊥

(b) Underlying MDP MD.

s0 s1 s2

s3 s4

s5

s6

⊥

1−e−δ

e−δ

⊥ ⊥

α

β

γ

η

0.7

0.3

⊥0.4(1−e−5δ)

0.6(1−e−5δ)+e−5δ⊥

(c) Digitization Mδ.

Fig. 2. MA M with underlying MDP MD and digitization Mδ.

2 Preliminaries

Notations. The set of real numbers is denoted by R, and we write R>0 = {x ∈
R | x > 0} and R≥0 = R>0 ∪ {0}. For a finite set S, Dist(S) denotes the set of
probability distributions over S. µ ∈ Dist(S) is Dirac if µ(s) = 1 for some s ∈ S.

2.1 Models

Markov automata generalize both Markov decision processes (MDPs) and con-
tinuous time Markov chains (CTMCs). They are extended with rewards (or,
equivalently, costs) to allow modelling, e.g., energy consumption.

Definition 1 (Markov automaton). A Markov automaton (MA) is a tuple
M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) where S is a finite set of states with initial
state s0 ∈ S, Act is a finite set of actions with ⊥ ∈ Act and Act ∩ R≥0 = ∅,

– → ⊆ S× (Act ∪· R>0)×Dist(S) is a set of transitions such that for all s ∈ S
there is at most one transition (s, λ, µ) ∈ → with λ ∈ R>0, and

– ρ1, . . . , ρℓ with ℓ ≥ 0 are reward functions ρi : S ∪· (S ×Act) → R≥0.

In the remainder of the paper, let M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) denote an

MA. A transition (s, γ, µ) ∈ →, denoted by s
γ
−→ µ, is called probabilistic if γ ∈

Act and Markovian if γ ∈ R>0. In the latter case, γ is the rate of an exponential
distribution, modeling a time-delayed transition. Probabilistic transitions fire
instantaneously. The successor state is determined by µ, i.e., we move to s′ with
probability µ(s′). Probabilistic (Markovian) states PS (MS) have an outgoing

probabilistic (Markovian) transition, respectively: PS = {s ∈ S | s
α
−→ µ, α ∈

Act} and MS = {s ∈ S | s
λ
−→ µ, λ ∈ R>0}. The exit rate E(s) of s ∈ MS is

uniquely given by s
E(s)
−−−→ µ. The transition probabilities of M are given by the

function P : S ×Act ×S → [0, 1] satisfying P(s, α, s′) = µ(s′) if either s
α
−→ µ or

(
α = ⊥ and s

E(s)
−−−→ µ

)
and P(s, α, s′) = 0 in all other cases. The value P(s, α, s′)

corresponds to the probability to move from s with action α to s′. The enabled
actions at state s are given by Act(s) = {α ∈ Act | ∃s′ ∈ S : P(s, α, s′) > 0}.

Example 1. Fig. 2(a) shows an MA M. We do not depict Dirac probability
distributions. Markovian transitions are illustrated by dashed arrows.

3

We assume action-deterministic MAs: |{µ ∈ Dist(S) | s
α
−→ µ}| ≤ 1 holds for

all s ∈ S and α ∈ Act . Terminal states s /∈ PS ∪MS are excluded by adding a
Markovian self-loop. As standard for MAs [1,2], we impose the maximal progress
assumption, i.e., probabilistic transitions take precedence over Markovian ones.

Thus, we remove transitions s
λ
−→ µ for s ∈ PS and λ ∈ R>0 which yields

S = PS ∪· MS. MAs with Zeno behavior, where infinitely many actions can be
taken within finite time with non-zero probability, are unrealistic and considered
a modeling error.

A reward function ρi defines state rewards and action rewards. When sojourn-
ing in a state s for t time units, the state reward ρi(s)·t is obtained. Upon taking

a transition s
γ
−→ µ, we collect action reward ρi(s, γ) (if γ ∈ Act) or ρ(s,⊥) (if

γ ∈ R>0). For presentation purposes, in the remainder of this section, rewards
are omitted. Full definitions with rewards can be found in App. A.1.

Definition 2 (Markov decision process [29]). A Markov decision process
(MDP) is a tuple D = (S,Act ,P, s0, ∅) with S, s0,Act as in Def. 1 and P : S ×
Act × S → [0, 1] are the transition probabilities satisfying

∑

s′∈S P(s, α, s′) ∈
{0, 1} for all s ∈ S and α ∈ Act.

MDPs are MAs without Markovian states and thus without timing aspects, i.e.,
MDPs exhibit probabilistic branching and non-determinism. Zeno behavior is
not a concern, as we do not consider timing aspects. The underlying MDP of an
MA abstracts away from its timing:

Definition 3 (Underlying MDP). The MDP MD = (S,Act ,P, s0, ∅) is the
underlying MDP of MA M = (S,Act ,→, s0, ∅) with transition probabilities P.

The digitization Mδ of M w.r.t. some digitization constant δ ∈ R>0 is an MDP
which digitizes the time [8,9]. The main difference between MD and Mδ is that
the latter also introduces self-loops which describe the probability to stay in
a Markovian state for δ time units. More precisely, the outgoing transitions of
states s ∈ MS in Mδ represent that either (1) a Markovian transition in M was
taken within δ time units, or (2) no transition is taken within δ time units –
which is captured by taking the self-loop in Mδ. Counting the taken self-loops
at s ∈ MS allows to approximate the sojourn time in s.

Definition 4 (Digitization of an MA). For MA M = (S,Act ,→, s0, ∅) with
transition probabilities P and digitization constant δ ∈ R>0, the digitization of
M w.r.t. δ is the MDP Mδ = (S,Act ,Pδ, s0, ∅) where

Pδ(s, α, s
′) =

P(s,⊥, s′) · (1− e−E(s)δ) if s ∈ MS, α = ⊥, s 6= s′

P(s,⊥, s′) · (1− e−E(s)δ) + e−E(s)δ if s ∈ MS, α = ⊥, s = s′

P(s, α, s′) otherwise.

Example 2. Fig. 2 shows an MA M with its underlying MDP MD and a digiti-
zation Mδ for unspecified δ ∈ R>0.

4

Paths and schedulers. Paths represent runs of M starting in the initial state.
Let t(κ) = 0 and α(κ) = κ, if κ ∈ Act , and t(κ) = κ and α(κ) = ⊥, if κ ∈ R≥0.

Definition 5 (Infinite path). An infinite path of MA M with transition prob-

abilities P is an infinite sequence π = s0
κ0−→ s1

κ1−→ . . . of states s0, s1, · · · ∈ S
and stamps κ0, κ1, · · · ∈ Act ∪· R≥0 such that (1)

∑∞
i=0 t(κi) = ∞, and for any

i ≥ 0 it holds that (2) P(si, α(κi), si+1) > 0, (3) si ∈ PS implies κi ∈ Act, and
(4) si ∈ MS implies κi ∈ R≥0.

An infix si
κi−→ si+1 of a path π represents that we stay at si for t(κi) time

units and then perform action α(κi) and move to state si+1. Condition (1) ex-
cludes Zeno paths, condition (2) ensures positive transition probabilities, and
conditions (3) and (4) assert that stamps κi match the transition type at si.

A finite path is a finite prefix π′ = s0
κ0−→ . . .

κn−1
−−−→ sn of an infinite path. The

length of π′ is |π′| = n, its last state is last(π′) = sn, and the time duration is
T (π′) =

∑

0≤i<|π′| t(κi). We denote the sets of finite and infinite paths of M by

FPathsM and IPathsM, respectively. The superscript M is omitted if the model
is clear from the context. For a finite or infinite path π = s0

κ0−→ s1
κ1−→ . . . the

prefix of π of length n is denoted by pref (π, n). The ith state visited by π is
given by π[i] = si. The time-abstraction ta(π) of π removes all sojourn times and

is a path of the underlying MDP MD: ta(π) = s0
α(κ0)
−−−→ s1

α(κ1)
−−−→ Paths of

MD are also referred to as the time-abstract paths of M.

Definition 6 (Generic scheduler). A generic scheduler for M is a measur-
able function σ : FPaths ×Act → [0, 1] such that σ(π, ·) ∈ Dist(Act(last(π))) for
each π ∈ FPaths .

A scheduler σ for M resolves the non-determinism of M: σ(π, α) is the prob-

ability to take transition last(π)
α
−→ µ after observing the run π. The set of

such schedulers is denoted by GMM (GM if M is clear from the context).
σ ∈ GM is deterministic if the distribution σ(π, ·) is Dirac for any π. Time-
abstract schedulers behave independently of the time-stamps of the given path,
i.e., σ(π, α) = σ(π′, α) for all actions α and paths π, π′ with ta(π) = ta(π′). We
write TAM to denote the set of time-abstract schedulers of M. GM is the most
general scheduler class for MAs. For MDPs, the most general scheduler class is
TA.

2.2 Objectives

An objective Oi is a representation of a quantitative property like the probability
to reach an error state, or the expected energy consumption. To express Boolean
properties (e.g., the probability to reach an error state is below pi), Oi is com-
bined with a threshold ⊲i pi where ⊲i ∈ {<,≤, >,≥} is a threshold relation and
pi ∈ R is a threshold value. Let M, σ |= Oi ⊲i pi denote that the MA M under
scheduler σ ∈ GM satisfies the property Oi ⊲i pi.

5

Reachability objectives. I ⊆ R is a time interval if it is of the form I = [a, b]
or I = [a,∞), where 0 ≤ a < b. The set of paths reaching a set of goal states
G ⊆ S in time I is defined as

♦IG = {π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths | ∃n ≥ 0: π[n] ∈ G and

I ∩ [t, t+ t(κn)] 6= ∅ for t = T (pref (π, n))}.

We write ♦G instead of ♦[0,∞)G. A probability measure PrMσ on sets of infinite
paths is defined, which generalizes both the standard probability measure on
MDPs and on CTMCs. A formal definition is given in App. A.2.

Definition 7 (Reachability objective). A reachability objective has the form
P(♦IG) for time interval I and goal states G. The objective is timed if I 6=
[0,∞) and untimed otherwise. For MA M and scheduler σ ∈ GM, let M, σ |=
P(♦IG) ⊲i pi iff PrMσ (♦IG) ⊲i pi.

Expected reward objectives. Expected rewards ERM
σ (ρj , G) define the expected

amount of reward collected (w.r.t. ρj) until a goal state in G ⊆ S is reached.
This is a straightforward generalization of the notion on CTMCs and MDPs. A
formal definition is found in App. A.2.

Definition 8 (Expected reward objective). An expected reward objective
has the form E(#j,G) where j is the index of reward function ρj and G ⊆ S. For

MA M and scheduler σ ∈ GM, let M, σ |= E(#j,G) ⊲i pi iff ERM
σ (ρj , G) ⊲i pi.

Expected time objectives E(T , G) are expected reward objectives that consider
the reward function ρT with ρT (s) = 1 if s ∈ MS and all other rewards are zero.

3 Multi-objective Model Checking

Standard model checking considers objectives individually. This approach is not
feasible when we are interested in multiple objectives that should be fulfilled by
the same scheduler, e.g., a scheduler that maximizes the expected profit might
violate certain safety constraints.Multi-objective model checking aims to analyze
multiple objectives at once and reveals possible trade-offs.

Definition 9 (Satisfaction of multiple objectives). Let M be an MA and
σ ∈ GM. For objectives O = (O1, . . . ,Od) with threshold relations ⊲ = (⊲1

, . . . ,⊲d) ∈ {<,≤, >,≥}d and threshold values p = (p1, . . . , pd) ∈ Rd let

M, σ |= O ⊲ p ⇐⇒ M, σ |= Oi ⊲i pi for all 1 ≤ i ≤ d.

Furthermore, let achieveM(O ⊲ p) ⇐⇒ ∃σ ∈ GM such that M, σ |= O ⊲ p.

If M, σ |= O ⊲ p, the point p ∈ Rd is achievable in M with scheduler σ. The
set of achievable points of M w.r.t. O and p is {p ∈ Rd | achieveM(O ⊲ p)}.
This definition is compatible with the notions on MDPs as given in [15,17].

6

s0 s1 s2

s3 s4

1 α

β

1

1

1

(a) MA M.

achievable
points

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(♦{s2})

P
(♦

{
s
4
}
)

(b) Untimed objectives.

achievable
points

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P(♦{s2})

P
(♦

[0
,2
] {
s
4
}
)

(c) Timed objectives.

Fig. 3. Markov automaton and achievable points.

Example 3. Fig. 3(b) and Fig. 3(c) depict the set of achievable points of the MA
M from Fig. 3(a) w.r.t. relations⊲ = (≥,≥) and objectives (P(♦{s2}),P(♦{s4}))
and (P(♦{s2}),P(♦[0,2]{s4})), respectively. Using the set of achievable points, we
can answer Pareto, numerical, and achievability queries as considered in [15], e.g.,
the Pareto front lies on the border of the set.

Schedulers. For single-objective model checking on MAs, it suffices to consider
deterministic schedulers [30]. For untimed reachability and expected rewards
even time-abstract deterministic schedulers suffice [30]. Multi-objective model
checking on MDPs requires history-dependent, randomized schedulers [17]. On
MAs, schedulers may also employ timing information to make optimal choices,
even if only untimed objectives are considered.

Example 4. Consider the MAM in Fig. 3(a) with untimed objectives P(♦{s2}) ≥
0.5 and P(♦{s4}) ≥ 0.5. A simple graph argument yields that both properties
are only satisfied if action α is taken with probability exactly a half. Thus, on
the underlying MDP, no deterministic scheduler satisfies both objectives. On
the MA however, paths can be distinguished by their sojourn time in s0. As the
probability mass to stay in s0 for at most ln(2) is exactly 0.5, a timed scheduler σ

with σ(s0
t
−→ s1, α) = 1 if t ≤ ln(2) and 0 otherwise does satisfy both objectives.

Theorem 1. For some MA M with achieveM(O ⊲ p), no deterministic time-
abstract scheduler σ satisfies M, σ |= O ⊲ p.

The geometric shape of the achievable points. Like for MDPs [17], the set of
achievable points of any combination of aforementioned objectives is convex.

Proposition 1. The set {p ∈ Rd | achieveM(O ⊲ p)} is convex.

For MDPs, the set of achievable points is a convex polytope where the vertices
can be realized by deterministic schedulers that use memory bounded by the
number of objectives. As there are finitely many such schedulers, the polytope
is finite [17], i.e., it can be represented by a finite number of vertices. This result
does not carry over to MAs. For example, the achievable points of the MA from
Fig. 3(a) together with the objectives (P(♦{s2}),P(♦[0,2]{s4})) form the infinite

7

polytope shown in Fig. 3(c). The insight here is that for any sojourn time t ≤ 2
in s0, the timing information is relevant for optimal schedulers: The shorter the
sojourn time in s0, the higher the probability to reach s4 within the time bound.

Theorem 2. For some MA M and objectives O, the polytope {p ∈ Rd | achieveM(O ⊲

p)} is not finite.

As infinite convex polytopes cannot be represented by a finite number of vertices,
any method extending the approach of [15] – which computes these vertices –
can only approximate the set of achievable points.

Problem statement. For anMA and objectives with threshold relations, construct
arbitrarily tight over- and under-approximations of the achievable points.

4 Analysis of Markov Automata with Multiple Objectives

The state-of-the-art in single-objective model checking of MA is to reduce the
MA to an MDP, cf. [8,9,10], for which efficient algorithms exist. We aim to lift
this approach to multi-objective model checking. Assume MA M and objectives
O with threshold relations ⊲. We discuss how the set of achievable points of
M relates to the set of achievable points of an MDP. The key challenge is to
deal with timing information—even for untimed objectives—and to consider
schedulers beyond those optimizing single objectives. We obtain:

– For untimed reachability and expected reward objectives, the achievable
points of M equal those of its underlying MDP, cf. Theorems 3 and 4.

– For timed reachability objectives, the set of achievable points of a digitized
MDP Mδ provides a sound approximation of the achievable points of M, cf.
Theorem 5. Corollary 1 gives the precision of the approximation.

4.1 Untimed Reachability Objectives

Although timing information is essential for deterministic schedulers, cf. Theo-
rem 1, timing information does not strengthen randomized schedulers:

Theorem 3. For MA M and untimed reachability objectives O it holds that
achieveM(O ⊲ p) ⇐⇒ achieveMD (O ⊲ p).

The main idea for proving Theorem 3 is to construct for scheduler σ ∈ GMM a
time-abstract scheduler ta(σ) ∈ TAMD such that they both induce the same un-
timed reachability probabilities. To this end, we discuss the connection between
probabilities of paths of MA M and paths of MDP MD.

Definition 10 (Induced paths of a time-abstract path). The set of in-
duced paths on MA M of a path π̂ of MD is given by

〈π̂〉 = ta−1(π̂) = {π ∈ FPathsM ∪ IPathsM | ta(π) = π̂}.

8

The set 〈π̂〉 contains all paths of M where replacing sojourn times by ⊥ yields
π̂.

For σ ∈ GM, the probability distribution σ(π, ·) ∈ Dist(Act) might depend
on the sojourn times of the path π. The time-abstract scheduler ta(σ) weights
the distribution σ(π, ·) with the probability masses of the paths π ∈ 〈π̂〉.

Definition 11 (Time-abstraction of a scheduler). The time-abstraction of
σ ∈ GMM is defined as ta(σ) ∈ TAMD such that for any π̂ ∈ FPathsMD

ta(σ)(π̂, α) =

∫

π∈〈π̂〉

σ(π, α) dPrMσ (π | 〈π̂〉).

The term PrMσ (π | 〈π̂〉) represents the probability for a path in 〈π̂〉 to have
sojourn times as given by π. The value ta(σ)(π̂, α) coincides with the probability
that σ picks action α, given that the time-abstract path π̂ was observed.

Example 5. Consider the MA M in Fig. 2(a) and the scheduler σ choosing α

at state s3 iff the sojourn time at s0 is at most one. Then ta(σ)(s0
⊥
−→ s3, α) =

1 − e−E(s0), the probability that s0 is left within one time unit. For π̄ = s0
⊥
−→

s3
α
−→ s6 we have

PrMσ (♦{s6}) = PrMσ (〈π̄〉) = 1− e−E(s0) = PrMD

ta(σ)(π̄) = PrMD

ta(σ)(♦{s6}).

In the example, the considered scheduler and its time-abstraction induce the
same untimed reachability probabilities. We generalize this observation.

Lemma 1. For any π̂ ∈ FPathsMD we have PrMσ (〈π̂〉) = PrMD

ta(σ)(π̂).

The result is lifted to untimed reachability probabilities.

Proposition 2. For any G ⊆ S it holds that PrMσ (♦G) = PrMD

ta(σ)(♦G).

As the definition of ta(σ) is independent of the considered set of goal states
G ⊆ S, Proposition 2 can be lifted to multiple untimed reachability objectives.

Proof of Theorem 3 (sketch). By applying Proposition 2, we can show that
M, σ |= O ⊲ p ⇐⇒ MD, ta(σ) |= O ⊲ p for any scheduler σ ∈ GMM and
untimed reachability objectives O = (P(♦G1), . . . ,P(♦Gd)) with thresholds ⊲ p.
Theorem 3 is a direct consequence of this.

4.2 Expected Reward Objectives

The results for expected reward objectives are similar to untimed reachability
objectives: An analysis of the underlying MDP suffices. We show the following
extension of Theorem 3 to expected reward objectives.

Theorem 4. For MA M and untimed reachability and expected reward objec-
tives O: achieveM(O ⊲ p) ⇐⇒ achieveMD (O ⊲ p).

9

To prove this, we show that a scheduler σ ∈ GMM and its time-abstraction
ta(σ) ∈ TA induce the same expected rewards on M and MD, respectively.
Theorem 4 follows then analogously to Theorem 3.

Proposition 3. Let ρ be some reward function of M and let ρD be its counter-
part for MD. For G ⊆ S we have ERM

σ (ρ,G) = ERMD

ta(σ)(ρ
D, G).

Notice that ρD encodes the expected reward of M obtained in a state s by
assuming the sojourn time to be the expected sojourn time 1/E(s). Although the
claim is similar to Proposition 2, its proof cannot be adapted straightforwardly.
In particular, the analogon to Lemma 1 does not hold: The expected reward
collected along a time-abstract path π̂ ∈ FPathsMD does in general not coincide
for M and MD.

Example 6. We consider standard notations for rewards as detailed in App. A.2.
Let M be the MA with underlying MDP MD as shown in Fig. 2. Let ρ(s0) = 1

and zero otherwise. Reconsider the scheduler σ from Example 5. Let π̂α = s0
⊥
−→

s3
α
−→ s6. The probability PrMσ ({s0

t
−→ s3

α
−→ s6 ∈ 〈π̂α〉 | t > 1}) is zero since

σ chooses β on such paths. For the remaining paths in 〈π̂α〉, action α is chosen
with probability one. The expected reward in M along π̂α is:

∫

π∈〈π̂α〉

rewM(ρ, π) dPrMσ (π) =

∫ 1

0

ρ(s0) · t · E(s0) · e
−E(s0)t dt = 1− 2e−1.

The expected reward in MD along π̂α differs as

rewMD (ρD, π̂α) · Pr
MD

ta(σ)(π̂α) = ρD(s0,⊥) · ta(σ)(s0
⊥
−→ s3, α) = 1− e−1.

The intuition is as follows: If path s0
t
−→ s3

α
−→ s6 of M under σ occurs, we have

t ≤ 1 since σ chose α. Hence, the reward collected from paths in 〈π̂α〉 is at most
1 · ρ(s0) = 1. There is thus a dependency between the choice of the scheduler
at s3 and the collected reward at s0. This dependency is absent in MD as the
reward at a state is independent of the subsequent performed actions.

Let π̂β = s0
⊥
−→ s3

β
−→ s4. The expected reward along π̂β is 2e−1 for M and

e−1 for MD. As the rewards for π̂α and π̂β sum up to one in both M and MD,
the expected reward along all paths of length two coincides for M and MD.

This observation can be generalized to arbitrary MA and paths of arbitrary
length.

Proof of Proposition 3 (sketch). For every n ≥ 0, the expected reward collected
along paths of length at most n coincides for M under σ and MD under ta(σ).
The proposition follows by letting n approach infinity.

Thus, queries on MA with mixtures of untimed reachability and expected
reward objectives can be analyzed on the underlying MDP MD.

10

4.3 Timed Reachability Objectives

Timed reachability objectives cannot be analyzed on MD as it abstracts away
from sojourn times. We lift the digitization approach for single-objective timed
reachability [8,9] to multiple objectives. Instead of abstracting timing informa-
tion, it is digitized. LetMδ denote the digitization ofM for arbitrary digitization
constant δ ∈ R>0, see Def. 4. A time interval I ⊆ R≥0 of the form [a,∞) or [a, b]
with dia := a/δ ∈ N and dib := b/δ ∈ N is called well-formed. For the remainder, we
only consider well-formed intervals, ensured by an appropriate digitization con-
stant. An interval for time-bounds I is transformed to digitization step bounds
di(I) ⊆ N. Let a = inf I, we set di(I) = {t/δ ∈ N | t ∈ I} \ {0 | a > 0}.

We first relate paths in M to paths in its digitization.

Definition 12 (Digitization of a path). The digitization di(π) of path π =

s0
κ0−→ s1

κ1−→ . . . in M is the path in Mδ given by

di(π) =
(
s0

α(κ0)
−−−→

)m0
s0

α(κ0)
−−−→

(
s1

α(κ1)
−−−→

)m1
s1

α(κ1)
−−−→ . . .

where mi = max{m ∈ N | mδ ≤ t(κi)} for each i ≥ 0.

Example 7. For the path π = s0
1.1
−−→ s3

β
−→ s4

η
−→ s5

0.3
−−→ s4 of the MA M in

Fig. 2(a) and δ = 0.4, we get di(π) = s0
⊥
−→ s0

⊥
−→ s0

⊥
−→ s3

β
−→ s4

η
−→ s5

⊥
−→ s4.

The mi in the definition above represent a digitization of the sojourn times t(κi)
such that miδ ≤ t(κi) < (mi+1)δ. These digitized times are incorporated into
the digitization of a path by taking the self-loop at state si ∈ MS mi times.
We also refer to the paths of Mδ as digital paths (of M). The number |π̄|ds of
digitization steps of a digital path π̄ is the number of transitions emerging from
Markovian states, i.e., |π̄|ds = |{i < |π̄| | π̄[i] ∈ MS}|. One digitization step
represents the elapse of at most δ time units—either by staying at some s ∈ MS
for δ time or by leaving s within δ time. The number |di(π)|ds multiplied with
δ yields an estimate for the duration T (π). A digital path π̄ can be interpreted
as representation of the set of paths of M whose digitization is π̄.

Definition 13 (Induced paths of a digital path). The set of induced paths
of a (finite or infinite) digital path π̄ of Mδ is

[π̄] = di−1(π̄) = {π ∈ FPathsM ∪ IPathsM | di(π) = π̄}.

For sets of digital paths Π we define the induced paths [Π] =
⋃

π̄∈Π [π̄]. To

relate timed reachability probabilities for M under scheduler σ ∈ GMM with
ds-bounded reachability probabilities for Mδ, relating σ to a scheduler for Mδ

is necessary.

Definition 14 (Digitization of a scheduler). The digitization of σ ∈ GMM

is given by di(σ) ∈ TAMδ such that for any π̄ ∈ FPathsMδ with last(π̄) ∈ PS

di(σ)(π̄, α) =

∫

π∈[π̄]

σ(π, α) dPrMσ (π | [π̄]).

11

The digitization di(σ) is similar to the time-abstraction ta(σ) as both schedulers
get a path with restricted timing information as input and mimic the choice of
σ. However, while ta(σ) receives no information regarding sojourn times, di(σ)
receives the digital estimate. Intuitively, di(σ)(π̄, α) considers σ(π, α) for each
π ∈ [π̄], weighted with the probability that the sojourn times of a path in [π̄]
are as given by π. The restriction last(π̄) ∈ PS asserts that π̄ does not end with
a self-loop on a Markovian state, implying [π̄] 6= ∅.

Example 8. Let MA M in Fig. 2(a) and δ = 0.4. Again, σ ∈ GMM chooses α
at state s3 iff the sojourn time at s0 is at most one. Consider the digital paths

π̄m = (s0
⊥
−→)ms0

⊥
−→ s3. For π ∈ [π̄1] = {s0

t
−→ s3 | 0.4 ≤ t < 0.8} we have

σ(π, α) = 1. It follows di(σ)(π1, α) = 1. For π ∈ [π̄2] = {s0
t
−→ s3 | 0.8 ≤ t < 1.2}

it is unclear whether σ chooses α or β. Hence, di(σ) randomly guesses:

di(σ)(π̄2, α) =

∫

π∈[π̄2]

σ(π, α) dPrMσ (π | [π̄2]) =

∫ 1.0

0.8
E(s0)e

−E(s0)t dt
∫ 1.2

0.8
E(s0)e−E(s0)t dt

≈ 0.55 .

On Mδ we consider ds-bounded reachability instead of timed reachability.

Definition 15 (ds-bounded reachability). The set of infinite digital paths
that reach G ⊆ S within the interval J ⊆ N of consecutive natural numbers is

♦J
dsG = {π̄ ∈ IPathsMδ | ∃n ≥ 0: π̄[n] ∈ G and |pref (π̄, n)|ds ∈ J}.

The timed reachability probabilities for M are estimated by ds-bounded reacha-
bility probabilities for Mδ. The induced ds-bounded reachability probability for
M (under σ) coincides with ds-bounded reachability probability on Mδ (under
di(σ)).

Proposition 4. Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ.
Further, let J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ)(♦
J
dsG).

Thus, induced ds-bounded reachability on MAs can be computed on their dig-
itization. Next, we relate ds-bounded and timed reachability on MAs, i.e., we
quantify the maximum difference between time-bounded and ds-bounded reach-
ability probabilities.

Example 9. Let M be the MA given in Fig. 4(a). We consider the well-formed
time interval I = [0, 5δ], yielding digitization step bounds di(I) = {0, . . . , 5}.
The digitization constant δ ∈ R>0 remains unspecified in this example. Fig. 4(b)
illustrates paths π1, π2, and π3 of M. We depict sojourn times by arrow length.
A black dot indicates that the path stays at the current state for a multiple of
δ time units. All depicted paths reach G = {s3} within 5δ time units. However,
the digitizations of π1, π2, and π3 reach G within 5, 4, and 6 digitization steps,
respectively. This yields

π1, π2 ∈ ♦IG ∩ [♦
di(I)
ds G] and π3 ∈ ♦IG \ [♦

di(I)
ds G].

12

s0

s1

2

0.5

0.5

1

(a) MA M.

|
0δ

|
1δ

|
2δ

|
3δ

|
4δ

|
5δ

|
6δ time

s0 s0 s1 s1π1: · · ·

s0 s0 s1 s1π2: · · ·

s0 s0 s0 s0 s0 s1 s1π3: · · ·

(b) Sample paths of M.

Fig. 4. MA M and illustration of paths of M (cf. Example 9).

Let λ = max{E(s) | s ∈ MS} be the maximum exit rate of M. For a 6= 0 define

ε↓([a, b]) = ε↓([a,∞)) = 1− (1 + λδ)dia · e−λa , ε↓([0, b)) = ε↓([0,∞]) = 0,

ε↑([a, b]) = 1− (1 + λδ)dib · e−λb

︸ ︷︷ ︸

=ε↑([0,b])

+ 1− e−λδ

︸ ︷︷ ︸

=ε↑([a,∞))

, and ε↑([0,∞)) = 0.

ε↓(I) and ε↑(I) approach 0 for small digitization constants δ ∈ R>0.

Proposition 5. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMσ ([♦I
dsG]) +

[

−ε↓(I), ε↑(I)
]

Proof (sketch). The sets ♦IG and [♦
di(I)
ds G] are illustrated in Fig. 5. We have

Prσ(♦
IG) = Prσ([♦

di(I)
ds G]) + Prσ(♦

IG \ [♦
di(I)
ds G])− Prσ([♦

di(I)
ds G] \ ♦IG).

One then shows

PrMσ (♦IG \ [♦
di(I)
ds G]) ≤ ε↑(I) and PrMσ ([♦

di(I)
ds G] \ ♦IG) ≤ ε↓(I).

To this end, show for any k ∈ N that 1− (1 +λδ)k · e−λδk is an upper bound for
the probability of paths that induce more then k digitization steps within the
the first kδ time units. Then, this probability can be related to the probability

of paths in ♦IG \ [♦
di(I)
ds G] and [♦

di(I)
ds G] \ ♦IG, respectively.

♦
IG \ [♦

di(I)
ds G] [♦

di(I)
ds G] \ ♦IG♦

IG ∩ [♦
di(I)
ds G]

[♦
di(I)
ds G]♦

IG

Fig. 5. Illustration of the sets ♦
IG and [♦

di(I)
ds G].

13

From Prop. 4 and Prop. 5, we immediately have Cor. 1, which ensures that
the value PrMσ (♦IG) can be approximated with arbitrary precision by computing

PrMδ

di(σ)(♦
di(I)
ds G) for a sufficiently small δ.

Corollary 1. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMδ

di(σ)(♦
di(I)
ds G) +

[

−ε↓(I), ε↑(I)
]

This generalizes existing results [8,9] that only consider schedulers which max-
imize (or minimize) the corresponding probabilities. More details are given in
App. F.

Next, we lift Cor. 1 to multiple objectives O = (O1, . . . ,Od). We define the
satisfaction of a timed reachability objective P(♦IG) for the digitization Mδ as

Mδ, σ |= P(♦IG) ⊲i pi iff PrMδ

σ (♦
di(I)
ds G) ⊲i pi. This allows us to consider nota-

tions like achieveMδ (O ⊲ p), where O contains one or more timed reachability
objectives. For a point p = (p1, . . . , pd) ∈ Rd we consider the hyperrectangle

ε(O,p) =
d

×
i=1

[
pi − ε↓i , pi + ε↑i

]
⊆ R

d , where ε↑i =

{

ε↑(I) if Oi = P(♦IG)

0 if Oi = E(#j,G)

and ε↓i is defined similarly. The next example shows how the set of achievable
points of M can be approximated using achievable points of Mδ.

Example 10. LetO = (P(♦I1G1),P(♦
I2G2)) be two timed reachability objectives

for an MA M with digitization Mδ such that ε↓1 = 0.13, ε↑1 = 0.22, ε↓2 = 0.07,

and ε↑2 = 0.15. The blue rectangle in Fig. 6(a) illustrates the set ε(O,p) for the
point p = (0.4, 0.3). Assume achieveMδ (O ⊲ p) holds for threshold relations
⊲ = {≥,≥}, i.e., p is achievable for the digitization Mδ. From Cor. 1, we infer
that ε(O,p) contains at least one point p′ that is achievable for M. Hence, the
bottom left corner point of the rectangle is achievable for M. This holds for any
rectangle ε(O,q) with q ∈ A, where A is the set of achievable points of Mδ

denoted by the gray area1 in Fig. 6(b). It follows that any point in A− (depicted
by the green area) is achievable for M. On the other hand, an achievable point
of M has to be contained in a set ε(O,q) for at least one q ∈ A. The red
area depicts the points Rd \ A+ for which this is not the case, i.e., points that
are not achievable for M. The digitization constant δ controls the accuracy of
the resulting approximation. Fig. 6(c) depicts a possible result when a smaller
digitization constant δ̃ < δ is considered.

The observations from the example above are formalized in the following
theorem. The theorem also covers unbounded reachability objectives by consid-
ering the time interval I = [0,∞). For expected reward objectives of the form
E(#j,G) it can be shown that ERM

σ (ρj , G) = ERMδ

di(σ)(ρ
δ
j , G). This claim is simi-

lar to Proposition 3 and can be shown analogously. This enables multi-objective
model checking of MAs with timed reachability objectives.

1 In the figure, A− partly overlaps A, i.e., the green area also belongs to A.

14

p

ε
↓
1 ε

↑
1

ε
↓
2

ε
↑
2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(a) The set ε(O,p).

p

A− A

R
2 \ A+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(b) Coarse approximation.

p̃

Ã− Ã

R
2 \ Ã+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(c) Refined approxima-
tion.

Fig. 6. Approximation of achievable points.

Theorem 5. Let M be an MA with digitization Mδ. Furthermore, let O be
(un)timed reachability or expected reward objectives with threshold relations ⊲

and |O| = d. It holds that A− ⊆ {p ∈ Rd | achieveM(O ⊲ p)} ⊆ A+ with:

A− = {p′ ∈ R
d | ∀p ∈ R

d : p′ ∈ ε(O,p) implies achieveMδ (O ⊲ p)} and

A+ = {p′ ∈ R
d | ∃p ∈ R

d : p′ ∈ ε(O,p) and achieveMδ (O ⊲ p)}.

5 Experimental Evaluation

Implementation. We implemented multi-objective model checking of MAs into
Storm [31]. The input model is given in the PRISM language2 and translated
into a sparse representation. For MA M, the implementation performs a multi-
objective analysis on the underlying MDP MD or a digitization Mδ and infers
(an approximation of) the achievable points of M by exploiting the results from
Sect. 4. For computing the achievable points of MD and Mδ, we apply the
approach of [15]. It repeatedly checks weighted combinations of the objectives
(by means of value iteration [29] – a standard technique in single-objective MDP
model checking) to refine an approximation of the set of achievable points. This
procedure is extended as follows. Full details can be found in [32].

– We support ds-bounded reachability objectives by combining the approach
of [15] (which supports step-bounded reachability on MDPs) with techniques
from single-objective MA analysis [8]. Roughly, we reduce ds-bounded reach-
ability to untimed reachability by storing the digitized time-epoch (i.e., the
current number of digitization steps) into the state space. A blow-up of the
resulting model is avoided by considering each time-epoch separately.

– In contrast to [15], we allow a simultaneous analysis of minimizing and maxi-
mizing expected reward objectives. This is achieved by performing additional
preprocessing steps that comprise an analysis of end components.

The source code including all material to reproduce the experiments is available
at http://www.stormchecker.org/benchmarks.html.

2 We slightly extend the PRISM language in order to describe MAs.

15

http://www.stormchecker.org/benchmarks.html

Table 1. Experimental results for multi-objective MAs.

benchmark (♦,ER,♦I) (♦,ER,♦I) (♦,ER,♦I) (♦,ER,♦I)
N(-K) #states log10(η) pts time pts time pts time pts time

job scheduling (0, 3, 0) (0, 1, 1) (1, 3, 0) (1, 1, 2)

10-2 12 554
−2 9 1.8 9 41 15 435 16 2 322
−3 44 128 21 834 TO TO

12-3 116 814
−2 11 42 9 798 21 2 026 TO
−3 53 323 TO TO TO

17-2 4.6 · 106
−2 14 1 040 TO 22 4 936 TO
−3 58 2 692 TO TO TO

polling (0, 2, 0) (0, 4, 0) (0, 0, 2) (0, 2, 2)

3-2 1 020
−2 4 0.3 5 0.6 3 130 12 669
−3 4 0.3 5 0.8 7 3 030 TO

3-3 9 858
−2 5 1.3 8 23 6 2 530 TO
−3 6 2.0 19 3 199 TO TO

4-4 827 735
−2 10 963 20 4 349 TO TO
−3 11 1 509 TO TO TO

stream (0, 2, 0) (0, 1, 1) (0, 0, 2) (0, 2, 1)

30 1 426
−2 20 0.9 16 90 16 55 26 268
−3 51 8.8 46 2 686 38 1 341 TO

250 94 376
−2 31 50 15 5 830 16 4 050 TO
−3 90 184 TO TO TO

1000 1.5 · 106
−2 41 3 765 TO TO TO
−3 TO TO TO TO

mutex (0, 0, 3) (0, 0, 3)

2 13 476
−2 16 351 13 1 166
−3 13 2 739 TO

3 38 453 −2 15 2 333 TO

Setup. Our implementation uses a single core (2GHz) of a 48-core HP BL685C
G7 limited to 20GB RAM. The timeout (TO) is two hours. For a model, a set
of objectives, and a precision η ∈ R>0, we measure the time to compute an η-
approximation3 of the set of achievable points. This set-up coincides with Pareto
queries as discussed in [15]. The digitization constant δ is chosen heuristically
such that recalculations with smaller constants δ̃ < δ are avoided. We set the
precision for value-iteration to ε = 10−6. We use classical value iteration; the
use of improved algorithms [33] is left for future work.

Results for MAs. We consider four case studies: (i) a job scheduler [13], see
Sect. 1; (ii) a polling system [34,35] containing a server processing jobs that ar-
rive at two stations; (iii) a video streaming client buffering received packages and
deciding when to start playback; and (iv) a randomized mutual exclusion algo-
rithm [35], a variant of [36] with a process-dependent random delay in the critical
section. Details on the benchmarks and the objectives are given in App. G.1.

Tab. 1 lists results. For each instance we give the defining constants, the
number of states of the MA and the used η-approximation. A multi-objective
query is given by the triple (l,m, n) indicating l untimed, m expected reward,
and n timed objectives. For each MA and query we depict the total run-time
of our implementation (time) and the number of vertices of the obtained under-
approximation (pts).

Queries analyzed on the underlying MDP are solved efficiently on large mod-
els with up to millions of states. For timed objectives the run-times increase

3 An η-approximation of A ⊆ R
d is given by A−, A+ ⊆ R

d with A− ⊆ A ⊆ A+ and
for all p ∈ A+ exists a q ∈ A− such that the distance between p and q is at most η.

16

0
.1

1 1
0

1
0
0

0.1

1

10

100

Storm

P
R
I
S
M

consensus

zeroconf

zeroconf-tb

dpm

0
.0

0
1

0
.1

1 1
0

1
0
0

1
0
0
0

1
0
0
0
0

0.001

0.1

1

10

100

1000

10000

Storm

I
M
C
A

jobs

polling

stream

mutex

Fig. 7. Verification times (in seconds) of our implementation and other tools.

drastically due to the costly analysis of digitized reachability objectives on the
digitization, cf. [9]. Queries with up to four objectives can be dealt with within
the time limit. Furthermore, for an approximation one order of magnitude better,
the number of vertices of the result increases approximately by a factor three.
In addition, a lower digitization constant has then to be considered which often
leads to timeouts in experiments with timed objectives.

Comparison with PRISM [14] and IMCA [9]. We compared the performance of our
implementation with both PRISM and IMCA. Verification times are summarized
in Fig. 7: On points above the diagonal, our implementation is faster. For the
comparison with PRISM (no MAs), we considered the multi-objective MDP bench-
marks from [15,18]. Both implementations are based on [15]. For the comparison
with IMCA (no multi-objective queries) we used the benchmarks from Tab. 1,
with just a single objective. We observe that our implementation is competitive.
Details are given in App. G.2 and App. G.3.

6 Conclusion

We considered multi-objective verification of Markov automata, including in par-
ticular timed reachability objectives. The next step is to apply our algorithms
to the manifold applications of MA, such as generalized stochastic Petri nets to
enrich the analysis possibilities of such nets.

Acknowledgement. This work was supported by the CDZ project CAP (GZ
1023).

References

1. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: Proc. of LICS, IEEE CS (2010) 342–351

2. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Inf. Comput. 222
(2013) 139–168

17

3. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec. Comput.
7(2) (2010) 128–143

4. Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance pre-
diction of compositional models in industrial GALS designs. In: Proc. of CAV. Vol.
5643 LNCS, Springer (2009) 204–218

5. Katoen, J.P., Wu, H.: Probabilistic model checking for uncertain scenario-aware
data flow. ACM Trans. Embedded Comput. Sys. 22(1) (2016) 15:1–15:27

6. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. Comput. J.
54(5) (2011) 754–775

7. Eisentraut, C., Hermanns, H., Katoen, J.P., Zhang, L.: A semantics for every
GSPN. In: Petri Nets. Vol. 7927 LNCS, Springer (2013) 90–109

8. Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata. ECE-
ASST 53 (2012)

9. Guck, D., Hatefi, H., Hermanns, H., Katoen, J.P., Timmer, M.: Analysis of timed
and long-run objectives for Markov automata. LMCS 10(3) (2014)

10. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Proc. of ATVA. Vol. 8837 LNCS, Springer
(2014) 168–184

11. Hatefi, H., Braitling, B., Wimmer, R., Fioriti, L.M.F., Hermanns, H., Becker, B.:
Cost vs. time in stochastic games and Markov automata. In: Proc. of SETTA. Vol.
9409 LNCS, Springer (2015) 19–34

12. Butkova, Y., Wimmer, R., Hermanns, H.: Long-run rewards for Markov automata.
In: Proc. of TACAS. LNCS, Springer (2017) To appear.

13. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM 28(1)
(1981) 100–113

14. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Vol. 6806 LNCS, Springer (2011) 585–591

15. Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model
checking. In: Proc. of ATVA. Vol. 7561 LNCS, Springer (2012) 317–332

16. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. J. Artif. Intell. Res. 48 (2013) 67–113

17. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. LMCS 4(4) (2008)

18. Forějt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative
multi-objective verification for probabilistic systems. In: Proc. of TACAS. Vol.
6605 LNCS, Springer (2011) 112–127

19. Bruyère, V., Filiot, E., Randour, M., Raskin, J.F.: Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games. In: Proc. of STACS.
Vol. 25 LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014) 199–213

20. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS, ACM (2014) 1:1–1:10

21. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Trading performance for stabil-
ity in Markov decision processes. J. Comput. Syst. Sci. 84 (2017) 144–170

22. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Markov decision
processes with multiple long-run average objectives. LMCS 10(1) (2014)

23. Basset, N., Kwiatkowska, M.Z., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Proc. of TACAS. Vol. 9035
LNCS, Springer (2015) 256–271

18

24. Teichteil-Königsbuch, F.: Path-constrained Markov decision processes: bridging
the gap between probabilistic model-checking and decision-theoretic planning. In:
Proc. of ECAI. Vol. 242 Frontiers in AI and Applications, IOS Press (2012) 744–749

25. Randour, M., Raskin, J.F., Sankur, O.: Variations on the stochastic shortest path
problem. In: Proc. of VMCAI. Vol. 8931 LNCS, Springer (2015) 1–18

26. Junges, S., Jansen, N., Dehnert, C., Topcu, U., Katoen, J.P.: Safety-constrained
reinforcement learning for mdps. In: Proc. of TACAS. Vol. 9636 LNCS, Springer
(2016) 130–146

27. David, A., Jensen, P.G., Larsen, K.G., Legay, A., Lime, D., Sørensen, M.G.,
Taankvist, J.H.: On time with minimal expected cost! In: Proc. of ATVA. Vol.
8837 LNCS, Springer (2014) 129–145

28. Chen, T., Forejt, V., Kwiatkowska, M.Z., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Proc. of MFCS. Vol. 8087 LNCS, Springer
(2013) 266–277

29. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley and Sons (1994)

30. Neuhäußer, M.R., Stoelinga, M., Katoen, J.P.: Delayed nondeterminism in
continuous-time Markov decision processes. In: Proc. of FOSSACS. Vol. 5504
LNCS, Springer (2009) 364–379

31. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: Proc. of CAV. (2017)

32. Tim Quatmann: Multi-objective model checking of Markov Automata. Master’s
thesis, RWTH Aachen University (2016)

33. Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of value
iteration. In: RP. Vol. 8762 LNCS, Springer (2014) 125–137

34. Srinivasan, M.M.: Nondeterministic polling systems. Management Science 37(6)
(1991) 667–681

35. Timmer, M., Katoen, J.P., van de Pol, J., Stoelinga, M.: Efficient modelling and
generation of Markov automata. In: Proc. of CONCUR. Vol. 7454 LNCS, Springer
(2012) 364–379

36. Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Dis-
tributed Computing 1(1) (1986) 53–72

37. Neuhäußer, M.R.: Model checking Nondeterministic and Randomly Timed Sys-
tems. PhD thesis, RWTH Aachen University (2010)

38. Ash, R.B., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Aca-
demic Press (2000)

19

A Additional Preliminaries

A.1 Models with Rewards

We extend the models with rewards.

Definition 16 (Markov decision process [29]). A Markov decision process
(MDP) is a tuple D = (S,Act ,P, s0, {ρ1, . . . , ρℓ}), where S, s0,Act , ℓ are as
in Definition 1, ρ1, . . . , ρℓ are action reward functions ρi : S × Act → R≥0,
and P : S × Act × S → [0, 1] is a transition probability function satisfying
∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

The reward ρ(s, α) is collected when choosing action α at state s. Note that we
do not consider state rewards for MDPs.

Definition 17 (Underlying MDP). For MA M = (S,Act ,→, s0, {ρ1, . . . , ρℓ})
with transition probabilities P the underlying MDP of M is given by MD =
(S,Act ,P, s0, {ρ

D
1 , . . . , ρ

D
ℓ }), where for each i ∈ {1, . . . , ℓ}

ρDi (s, α) =

ρi(s, α) if s ∈ PS

ρi(s,⊥) + 1/E(s) · ρi(s) if s ∈ MS and α = ⊥

0 otherwise.

The reward functions ρD1 , . . . , ρ
D
ℓ incorporate the action and state rewards of M

where the state rewards are multiplied with the expected sojourn times 1/E(s) of
states s ∈ MS.

Definition 18 (Digitization of an MA). For an MA M = (S,Act ,→, s0, {ρ1,
. . . , ρℓ}) with transition probabilities P and a digitization constant δ ∈ R>0, the
digitization of M w.r.t. δ is given by the MDP Mδ = (S,Act ,Pδ, s0, {ρδ1, . . . , ρ

δ
ℓ}),

where Pδ is as in Definition 4 and for each i ∈ {1, . . . , ℓ}

ρδi (s, α) =

ρi(s, α) if s ∈ PS
(
ρi(s,⊥) + 1/E(s) · ρi(s)

)
·
(
1− e−E(s)δ

)
if s ∈ MS and α = ⊥

0 otherwise.

A.2 Measures

Probability measure. Given a scheduler σ ∈ GM, the probability measure
PrMσ is defined for measurable sets of infinite paths of MA M. This is achieved
by considering the probability measure PrStepsσ,π for transition steps. For a history
π ∈ FPaths with s = last(π) and a measurable set of transition steps T ⊆
R≥0 ×Act × S we have

PrStepsσ,π (T) =

∑

(0,α,s′)∈T

σ(π, α) ·P(s, α, s′) if s ∈ PS

∫

{t|(t,⊥,s′)∈T}

E(s) · e−E(s)t ·
∑

(t,⊥,s′)∈T

P(s,⊥, s′) dt if s ∈ MS

20

PrMσ is obtained by lifting PrStepsσ,π to sequences of transition steps (i.e., paths).
More information can be found in [37,8]. To simplify the notations, we write
PrMσ (π) instead of PrMσ ({π}). For a set of finite paths Π ⊆ FPathsM we set
PrMσ (Π) = PrMσ (Cyl(Π)), where Cyl(Π) is the Cylinder of Π given by

Cyl(Π) = {π
κn−−→ sn+1

κn+1
−−−→ · · · ∈ IPathsM | π ∈ Π}.

Expected reward. We fix a reward function ρ of the MA M. The reward of

a finite path π′ = s0
κ0−→ . . .

κn−1
−−−→ sn ∈ FPaths is given by

rewM(ρ, π′) =

|π′|−1
∑

i=0

ρ(si) · t(κi) + ρ(si, α(κi)).

Intuitively, rewM(ρ, π′) is the sum over the rewards obtained in every step si
κi−→

depicted in the path π′. The reward obtained in step i is composed of the state
reward of si multiplied with the sojourn time t(κi) as well as the action reward
given by si and α(κi). State rewards assigned to probabilistic states do not affect
the reward of a path as the sojourn time in such states is zero.

For an infinite path π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths , the reward of π up to a
set of goal states G ⊆ S is given by

rewM(ρ, π,G) =

{

rewM(ρ, pref (π, n)) if n = min{i ≥ 0 | si ∈ G}

limn→∞ rewM(ρ, pref (π, n)) if si /∈ G for all i ≥ 0 .

Intuitively, we stop collecting reward as soon as π reaches a state in G. If no state
in G is reached, reward is accumulated along the infinite path, which potentially
yields an infinite reward. The expected reward ERM

σ (ρ,G) is the expected value
of the function rewM(ρ, ·, G) : IPathsM → R≥0, i.e.,

ERM
σ (ρ,G) =

∫

π∈IPathsM
rewM(ρ, π,G) dPrMσ (π).

B Proofs About Sets of Achievable Points

B.1 Proof of Theorem 1

Theorem 1. For some MA M with achieveM(O ⊲ p), no deterministic time-
abstract scheduler σ satisfies M, σ |= O ⊲ p.

Proof. Consider the MAM in Fig. 3(a) with objectivesO = (P(♦{s2}),P(♦{s4})),
relations ⊲ = (≥,≥), and point p = (0.5, 0.5). We have achieveM(O ⊲ p) (A
scheduler achieving both objectives is given in Example 4). However, there are
only two deterministic time abstract schedulers for M:

σα : always choose α and σβ : always choose β

and it holds that M, σα 6|= P(♦{s4}) ≥ 0.5 and M, σβ 6|= P(♦{s2}) ≥ 0.5. ⊓⊔

21

B.2 Proof of Proposition 1

Proposition 1. The set {p ∈ R
d | achieveM(O ⊲ p)} is convex.

Proof. Let M be an MA and let O = (O1, . . . ,Od) be objectives with relations
⊲ = (⊲1, . . . ,⊲d) and points p1,p2 ∈ R

d such that achieveM(O ⊲ p1) and
achieveM(O ⊲ p2) holds. For i ∈ 1, 2, let σi ∈ GM be a scheduler satisfying
M, σi |= O ⊲ pi. Consider some w ∈ [0, 1]. The point p = w · p1 + (1 − w) · p2

is achievable with the scheduler that makes an initial one-off random choice:

– with probability w mimic σ1 and
– with probability 1− w mimic σ2.

Hence, achieveM(O ⊲ p), implying that the set of achievable points is convex.
⊓⊔

B.3 Proof of Theorem 2

Theorem 2. For some MA M and objectives O, the polytope {p ∈ Rd | achieveM(O ⊲

p)} is not finite.

Proof. We show that the claim holds for the MA M in Fig. 3(a) with objectives
O = (P(♦{s2}),P(♦[0,2]{s4})) and relations ⊲ = (≥,≥).

For the sake of contradiction assume that the polytope A = {p ∈ R2 |
achieveM(O ⊲ p)} is finite. Then, there must be two distinct vertices p1,p2

of A such that {w · p1 + (1 − w) · p2 | w ∈ [0, 1]} is a face of A. In particular,
this means that p = 0.5 · p1 + 0.5 · p2 is achievable but pε = p + (0, ε) is not
achievable for all ε > 0. We show that there is in fact an ε for which pε is
achievable, contradicting our assumption that A is finite.

For i ∈ 1, 2, let σi ∈ GM be a scheduler satisfying M, σi |= O ⊲ pi. σ1 6= σ2

has to hold as the schedulers achieve different vertices of A. The point p is
achievable with the randomized scheduler σ that mimics σ1 with probability 0.5
and mimics σ2 otherwise. Consider t = − log(PrMσ (♦{s2})) and the deterministic
scheduler σ′ given by

σ′(s0
t0−→ s1, α) =

{

1 if t0 > t)

0 otherwise.

σ′ satisfies PrMσ′ (♦{s2}) = e−t = PrMσ (♦{s2}). Moreover, we have

PrMσ′ (♦[0,t]{s3}) = PrMσ′ (♦{s3}) = PrMσ (♦{s3}) > PrMσ (♦[0,t]{s3}),

where the last inequality is due to σ 6= σ′. While the probability to reach s3 is
equal under both schedulers, s3 is reached earlier when σ′ is considered. This in-
creases the probability to reach s4 in time, i.e., PrMσ′ (♦[0,2]{s4}) > PrMσ (♦[0,2]{s4}).
It follows that M, σ′ |= O ⊲ pε for some ε > 0. ⊓⊔

22

C Proofs for Untimed Reachability

C.1 Proof of Lemma 1

Lemma 1. For any π̂ ∈ FPathsMD we have PrMσ (〈π̂〉) = PrMD

ta(σ)(π̂).

Proof. The proof is by induction over the length of the considered path |π̂| = n.
Let M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) and MD = (S,Act ,P, s0, {ρD1 , . . . , ρ

D
ℓ }).

If n = 0, then {π̂} = 〈π̂〉 = {s0}. Hence, Pr
M
σ (〈π̂〉) = 1 = PrMD

ta(σ)(π̂). In the

induction step, we assume that the lemma holds for a fixed path π̂ ∈ FPathsMD

with length |π̂| = n and last(π̂) = s. Consider the path π̂
α
−→ s′ ∈ FPathsMD .

Case s ∈ PS: It follows that

PrMσ (〈π̂
α
−→ s′〉) =

∫

π∈〈π̂〉

σ(π, α) ·P(s, α, s′) dPrMσ (π)

= P(s, α, s′) ·

∫

π∈〈π̂〉

σ(π, α) dPrMσ ({π} ∩ 〈π̂〉)

= P(s, α, s′) ·

∫

π∈〈π̂〉

σ(π, α) d
[
PrMσ (π | 〈π̂〉) · PrMσ (〈π̂〉)

]

= PrMσ (〈π̂〉) ·P(s, α, s′) ·

∫

π∈〈π̂〉

σ(π, α) dPrMσ (π | 〈π̂〉)

= PrMσ (〈π̂〉) ·P(s, α, s′) · ta(σ)(π̂, α)

IH
= PrMD

ta(σ)(π̂) ·P(s, α, s′) · ta(σ)(π̂, α)

= PrMD

ta(σ)(π̂
α
−→ s′).

Case s ∈ MS: As s ∈ MS we have α = ⊥ and it follows

PrMσ (〈π̂
⊥
−→ s′〉) =

∫

π∈〈π̂〉

∫ ∞

0

E(s) · e−E(s)t ·P(s,⊥, s′) dt dPrMσ (π)

= P(s,⊥, s′) ·

∫

π∈〈π̂〉

∫ ∞

0

E(s) · e−E(s)t dt dPrMσ (π)

= P(s,⊥, s′) · PrMσ (〈π̂〉)

IH
= P(s,⊥, s′) · PrMD

ta(σ)(π̂)

= PrMD

ta(σ)(π̂
⊥
−→ s′).

⊓⊔

C.2 Proof of Proposition 2

Proposition 2. For any G ⊆ S it holds that PrMσ (♦G) = PrMD

ta(σ)(♦G).

23

Proof. Let Π be the set of finite time-abstract paths of MD that end at the first
visit of a state in G, i.e.,

Π = {s0
α0−→ . . .

αn−1
−−−→ sn ∈ FPathsMD | sn ∈ G and ∀i < n : si /∈ G}.

Every path π ∈ ♦G ⊆ IPathsM has a unique prefix π′ with ta(π′) ∈ Π . We have

♦G =
⋃

·
π̂∈Π

Cyl(〈π̂〉).

The claim follows with Lemma 1 since

PrMσ (♦G) =
∑

π̂∈Π

PrMσ (〈π̂〉)
Lem.1
=

∑

π̂∈Π

PrMD

ta(σ)(π̂) = PrMD

ta(σ)(♦G).

⊓⊔

C.3 Proof of Theorem 3

Theorem 3. For MA M and untimed reachability objectives O it holds that
achieveM(O ⊲ p) ⇐⇒ achieveMD (O ⊲ p).

Proof. Let O = (P(♦G1), . . . ,P(♦Gd)) be the considered list of objectives with
threshold relations ⊲ = (⊲1, . . . ,⊲d). The following equivalences hold for any
σ ∈ GMM and p ∈ Rd.

M, σ |= O ⊲ p ⇐⇒ ∀i : M, σ |= P(♦Gi) ⊲i pi

⇐⇒ ∀i : PrMσ (♦Gi) ⊲i pi

Prop.2
⇐⇒ ∀i : PrMD

ta(σ)(♦Gi) ⊲i pi

⇐⇒ ∀i : MD, ta(σ) |= P(♦Gi) ⊲i pi

⇐⇒ MD, ta(σ) |= O ⊲ p .

Assume that achieveM(O ⊲ p) holds, i.e., there is a σ ∈ GMM such thatM, σ |=
O ⊲ p. It follows that MD, ta(σ) |= O ⊲ p which means that achieveMD (O ⊲

p) holds as well. For the other direction assume achieveMD (O ⊲ p), i.e.,MD, σ |=
O ⊲ p for some time-abstract scheduler σ ∈ TA. We have ta(σ) = σ. It
follows that MD, ta(σ) |= O ⊲ p. Applying the equivalences above yields
M, σ |= O ⊲ p and thus achieveM(O ⊲ p). ⊓⊔

D Proofs for Expected Reward

D.1 Proof of Proposition 3

Let n ≥ 0 and G ⊆ S. The set of time-abstract paths that end after n steps or
at the first visit of a state in G is denoted by

Πn
G = {s0

α0−→ . . .
αm−1
−−−−→ sm ∈ FPathsMD | (m = n or sm ∈ G) and

si /∈ G for all 0 ≤ i < m}.

24

For M under σ ∈ GMM and MD under ta(σ) ∈ TA, we define the expected
reward collected along the paths of Πn

G as

ERM
σ (ρ,Πn

G) =
∑

π̂∈Πn
G

∫

π∈〈π̂〉

rewM(ρ, π) dPrMσ (π) and

ERMD

ta(σ)(ρ
D, Πn

G) =
∑

π̂∈Πn
G

rewMD(ρD, π̂) · PrMD

ta(σ)(π̂),

respectively. Intuitively, ERM
σ (ρ,Πn

G) corresponds to ERM
σ (ρ,G) assuming that

no more reward is collected after the n-th transition. It follows that the value
ERM

σ (ρ,Πn
G) approaches ER

M
σ (ρ,G) for large n. Similarly, ERMD

ta(σ)(ρ
D, Πn

G) ap-

proaches ERMD

ta(σ)(ρ
D, G) for large n. This observation is formalized by the fol-

lowing lemma.

Lemma 2. For MA M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) with G ⊆ S, σ ∈ GM,
and reward function ρ it holds that

lim
n→∞

ERM
σ (ρ,Πn

G) = ERM
σ (ρ,G).

Furthermore, any reward function ρD for MD satisfies

lim
n→∞

ERMD

ta(σ)(ρ
D, Πn

G) = ERMD

ta(σ)(ρ
D, G).

Proof. We show the first claim. The second claim follows analogously. For each
n ≥ 0, consider the function fn : IPaths

M → R≥0 given by

fn(π) =

{

rewM(ρ, pref (π,m)) if m = min
{
i ∈ {0, . . . , n} | si ∈ G

}

rewM(ρ, pref (π, n)) if si /∈ G for all i ≤ n

for every path π = s0
κ0−→ s1

κ1−→ · · · ∈ IPathsM. Intuitively, fn(π) is the reward
collected on π within the first n steps and only up to the first visit of G. This
allows us to express the expected reward collected along the paths of Πn

G as

ERM
σ (Πn

G) =
∑

π̂∈Πn
G

∫

π∈〈π̂〉

rewM(ρ, π) dPrMσ (π) =

∫

π∈IPathsM
fn(π) dPr

M
σ (π).

It holds that limn→∞ fn(π) = rewM(ρ, π,G) which is a direct consequence from
the definition of the reward of π up to G (cf. App. A.2). Furthermore, note
that the sequence of functions f0, f1, . . . is non-decreasing, i.e., we have fn(π) ≤
fn+1(π) for all n ≥ 0 and π ∈ IPathsM. By applying the monotone convergence
theorem [38] we obtain

lim
n→∞

ERM
σ (Πn

G) = lim
n→∞

∫

π∈IPathsM
fn(π) dPr

M
σ (π)

=

∫

π∈IPathsM
lim
n→∞

fn(π) dPr
M
σ (π)

=

∫

π∈IPathsM
rewM(ρ, π,G) dPrMσ (π) = ERM

σ (ρ,G).

⊓⊔

25

The next step is to show that the expected reward collected along the paths of
Πn

G coincides for M under σ and MD under ta(σ).

Lemma 3. Let ρ be some reward function of M and let ρD be its counterpart for
MD. Let M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) be an MA with G ⊆ S and σ ∈ GM.
For all G ⊆ S and n ≥ 0 it holds that

ERM
σ (ρ,Πn

G) = ERMD

ta(σ)(ρ
D, Πn

G).

Proof. The proof is by induction over the path length n. To simplify the notation,
we often omit the reward functions ρ and ρD and write, e.g., rewMD (π) instead
of rewMD(ρD, π) or ERM

σ (Πn
G) instead of ERM

σ (ρ,Πn
G).

If n = 0, then Πn
G = {s0}. The claim holds since rewM(s0) = rewMD(s0) =

0.
In the induction step, we assume that the lemma is true for some fixed n ≥ 0.

We split the term ERM
σ (Πn+1

G) into the reward that is obtained by paths which
reach G within n steps and the reward obtained by paths of length n+ 1. In a
second step, we consider the sum of the reward collected within the first n steps
and the reward obtained in the (n+ 1)-th step:

ERM
σ (Πn+1

G)

=
∑

π̂∈Π
n+1
G

|π̂|≤n

∫

π∈〈π̂〉

rewM(π) dPrMσ (π)

+
∑

π̂∈Π
n+1
G

|π̂|=n+1

∫

π=π′
κ
−→s′∈〈π̂〉

last(π′)=s

rewM(π′) + ρ(s) · t(κ) + ρ(s, α(κ)) dPrMσ (π)

=
∑

π̂∈Π
n+1
G

∫

π∈〈π̂〉

rewM(pref (π, n)) dPrMσ (π) (1)

+
∑

π̂∈Π
n+1
G

|π̂|=n+1

∫

π=π′
κ
−→s′∈〈π̂〉

last(π′)=s

ρ(s) · t(κ) + ρ(s, α(κ)) dPrMσ (π), (2)

where we define pref (π, n) for paths with |π| ≤ n such that pref (π, n) = π. The
two terms (1) and (2) are treated separately.

Term (1): Let Λ≤n
G = {π̂ ∈ Πn+1

G | |π̂| ≤ n} be the paths in Πn+1
G of length

at most n. We have Λ≤n
G ⊆ Πn

G and every path in Λ≤n
G visits a state in G.

Correspondingly, Λ=n
¬G = Πn

G \ Λ≤n
G is the set of time-abstract paths of length n

that do not visit a state in G. Hence, the paths in Πn+1
G with length n+1 have

a prefix in Λ=n
¬G. The set Πn+1

G is partitioned such that

Πn+1
G = Λ≤n

G ∪·
{
π̂ ∈ Πn+1

G | |π̂| = n+ 1
}

= Λ≤n
G ∪· {π̂ = π̂′ α

−→ s′ ∈ FPathsMD | π̂′ ∈ Λ=n
¬G}.

26

The reward obtained within the first n steps is independent of the (n + 1)-th
transition. To show this formally, we fix a path π̂′ ∈ Λ=n

¬G with last(π̂′) = s and
derive

∑

π̂′
α
−→s′∈FPathsMD

∫

π∈〈π̂′
α
−→s′〉

rewM(pref (π, n)) dPrMσ (π)

=

∫

π′∈〈π̂′〉

rewM(π′) ·
∑

(α,s′)∈Act×S

σ(π′, α) ·P(s, α, s′) dPrMσ (π′) if s ∈ PS

∫

π′∈〈π̂′〉

rewM(π′) ·
∑

s′∈S

P(s,⊥, s′) dPrMσ (π′) if s ∈ MS

=

∫

π′∈〈π̂′〉

rewM(π′) dPrMσ (π′). (3)

With the above-mentioned partition of the set Πn+1
G , it follows that the expected

reward obtained within the first n steps is given by

∑

π̂∈Π
n+1
G

∫

π∈〈π̂〉

rewM(pref (π, n)) dPrMσ (π)

=
∑

π̂∈Λ
≤n

G

∫

π∈〈π̂〉

rewM(π) dPrMσ (π)

+
∑

π̂′∈Λ=n
¬G

∑

π̂′
α
−→s′∈FPathsMD

∫

π∈〈π̂′
α
−→s′〉

rewM(pref (π, n)) dPrMσ (π)

(3)
=

∑

π̂∈Λ
≤n

G

∫

π∈〈π̂〉

rewM(π) dPrMσ (π) +
∑

π̂∈Λ=n
¬G

∫

π∈〈π̂〉

rewM(π) dPrMσ (π)

= ERM
σ (Πn

G)

IH
= ERMD

ta(σ)(Π
n
G)

=
∑

π̂∈Λ
≤n

G

rewMD (π̂) · PrMD

ta(σ)(π̂) +
∑

π̂∈Λ=n
¬G

rewMD (π̂) · PrMD

ta(σ)(π̂)

=
∑

π̂∈Λ
≤n

G

rewMD (π̂) · PrMD

ta(σ)(π̂)

+
∑

π̂′∈Λ=n
¬G

∑

π̂∈FPathsMD

π̂=π̂′
α
−→s′

rewMD (pref (π̂, n)) · PrMD

ta(σ)(π̂)

=
∑

π̂∈Π
n+1
G

rewMD(pref (π̂, n)) · PrMD

ta(σ)(π̂). (4)

Term (2): For the expected reward obtained in step n + 1, consider a path

π̂ = π̂′ α
−→ s′ ∈ Πn+1

G such that |π̂′| = n and last(π̂′) = s.

27

– If s ∈ MS, we have π̂ = π̂′ ⊥
−→ s′. It follows that

∫

π=π′
t−→s′∈〈π̂〉

ρ(s) · t+ ρ(s,⊥) dPrMσ (π)

=

∫

π=π′ t−→s′∈〈π̂〉

ρ(s) · t dPrMσ (π) +

∫

π∈〈π̂〉

ρ(s,⊥) dPrMσ (π)

= ρ(s) ·

∫

π′∈〈π̂′〉

∫ ∞

0

t · E(s) · e−E(s)t ·P(s,⊥, s′) dt dPrMσ (π′)

+ ρ(s,⊥) · PrMσ (〈π̂〉)

=
ρ(s)

E(s)
· PrMσ (〈π̂〉) + ρ(s,⊥) · PrMσ (〈π̂〉)

= ρD(s,⊥) · PrMσ (〈π̂〉)
Lem.1
= ρD(s,⊥) · PrMD

ta(σ)(π̂). (5)

– If s ∈ PS, then
∫

π=π′
α−→s′∈〈π̂〉

ρ(s, α) dPrMσ (π) = ρD(s, α) ·PrMD

ta(σ)(π̂) follows

similarly.

Combining the two results yields

ERM
σ (Πn+1

G)
1,2
=

∑

π̂∈Π
n+1
G

∫

π∈〈π̂〉

rewM(pref (π, n)) dPrMσ (π)

+
∑

π̂∈Πn+1
G

|π̂|=n+1

∫

π=π′
κ
−→s′∈〈π̂〉

last(π′)=s

ρ(s) · t(κ) + ρ(s, α(κ)) dPrMσ (π)

4,5
=

∑

π̂∈Π
n+1
G

rewMD (pref (π̂, n)) · PrMD

ta(σ)(π̂)

+
∑

π̂=π̂′
α
−→s′∈Π

n+1
G

|π̂|=n+1

ρD(last(π̂′), α) · PrMD

ta(σ)(π̂)

=
∑

π̂∈Π
n+1
G

rewMD (π̂) · PrMD

ta(σ)(π̂) = ERMD

ta(σ)(Π
n+1
G).

⊓⊔

We now show Proposition 3.

Proposition 3. Let ρ be some reward function of M and let ρD be its counter-
part for MD. For G ⊆ S we have ERM

σ (ρ,G) = ERMD

ta(σ)(ρ
D, G).

Proof. The proposition is a direct consequence of Lemma 2 and Lemma 3 as

ERM
σ (ρ,G) = lim

n→∞
ERM

σ (ρ,Πn
G)

= lim
n→∞

ERMD

ta(σ)(ρ
D, Πn

G) = ERMD

ta(σ)(ρ
D, G).

⊓⊔

28

D.2 Proof of Theorem 4

Theorem 4. For MA M and untimed reachability and expected reward objec-
tives O: achieveM(O ⊲ p) ⇐⇒ achieveMD (O ⊲ p).

Proof. Let O = (O1, . . . ,Od) be the considered list of untimed reachability and
expected reward objectives with threshold relations ⊲ = (⊲1, . . . ,⊲d). The fol-
lowing equivalences hold for any σ ∈ GMM and p ∈ Rd.

M, σ |= O ⊲ p ⇐⇒ ∀i : M, σ |= Oi ⊲i pi
∗

⇐⇒ ∀i : MD, ta(σ) |= Oi ⊲i pi ⇐⇒ MD, ta(σ) |= O ⊲ p ,

where for the equivalence marked with ∗ we consider two cases: If Oi is of the
form P(♦G), Proposition 2 yields

M, σ |= Oi ⊲i pi ⇐⇒ PrMσ (♦G) ⊲i pi

⇐⇒ PrMD

ta(σ)(♦G) ⊲i pi ⇐⇒ MD, ta(σ) |= Oi ⊲i pi .

Otherwise, Oi is of the form E(#j,G) and with Proposition 3 it follows that

M, σ |= Oi ⊲i pi ⇐⇒ ERM
σ (ρj , G) ⊲i pi

⇐⇒ ERMD

ta(σ)(ρ
D
j , G) ⊲i pi ⇐⇒ MD, ta(σ) |= Oi ⊲i pi .

The remaining steps of the proof are completely analogous to the proof of The-
orem 3 conducted on page 24. ⊓⊔

E Proofs for Timed Reachability

E.1 Proof of Proposition 4

Let M = (S,Act ,→, s0, {ρ1, . . . , ρℓ}) be an MA and let Mδ be the digitization
of M with respect to some δ ∈ R>0. We consider the infinite paths of M that
are represented by a finite digital path.

Definition 19 (Induced cylinder of a digital path). Given a digital path
π̄ ∈ FPathsMδ of MA M, the induced cylinder of π̄ is given by

[π̄]cyl = {π ∈ IPathsM | π̄ is a prefix of di(π)}.

Recall the definition of the cylinder of a set of finite paths (cf. App. A.2). If
π̄ ∈ FPathsMδ does not end with a self-loop at a Markovian state, then [π̄]cyl =
Cyl ([π̄]) holds.

Example 11. Let M and Mδ be as in Fig. 2. We consider the path π̄1 = s0
⊥
−→

s0
⊥
−→ s0

⊥
−→ s3

β
−→ s4 and digitization constant δ = 0.4. The set [π̄1]cyl contains

each infinite path whose digitization has the prefix π̄1, i.e.,

[π̄1]cyl = {s0
t
−→ s3

β
−→ s4

κ
−→ · · · ∈ IPathsM | 0.8 ≤ t < 1.2}.

29

We observe that these are exactly the paths that have a prefix in [π̄1]. Put
differently, we have [π̄1]cyl = Cyl ([π̄1]).

Next, consider the digital path π̄2 = s0
⊥
−→ s0

⊥
−→ s0. Note that there is no

path π ∈ FPathsM with di(π) = π̄2, implying [π̄2] = ∅. Intuitively, π̄2 depicts a
sojourn time at last(π̄2) but finite paths of MAs do not depict sojourn times at
their last state. On the other hand, the induced cylinder of π̄2 contains all paths
that sojourn at least 2δ time units at s0, i.e.,

[π̄2]cyl = {s0
t
−→ s1

κ
−→ · · · ∈ IPathsM | t ≥ 0.8}.

The schedulers σ and di(σ) induce the same probabilities for a given digital
path. This is formalized by the following lemma. Note that a similar statement
for ta(σ) and time-abstract paths was shown in Lemma 1.

Lemma 4. Let M be an MA with scheduler σ ∈ GM, digitization Mδ, and
digital path π̄ ∈ FPathsMδ . It holds that

PrMσ ([π̄]cyl) = PrMδ

di(σ)(π̄).

Proof. The proof is by induction over the length n of π̄. Let M = (S,Act ,→
, s0, {ρ1, . . . , ρℓ}) and Mδ = (S,Act ,Pδ, s0, {ρδ1, . . . , ρ

δ
ℓ}). If n = 0, then π̄ = s0

and [π̄]cyl = IPathsM. Hence, PrMσ ([s0]cyl) = 1 = PrMδ

di(σ)(s0). In the induction

step it is assumed that the lemma holds for a fixed path π̄ ∈ FPathsMδ with
|π̄| = n and last(π̄) = s. Consider a path π̄

α
−→ s′ ∈ FPathsMδ . We distinguish

the following cases.

Case s ∈ PS: It follows that [π̄
α
−→ s′]cyl = Cyl([π̄

α
−→ s′]) since π̄

α
−→ s′ ends with

a probabilistic transition. Hence,

PrMσ ([π̄
α
−→ s′]cyl) = PrMσ ([π̄

α
−→ s′])

=

∫

π∈[π̄]

σ(π, α) ·P(s, α, s′) dPrMσ (π)

=

∫

π∈[π̄]

σ(π, α) ·P(s, α, s′) dPrMσ ({π} ∩ [π̄])

=

∫

π∈[π̄]

σ(π, α) ·P(s, α, s′) d
[
PrMσ (π | [π̄]) · PrMσ ([π̄])

]

= PrMσ ([π̄]) ·P(s, α, s′) ·

∫

π∈[π̄]

σ(π, α) dPrMσ (π | [π̄])

= PrMσ ([π̄]) ·P(s, α, s′) · di(σ)(π̄, α)

IH
= PrMD

di(σ)(π̄) ·P(s, α, s′) · di(σ)(π̄, α)

= PrMD

di(σ)(π̄
α
−→ s′).

30

Case s ∈ MS: As s ∈ MS we have α = ⊥ and it follows

PrMσ ([π̄
⊥
−→ s′]cyl) = PrMσ ([π̄]cyl ∩ [π̄

⊥
−→ s′]cyl)

= PrMσ ([π̄]cyl) · Pr
M
σ ([π̄

⊥
−→ s′]cyl | [π̄]cyl). (6)

Assume that a path π ∈ [π̄]cyl has been observed, i.e., pref (di(π),m) = π̄ holds

for some m ≥ 0. The term PrMσ ([π̄
⊥
−→ s′]cyl | [π̄]cyl) coincides with the probabil-

ity that also pref (di(π),m+ 1) = π̄
⊥
−→ s′ holds. We have either

– s 6= s′ which means that the transition from s to s′ has to be taken during
a period of δ time units or

– s = s′ where we additionally have to consider the case that no transition is
taken at s for δ time units.

It follows that

PrMσ ([π̄
⊥
−→ s′]cyl | [π̄]cyl) =

{

P(s,⊥, s′)(1 − e−E(s)δ) if s 6= s′

P(s,⊥, s′)(1 − e−E(s)δ) + e−E(s)δ if s = s′

= Pδ(s,⊥, s′). (7)

We conclude that

PrMσ ([π̄
⊥
−→ s′]cyl)

6,7
= PrMσ ([π̄]cyl) ·Pδ(s,⊥, s′)

IH
= PrMδ

di(σ)(π̄) ·Pδ(s,⊥, s′) = PrMδ

di(σ)(π̄
⊥
−→ s′).

⊓⊔

We apply Lemma 4 to show Proposition 4. The idea of the proof is similar
to the proof of Proposition 2 conducted on page 24.

Proposition 4. Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ.
Further, let J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ)(♦
J
dsG).

Proof. Consider the set ΠJ
G ⊆ FPathsMδ of paths that (i) visit G within J

digitization steps and (ii) do not have a proper prefix that satisfies (i). Every
path in ♦J

dsG has a unique prefix in ΠJ
G, yielding

♦J
dsG =

⋃

·
π̄∈ΠJ

G

Cyl({π̄})

For the corresponding paths of M we obtain

[♦J
dsG] = {π ∈ IPathsM | di(π) ∈ ♦J

dsG}

= {π ∈ IPathsM | di(π) has a unique prefix in ΠJ
G}

=
⋃

·
π̄∈ΠJ

G

[π̄]cyl .

31

The proposition follows with Lemma 4 since

PrMδ

di(σ)(♦
J
dsG) =

∑

π̄∈ΠJ
G

PrMδ

di(σ)(π̄)
Lem.4
=

∑

π̄∈ΠJ
G

PrMσ ([π̄]cyl) = PrMσ ([♦J
dsG]).

⊓⊔

E.2 Proof of Proposition 5

The notation |π̄|ds for paths π̄ ofMδ is also applied to paths ofM, where |π|ds =
|di(π)|ds for any π ∈ FPathsM. Intuitively, one digitization step represents the
elapse of at most δ time units. Consequently, the duration of a path with k ∈ N

digitization steps is at most kδ.

Lemma 5. For a path π ∈ FPathsM and digitization constant δ it holds that

T (π) ≤ |π|ds · δ .

Proof. Let π = s0
κ0−→ . . .

κn−1
−−−→ sn and let mi = max{m ∈ N | mδ ≤ t(κi)}

for each i ∈ {0, . . . , n − 1} (as in Definition 12). The number |π|ds is given by
∑

0≤i<n, si∈MS(mi + 1). With t(κi) ≤ (mi + 1)δ it follows that

T (π) =
∑

0≤i<n
si∈MS

t(κi) ≤
∑

0≤i<n
si∈MS

(mi + 1)δ = |π|ds · δ .

⊓⊔

For a path π and t ∈ R≥0, the prefix of π up to time point t is given by
prefT (π, t) = pref (π,max{n | T (pref (π, n)) ≤ t}). For the proof of Proposi-
tion 5, we focus on the probability that (under a given scheduler σ) the digi-
tization approach yields an inaccurate estimate of the actual time. This is the
probability that more than k ∈ N digitization steps have been performed within
kδ time units. We denote this value by PrMσ (#[kδ]>k).

Definition 20 (Digitization step bounded paths). Assume an MA M and
a digitization constant δ ∈ R>0. For some t ∈ R≥0, k ∈ N, and ⊲ ∈ {<,≤, >,≥}
the set of paths whose prefix up to time point t has ⊲ j digitization steps is defined
as

#[t]⊲k = {π ∈ IPathsM | |prefT (π, t)|ds ⊲ k}.

Example 12. Let M be the MA given in Fig. 8(a). We consider the set #[5δ]≤5.
The digitization constant δ remains unspecified in this example. Fig. 8(b) illus-
trates paths π1, π2, and π3 of M. We depict sojourn times by arrow length. For

instance, the path π1 corresponds to s0
2.5δ
−−→ s0

1.8δ
−−→ s1

1.7δ
−−→ · · · ∈ IPathsM.

Digitization steps that are “earned” by sojourning at some state for a multiple

32

s0

s1

2

0.5

0.5

1

(a) MA M.

|
0δ

|
1δ

|
2δ

|
3δ

|
4δ

|
5δ

|
6δ time

s0 s0 s1 s1π1: · · ·

s0 s0 s1 s1π2: · · ·

s0 s0 s0 s0 s0 s1 s1π3: · · ·

(b) Sample paths of M.

Fig. 8. MA M and illustration of paths of M (cf. Example 12).

of δ time units are indicated by black dots. Transitions of πi (where i ∈ {1, 2, 3})
that do not belong to prefT (πi, 5δ) are depicted in gray. We obtain

|prefT (π1, 5δ)|ds = 5 =⇒ π1 ∈ #[5δ]≤5

|prefT (π2, 5δ)|ds = 4 =⇒ π2 ∈ #[5δ]≤5

|prefT (π3, 5δ)|ds = 7 =⇒ π3 /∈ #[5δ]≤5 .

Note that only the digitization steps of the prefix up to time point 5δ are
considered. For example, the step of π2 at time point 4.5δ is not considered
since the corresponding transition is not part of prefT (π2, 5δ). However, we have
|prefT (π2, 5.5δ)|ds = 6, implying π2 /∈ #[5.5δ]≤5.

All considered paths reach G = {s1} within 5δ time units but π3 ∈ #[5δ]>5

requires more than 5 digitization steps.

The following lemma gives an upper bound for the probability PrMσ (#[kδ]>k).

Lemma 6. Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) |
s ∈ MS}. Further, let δ ∈ R>0 and k ∈ N. It holds that

PrMσ (#[kδ]>k) ≤ 1− (1 + λδ)k · e−λδk

For the proof of Lemma 6 we employ the following auxiliary lemma.

Lemma 7. Let M be an MA with σ ∈ GM and maximum rate λ = max{E(s) |
s ∈ MS}. For each δ ∈ R>0, k ∈ N, and t ∈ R≥0 it holds that

PrMσ (#[kδ + t]≤k) ≥ PrMσ (#[kδ]≤k) · e−λt .

Proof. First, we show that the set #[kδ + t]≤k corresponds to the paths of
#[kδ]≤k with the additional requirement that no transition is taken between
the time points kδ and kδ + t, i.e.,

#[kδ + t]≤k = {π ∈ #[kδ]≤k | there is no prefix π′ of π with kδ < T (π′) ≤ kδ+t}.

33

“⊆”: If π ∈ #[kδ + t]≤k, then π ∈ #[kδ]≤k follows immediately. Furthermore,
assume towards a contradiction that there is a prefix π′ of π with kδ <
T (π′) ≤ kδ + t. Then, k < T(π′)/δ ≤ |π′|ds (cf. Lemma 5). As T (π′) ≤
kδ + t, this means that |prefT (π, kδ + t)|ds ≥ |π′|ds > k which contradicts
π ∈ #[kδ + t]≤k.

“⊇”: For π ∈ #[kδ]≤k with no prefix π′ such that kδ < T (π′) ≤ kδ + t, it
holds that prefT (π, kδ + t) = prefT (π, kδ). Hence, |prefT (π, kδ + t)|ds =
|prefT (π, kδ)|ds ≤ k and it follows that π ∈ #[kδ + t]≤k.

The probability for no transition to be taken between kδ and kδ+t only depends
on the current state at time point kδ. More precisely, for some state s ∈ MS
assume the set of paths {π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}. The probability
that a path in this set takes no transition between time points kδ and kδ + t is
given by e−E(s)t. With λ ≥ E(s) for all s ∈ MS it follows that

PrMσ (#[kδ + t]≤k)

= PrMσ ({π ∈ #[kδ]≤k | there is no prefix π′ of π with kδ < T (π′) ≤ kδ + t})

=
∑

s∈MS

PrMσ ({π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}) · e−E(s)t

≥
∑

s∈MS

PrMσ ({π ∈ #[kδ]≤k | last(prefT (π, kδ)) = s}) · e−λt

= PrMσ (#[kδ]≤k) · e−λt .

⊓⊔

Proof (of Lemma 6). Let M = (S,Act ,→, s0, ∅). By induction over k we show
that

PrMσ (#[kδ]≤k) ≥ (1 + λδ)k · e−λδk.

The claim follows as #[kδ]>k = IPathsM \#[kδ]≤k.
For k = 0, we have π ∈ #[0 · δ]≤0 iff π takes no Markovian transition at time

point zero. As this happens with probability one, it follows that

PrMσ (#[0 · δ]≤0) = 1 = (1 + λδ)0 · e−λδ·0 .

We assume in the induction step that the proposition holds for some fixed k.
We distinguish between two cases for the initial state s0 of M.

Case s0 ∈ MS: We partition the set #[kδ + δ]≤k+1 = Λ≥δ ∪· Λ<δ with

Λ≥δ = {s0
t
−→ s1

κ1−→ · · · ∈ #[kδ + δ]≤k+1 | t ≥ δ} and

Λ<δ = {s0
t
−→ s1

κ1−→ · · · ∈ #[kδ + δ]≤k+1 | t < δ}.

Hence, Λ≥δ contains the paths where we wait at least δ time units at s0 and Λ<δ

contains the paths where the first transition is taken within t < δ time units. It
follows that PrMσ (#[kδ + δ]≤k+1) = PrMσ (Λ≥δ) + PrMσ (Λ<δ). We consider the
probabilities for Λ≥δ and Λ<δ separately.

34

– PrMσ (Λ≥δ): For a path s0
t+δ
−−→ s1

κ1−→ · · · ∈ Λ≥δ, after the first δ time units
there are at most k digitization steps within the next kδ time units, i.e.,

s0
t+δ
−−→ s1

κ1−→ · · · ∈ Λ≥δ ⇐⇒ s0
t
−→ s1

κ1−→ · · · ∈ #[kδ]≤k.

The probability for Λ≥δ can therefore be derived from the probability to wait
at s0 for at least δ time units and the probability for #[kδ]≤k. In order to
apply this, we need to modify the considered scheduler as it might depend
on the sojourn time in s0. Let σδ be the scheduler for M that mimics σ on
paths where the first transition is delayed by δ, i.e., σδ satisfies

σδ(s0
t
−→ . . .

κn−1
−−−→ sn, α) = σ(s0

t+δ
−−→ . . .

κn−1
−−−→ sn, α).

for all s0
t
−→ . . .

κn−1
−−−→ sn ∈ FPathsM and α ∈ Act . It holds that

PrMσ (Λ≥δ) = e−E(s0)δ · PrMσδ
(#[kδ]≤k)

IH

≥ e−E(s0)δ · (1 + λδ)k · e−λδk

= e−E(s0)δ · (1 + λδ)k · e−λδk · e−λδ · eλδ

= (1 + λδ)k · e−λδ(k+1) · e(λ−E(s0))δ . (8)

– PrMσ (Λ<δ): For a path s0
t
−→ s1

κ1−→ · · · ∈ Λ<δ, the first digitization step
happens at less than δ time units, i.e., 0 ≤ t < δ. It follows that there are at
most k digitization steps in the remaining kδ + δ − t time units, i.e.,

s0
t
−→ s1

κ1−→ s2
κ2−→ · · · ∈ Λ<δ ⇐⇒ s1

κ1−→ s2
κ2−→ · · · ∈ #s1 [kδ + δ − t]≤k ,

where #s1 [kδ + δ − t]≤k refers to the paths #[kδ + δ − t]≤k ofMs1 = (S,Act ,
→, s1, ρ1, . . . , ρℓ), the MA obtained from M by changing the initial state to
s1. Hence, the probability for Λ<δ can be derived from the probability to
take a transition from s0 to some state s within t < δ time units and the
probability for #s[kδ + δ − t]≤k. Again, we need to adapt the considered
scheduler. Let π ∈ FPathsM with last(π) = s. The scheduler σ[π] for Ms

mimics the scheduler σ for M, where π is prepended to the given path, i.e.,
we set

σ[π](s
κj

−→ . . .
κn−1
−−−→ sn, α) = σ(π

κj

−→ . . .
κn−1
−−−→ sn, α)

35

for all s
κj

−→ . . .
κn−1
−−−→ sn ∈ FPathsM

s

and α ∈ Act . With Lemma 7 it follows
that

PrMσ (Λ<δ)

=

∫ δ

0

E(s0) · e
−E(s0)t ·

(
∑

s∈S

P(s0,⊥, s) · PrM
s

σ[π](#
s[kδ + δ − t]≤k)

)

dt

≥

∫ δ

0

E(s0) · e
−E(s0)t ·

(
∑

s∈S

P(s0,⊥, s) · PrM
s

σ[π](#
s[kδ]≤k) · e−λ(δ−t)

)

dt

IH

≥

∫ δ

0

E(s0) · e
−E(s0)t ·

(
∑

s∈S

P(s0,⊥, s) · (1 + λδ)k · e−λδk · e−λ(δ−t)

)

dt

= (1 + λδ)k · e−λδk · E(s0) ·

∫ δ

0

e−E(s0)t · e−λ(δ−t) ·

(
∑

s∈S

P(s0,⊥, s)

)

dt

= (1 + λδ)k · e−λδk · E(s0) ·

∫ δ

0

e−E(s0)t · e−λδ · eλt dt

= (1 + λδ)k · e−λδ(k+1) · E(s0) ·

∫ δ

0

e(λ−E(s0))t dt . (9)

Combining the results for Λ≥δ and Λ<δ (i.e., Equations 8 and 9), we obtain

PrMσ (#[kδ + δ]≤k+1)

= PrMσ (Λ≥δ) + PrMσ (Λ<δ)

≥ (1 + λδ)k · e−λδ(k+1) ·
(

e(λ−E(s0))δ + E(s0) ·

∫ δ

0

e(λ−E(s0))t dt
)

∗
≥ (1 + λδ)k · e−λδ(k+1) · (1 + λδ) = (1 + λδ)k+1 · e−λδ(k+1) ,

where the inequality marked with ∗ is due to

e(λ−E(s0))δ + E(s0) ·

∫ δ

0

e(λ−E(s0))t dt

= e(λ−E(s0))δ + (E(s0)− λ+ λ) ·

∫ δ

0

e(λ−E(s0))t dt

= e(λ−E(s0))δ −
(
λ− E(s0)

)
·

∫ δ

0

e(λ−E(s0))t dt+ λ ·

∫ δ

0

e(λ−E(s0))t dt

=

1− 0 + λ ·

∫ δ

0

e(λ−E(s0))t dt if E(s0) = λ

e(λ−E(s0))δ −
(
e(λ−E(s0))δ − 1

)
+ λ ·

∫ δ

0

e(λ−E(s0))t dt if E(s0) < λ

= 1 + λ ·

∫ δ

0

e(λ−E(s0))t dt ≥ 1 + λ ·

∫ δ

0

1 dt = 1 + λδ .

36

Case s0 ∈ PS: Since M is non-zeno, a state s ∈ MS is reached from s0 within
zero time almost surely (i.e., with probability one). From the previous case,
it already follows that the Proposition holds for Ms with s ∈ MS and the

set #s[kδ + δ]≤k+1. With ΠMS = {s0
κ0−→ . . .

κn−1
−−−→ sn ∈ FPathsM | sn ∈

MS and ∀i < n : si ∈ PS} we obtain

PrMσ (#[kδ + δ]≤k+1) =

∫

π∈ΠMS

last(π)=s

PrM
s

σ[π](#
s[kδ + δ]≤k+1) dPrMσ (π)

≥

∫

π∈ΠMS

last(π)=s

(1 + λδ)k+1 · e−λδ(k+1) dPrMσ (π)

= (1 + λδ)k+1 · e−λδ(k+1) · PrMσ (ΠMS)

= (1 + λδ)k+1 · e−λδ(k+1) .

⊓⊔

We now present the proof of Proposition 5.

Proposition 5. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMσ ([♦I
dsG]) +

[

−ε↓(I), ε↑(I)
]

Proof. In Section 4.3 we already discussed that

Prσ(♦
IG) = Prσ([♦

di(I)
ds G]) + Prσ(♦

IG \ [♦
di(I)
ds G])− Prσ([♦

di(I)
ds G] \ ♦IG).

The main part of the proof is to show that

PrMσ ([♦
di(I)
ds G] \ ♦IG) ≤ ε↓(I) and PrMσ (♦IG \ [♦

di(I)
ds G]) ≤ ε↑(I). (10)

Then, the proposition follows directly. We show Equation 10 for the different
forms of the time interval I.

Case I = [0,∞): In this case we have di(I) = N. It follows that

[♦
di(I)
ds G] = ♦IG = {s0

κ0−→ s1
κ1−→ · · · ∈ IPathsM | si ∈ G for some i ≥ 0}.

Hence,

PrMσ ([♦
di(I)
ds G] \ ♦IG) = PrMσ (♦IG \ [♦

di(I)
ds G]) = PrMσ (∅) = 0 = ε↓(I) = ε↑(I).

Case I = [0, b] for b = dibδ: We have di(I) = {0, 1, . . . , dib}.

– We show that [♦
di(I)
ds G] ⊆ ♦IG which implies

PrMσ ([♦
di(I)
ds G] \ ♦IG) = PrMσ (∅) = 0 = ε↓(I).

37

Let π ∈ [♦
di(I)
ds G] and let π′ be the smallest prefix of π with last(π′) ∈ G. It

follows that di(π′) is also the smallest prefix of di(π) with last(di(π′)) ∈ G.

Since di(π) ∈ ♦
di(I)
ds G, it follows that |π′|ds = |di(π′)|ds ≤ dib. From Lemma 5

we obtain
T (π′) ≤ |π′|ds · δ = |di(π′)|ds · δ ≤ dibδ = b .

Hence, the prefix π′ reaches G within b time units, implying π ∈ ♦IG.

– Next, we show ♦IG \ [♦
di(I)
ds G] ⊆ #[b]>dib . With Lemma 6 we obtain

PrMσ (♦IG \ [♦
di(I)
ds G]) ≤ PrMσ (#[b]>dib) ≤ 1− (1 + λδ)dib · e−λb = ε↑(I)

Consider a path π ∈ ♦IG \ [♦
di(I)
ds G]. Note that π reaches G within b time

units but with more than dib digitization steps. Hence, the prefix of π up to
time point b certainly has more than dib digitization steps, i.e., π satisfies
|prefT (π, b)|ds > dib which means π ∈ #[b]>dib .

Case I = [a,∞) for a = diaδ: We have di(I) = {dia + 1, dia + 2, . . . }.

– We show that [♦
di(I)
ds G] \ ♦IG ⊆ #[a]>dia . With Lemma 6 we obtain

PrMσ ([♦
di(I)
ds G] \ ♦IG) ≤ PrMσ (#[a]>dia) ≤ 1− (1 + λδ)dia · e−λa = ε↓(I).

Consider a path π ∈ [♦
di(I)
ds G] \ ♦IG. As π /∈ ♦IG, it follows that π has

to reach (and leave) G within less than a time units. Let π̄ be the largest
prefix of di(π) that satisfies last(π̄) ∈ G. Our observations yield that π leaves
last(π̄) before time point a. Hence, π̄ is a prefix of di(prefT (π, a)). Moreover,

|π̄|ds ∈ di(I) as di(π) ∈ ♦
di(I)
ds G. It follows that |prefT (π, a)|ds ≥ |π̄|ds > dia

which implies π ∈ #[a]>dia .

– Now consider a path π ∈ ♦IG \ [♦
di(I)
ds G]. π visits G at least once since

π ∈ ♦IG. Moreover, di(π) does not visit G after dia digitization steps due

to π /∈ [♦
di(I)
ds G]. This means π visits G only finitely often. Let π′ = s0

κ0−→

. . .
κn−1
−−−→ sn be the largest prefix of π such that sn ∈ G. Notice that |π′|ds ≤

dia holds. Let π′ κ
−→ s be the prefix of π of length |π′| + 1. We show by

contradiction that a ≤ T (π′ κ
−→ s) < a+ δ holds:

• If T (π′ κ
−→ s) < a, then last(π′) ∈ G is left before time point a which

contradicts π ∈ ♦IG.
• Further, assume that T (π′ κ

−→ s) ≥ a+ δ. With Lemma 5 we obtain

t(κ) ≥ a+ δ − T (π′)

≥ a+ δ − |π′|ds · δ

≥ (dia + 1− |π′|ds
︸ ︷︷ ︸

≤dia

) · δ > 0 .

Hence, π stays at last(π′) for at least (j+1− |π′|ds) · δ time units which

means that di(π′)
(⊥
−→last(π′)

)j+1−|π′|ds = π̄ is a prefix of di(π). Since

|π̄|ds = j + 1, this contradicts π /∈ [♦
di(I)
ds G].

38

We infer that π takes at least one transition in the time interval [a, a + δ).
The probability for this can be upper bounded by 1− e−λδ, i.e.,

PrMσ (♦IG \ [♦
di(I)
ds G])

≤ PrMσ ({π ∈ IPathsM | π takes a transition in time interval [a, a+ δ)})

≤ 1− e−λδ = ε↑(I).

Case I = [a, b] for a = diaδ and b = dibδ: We have di(I) = {dia+1, dia+2, . . . , dib}.

– As in the case “I = [a,∞)”, we show that [♦
di(I)
ds G] \♦IG ⊆ #[a]>dia . With

Lemma 6 we obtain

PrMσ ([♦
di(I)
ds G] \ ♦IG) ≤ PrMσ (#[a]>dia) ≤ 1− (1 + λδ)dia · e−λa = ε↓(I).

Let π ∈ [♦
di(I)
ds G]\♦IG and let π̄ be the largest prefix of di(π) with last(π̄) ∈

G and |π̄|ds ∈ di(I). Such a prefix exists due to π ∈ [♦
di(I)
ds G]. π reaches

last(π̄) with at most dib digitization steps and therefore within at most b
time units (cf. Lemma 5). As π /∈ ♦IG, we conclude that π has to reach (and
leave) last(π̄) within less than a time units. It follows that |prefT (π, a)|ds ≥
|π̄|ds > dia which implies π ∈ #[a]>dia .

– Next, let π ∈ ♦IG \ [♦
di(I)
ds G] and let π′ = s0

κ0−→ . . .
κn−1
−−−→ sn be the largest

prefix of π such that sn ∈ G and T (π′) ≤ b. Such a prefix exists due to
π ∈ ♦IG. We distinguish two cases.
• If |π′|ds > dib, then π ∈ #[b]>dib since |prefT (π, b)|ds ≥ |π′|ds > dib.

• If |π′|ds ≤ dib, then |π′|ds ≤ dia holds due to π /∈ [♦
di(I)
ds G]. Similar to

the case “I = [a,∞)′′ we can show that π takes at least one transition
in time interval [a, a+ δ).

It follows that

♦IG \ [♦
di(I)
ds G]

⊆ #[b]>dib ∪ {π ∈ IPathsM | π takes a transition in time interval [a, a+ δ)}

Hence,

PrMσ (♦IG \ [♦
di(I)
ds G]) ≤ 1− (1 + λδ)dib · e−λb + 1− e−λδ = ε↑(I).

⊓⊔

E.3 Proof of Theorem 5

Theorem 5. Let M be an MA with digitization Mδ. Furthermore, let O be
(un)timed reachability or expected reward objectives with threshold relations ⊲

and |O| = d. It holds that A− ⊆ {p ∈ R
d | achieveM(O ⊲ p)} ⊆ A+ with:

A− = {p′ ∈ R
d | ∀p ∈ R

d : p′ ∈ ε(O,p) implies achieveMδ (O ⊲ p)} and

A+ = {p′ ∈ R
d | ∃p ∈ R

d : p′ ∈ ε(O,p) and achieveMδ (O ⊲ p)}.

39

Proof. For simplicity, we assume that only the threshold relation ≥ is considered,
i.e., ⊲ = (≥, . . . ,≥). Furthermore, we restrict ourself to (un)timed reachability
objectives. The remaining cases are treated analogously.

First assume a point p′ = (p′1, . . . , p
′
d) ∈ A−. Consider the point p =

(p1, . . . , pd) satisfying p′i = pi − ε↓i for each index i. It follows that p′ ∈ ε(O,p)
and thus Mδ, σ̄ |= O ⊲ p for some scheduler σ̄ ∈ TAMδ . Consider the scheduler
σ ∈ GMM given by σ(π, α) = σ̄(di(π), α) for each path π ∈ FPathsM and action
α ∈ Act . Notice that σ̄ = di(σ). For an index i let Oi be the objective P(♦IG).
It follows that

Mδ, σ̄ |= Oi ≥ pi ⇐⇒ Mδ, di(σ) |= Oi ≥ pi ⇐⇒ PrMδ

di(σ)(♦
di(I)
ds G) ≥ pi ,

With Corollary 1 it follows that

p′i = pi − ε↓i ≤ PrMδ

di(σ)(♦
di(I)
ds G)− ε↓i

Cor.1
≤ PrMσ (♦IG).

As this observation holds for all objectives in O, it follows that M, σ |= O ⊲ p′,
implying achieveM(O ⊲ p′).

The proof of the second inclusion is similar. Assume that M, σ |= O ⊲ p′

holds for a point p′ = (p′1, . . . , p
′
d) ∈ Rd and a scheduler σ ∈ GMM. For some

index i, consider Oi = P(♦IG). It follows that PrMσ (♦IG) ≥ p′i. With Corollary 1
we obtain

p′i − ε↑i ≤ PrMσ (♦IG)− ε↑i
Cor.1
≤ PrMδ

di(σ)(♦
di(I)
ds G).

Applying this for all objectives in O yields Mδ, di(σ) |= O ⊲ p, where the point

p = (p1, . . . , pd) ∈ Rd satisfies pi = p′i − ε↑i or, equivalently, p′i = pi + ε↑i for each
index i. Note that p′ ∈ ε(O,p) which implies p′ ∈ A+. ⊓⊔

F Comparison to Single-objective Analysis

Corollary 1 generalizes existing results from single-objective timed reachability
analysis: For MA M, goal states G, time bound b ∈ R>0, and digitization con-
stant δ ∈ R>0 with b/δ = dib ∈ N, [9, Theorem 5.3] states that

sup
σ∈GMM

PrMσ (♦[0,b]G) ∈ sup
σ∈TAMδ

PrMδ

σ (♦
{0,...,dib}
ds G) +

[

−ε↓([0, b]), ε↑([0, b])
]

.

Corollary 1 generalizes this result by explicitly referring to the schedulers σ ∈
GMM and di(σ) ∈ TAMδ under which the claim holds. This extension is neces-
sary as a multi-objective analysis can not be restricted to schedulers that only
optimize a single objective.

We remark that the proof in [9, Theorem 5.3] can not be adapted to show
our result. The main reason is that the proof relies on an auxiliary lemma which
claims that4

PrMσ (♦[0,b]G | #[δ]<2) ≤ PrMσ (♦[0,b]G) (11)

4 We adapt [9, Lemma G.2] to our notations from Appendix E.2.

40

s0 s1 s2

s3

s4

λ λ

α

β
λ

λ

Fig. 9. MA M (cf. Appendix F).

holds for all schedulers σ ∈ GMM. We show that this claim does not hold. The
intuition is as follows. Assume we observe that at most one Markovian transition
is taken in M within the first δ time units (i.e., we observe a path in #[δ]<2).
The lemma claims that under this observation the probability to reach G within
b time units does not increase. We give a counterexample to illustrate that there
are schedulers for which this is not true. Consider the MA M from Figure 9 and
let σ be the scheduler for M satisfying

σ(s0
t1−→ s1

t2−→ s2, α) =

{

1 if t1 + t2 > δ

0 otherwise.

Hence, σ chooses α iff there are less than two digitization steps within the first δ
time units. It follows that the probability to reach G = {s3} on a path in #[δ]≥2

is zero. We conclude that

PrMσ (♦[0,b]{s3}) = PrMσ (♦[0,b]{s3} ∩#[δ]<2) + PrMσ (♦[0,b]{s3} ∩#[δ]≥2)
︸ ︷︷ ︸

=0

= PrMσ (♦[0,b]{s3} | #[δ]<2) · PrMσ (#[δ]<2)
︸ ︷︷ ︸

<1

< PrMσ (♦[0,b]{s3} | #[δ]<2)

which contradicts Equation 11.

G Further Details for the Experiments

G.1 Benchmark Details

We depict additional information regarding our experiments on multi-objective
MAs.

Job scheduling. The job scheduling case study originates from [13] and was
already discussed in Section 1. We consider N jobs that are executed on K
identical processors. Each of the N jobs gets a different rate between 1 and 3.
We consider the following objectives.

E1: Minimize the expected time until all jobs are completed.
E2: Minimize the expected time until ⌈N/2⌉ jobs are completed.

41

E3: Minimize the expected waiting time of the jobs.
P: Minimize the probability that the job with the lowest rate is completed

before the job with the highest rate.
P
≤
1 : Maximize the probability that all jobs are completed within N/2K time units.

P
≤
2 : Maximize the probability that ⌈N/2⌉ jobs are completed within N/4K time

units.

The objectives have been combined as follows: (Oi refers to the objectives con-
sidered in Column i of Table 1):

O
1 = (E1,E2,E3) O

2 = (E1,P
≤
2) O

3 = (P,E1,E2,E3) O
4 = (P,E3,P

≤
1 ,P

≤
2)

Polling. The polling system is based on [34,35]. It considers two stations, each
having a separate queue storing up to K jobs of N different types. The jobs
arrive at Station i (for i ∈ {1, 2}) with some rate λi as long as the queue of the
station is not full. A server polls the two stations and processes the jobs by (non-
deterministically) taking a job from a non-empty queue. The time for processing
a job is given by a rate which depends on the type of the job. Erasing a job from
a queue is unreliable, i.e., there is a 10% chance that an already processed job
stays in the queue. For i ∈ {1, 2} we assume the following objectives:

Ei: Maximize the expected number of processed jobs of Station i until its queue
is full.

E2+i: Minimize the expected sum of all waiting times of the jobs arriving at
Station i until the queue of Station i is full.

P
≤
i : Minimize the probability that the queue of Station i is full within two time

units.

The objectives have been combined as follows: (Oi refers to the objectives con-
sidered in Column i of Table 1):

O
1 = (E1,E2) O

2 = (E1,E2,E3,E4) O
3 = (P≤

1 ,P
≤
2) O

4 = (E1,E2,P
≤
1 ,P

≤
2)

Stream. This case study considers a client of a video streaming platform. The
client consecutively receives N data packages and stores them into a buffer. The
buffered packages are processed during the playback of the video. The time it
takes to receive (or to process) a single package is modeled by an exponentially
distributed delay. Whenever a package is received and the video is not playing,
the client nondeterministically chooses whether it starts the playback or whether
it keeps on buffering. The latter choice is not reliable, i.e., there is a 1% chance
that the playback is started anyway. In case of a buffer underrun5, the playback is
paused and the client waits for new packages to arrive. We analyzed the following
objectives:

E1: Minimize the expected buffering time until the playback is finished.

5 A buffer underrun occurs when the next package needs to be processed while the
buffer is empty.

42

Table 2. Additional model details.

N(-K) #states #choices #transitions #MS λmax

jo
bs

10-2 12 554 23 061 34 581 11 531 5.7
12-3 116 814 225 437 450 783 112 719 8.5
17-2 4 587 537 8 912 931 13 369 379 4 456 466 5.9

po
ll
in
g 3-2 1 020 1 852 2 477 508 14

3-3 9 858 18 295 24 536 4 801 14
4-4 827 735 1 682 325 2 146 086 465 125 16

st
re
a
m 30 1 426 1 861 2 731 931 8

250 94 376 125 501 187 751 62 751 8
1000 1 502 501 2 002 001 3 001 001 1 001 001 8

m
u
te
x 2 13 476 31 752 36 120 216 2

3 38 453 99 132 111 687 8 487 3

E2: Minimize the expected number of buffer underruns during the playback.
E3: Minimize the expected time to start the playback.
P
≤
1 : Minimize the probability for a buffer underrun within 2 time units.

P
≤
2 : Maximize the probability that the playback starts within 0.5 time units.

The objectives have been combined as follows: (Oi refers to the objectives con-
sidered in Column i of Table 1):

O
1 = (E1,E2) O

2 = (E3,P
≤
1) O

3 = (P≤
1 ,P

≤
2) O

4 = (E1,E3,P
≤
1)

Mutex. This case study regards a randomized mutual exclusion protocol based
on [36,35]. Three processes nondeterministically choose a job for which they need
to enter the critical section. The amount of time a process spends in its critical
section is given by a rate which depends on the chosen job. There are N different
types of jobs. For each i ∈ {1, 2, 3} the following objective are considered:

P
≤
i : Maximize the probability that Process i enters its critical section within 0.5

time units.
P
≤
3+i: Maximize the probability that Process i enters its critical section within

1 time unit.

The objectives have been combined as follows: (Oi refers to the objectives con-
sidered in Column i of Table 1):

O
1 = (P≤

1 ,P
≤
2 ,P

≤
3) O

2 = (P≤
4 ,P

≤
5 ,P

≤
6)

G.2 Comparison with PRISM

We considered PRISM 4.3.1 obtained from its website www.prismmodelchecker.org.
We conducted our experiments on PRISMwith both variants of the value iteration-
based implementation (standard and Gauss-Seidel) and chose the faster variant

43

www.prismmodelchecker.org

Table 3. Results for our implementation (Storm) and PRISM on the multi-objective
MDP benchmarks from [15]. All run-times are in seconds.

benchmark PRISM Storm

instance #states O iter verif total pts iter verif total
co
n
se
n
su
s

2 3 2 691 P,P 0.019 0.183 0.285 3 0.007 0.010 0.474
2 4 2 1 517 P,P 0.038 0.329 0.501 2 0.012 0.017 0.497
2 5 2 3 169 P,P 0.053 0.528 0.740 2 0.018 0.028 0.518
3 3 2 17 455 P,P 0.232 1.416 1.771 2 0.135 0.193 1.169
3 4 2 61 017 P,P 0.854 4.267 4.998 2 0.499 0.806 3.421
3 5 2 181 129 P,P 2.835 9.735 10.813 2 1.734 3.639 10.675

ze
ro
co
n
f(
-t
b)

4 5 449 P,P 0.130 6.157 6.423 2 0.077 0.146 0.830
6 10 543 P,P 0.235 12.093 12.428 2 0.213 0.368 1.178
8 17 221 P,P 0.408 22.143 22.596 2 0.467 0.819 1.454

2 14 29 572 P,P 0.285 45.715 46.311 2 0.615 1.926 2.924
4 10 19 670 P,P 0.262 40.259 40.780 2 0.568 1.256 2.052
4 14 42 968 P,P 0.363 96.813 97.631 1 2.706 6.216 7.469

te
a
m
-f
o
rm

.

3 12 475 P,E incorrect 5 0.160 0.257 0.877
4 96 665 P,E incorrect 3 1.360 6.637 9.325
5 907 993 P,E incorrect 3 22.197 866.151 889.889
3 12 475 P,E,P not supported 10 4.060 1.432 2.020
4 96 665 P,E,P not supported 13 1.327 9.447 12.256
5 907 993 P,E,P not supported 8 48.873 894.525 918.858

sc
h
ed
. 5 31 965 E,E error — 1.214

25 633 735 E,E incorrect — 13.907
50 2 457 510 E,E incorrect — 53.119

d
p
m

100 636 C
≤,C≤ 0.187 0.228 0.298 6 0.143 0.145 0.355

200 636 C
≤,C≤ 0.213 0.247 0.312 4 0.210 0.213 0.433

300 636 C
≤,C≤ 0.239 0.285 0.360 3 0.205 0.207 0.433

for each benchmark instance. For all experiments the approximation precision
η = 0.001 was considered.

The detailed results are given in Table 3. We depict the different benchmark
instances with the number of states of the MDP (Column #states) and the
considered combination of objectives (P represents an (untimed) probabilistic
objective, E an expected reward objective, and C≤ a step-bounded reward ob-
jective). Column iter lists the time required for the iterative exploration of the
set of achievable points as described in [15]. In Column verif we depict the ver-
ification time – including the time for the iterations as well as the conducted
preprocessing steps. Column total indicates the total runtime of the tool which
includes model building time and verification time. For our implementation, we
also list the number of vertices of the obtained under-approximation (Column
pts).

During our experiments we observed some issues considering the implementa-
tion in PRISM. For example PRISM does not detect that both objectives considered
for the sched.-instances yield infinite rewards under every possible resolution of
non-determinism. Instead of that, PRISM gives an incorrect answer.

44

Table 4. Results for our implementation (Storm) and IMCA for single-objective MAs.
All run-times are in seconds.

benchmark IMCA Storm (multi) Storm (single)
instance #states O verif. time verif. time verif. time

jo
bs

10 2 12 554 E1 0.009 0.047 0.021

10 2 12 554 P
≤
2 1.054 2.977 1.702

12 3 116 814 E1 0.136 0.556 0.279

12 3 116 814 P
≤
2 19.938 56.242 31.682

po
ll
in
g

3 3 9 858 E1 6.254 0.102 0.095

3 3 9 858 P
≤
1 21.948 54.350 14.163

4 4 827 735 E1 3 630.283 52.162 47.746

4 4 827 735 P
≤
1 3 424.730 8 615.390 1 597.095

st
re
a
m

30 1 426 E1 0.005 0.009 0.004

30 1 426 P
≤
1 0.481 1.578 0.509

250 94 376 E1 2.972 1.462 1.261

250 94 376 P
≤
1 36.663 111.450 33.527

m
u
te
x 2 13 476 P

≤
1 1.785 1.217 0.4

2 13 476 P
≤
4 6.922 4.118 1.008

G.3 Comparison with IMCA

We consider IMCA 1.6 obtained from https://github.com/buschko/imca. The
experiments on IMCA have been conducted with and without enabling value-
iteration and we chose the faster variant for each benchmark instance. For timed
reachability objectives, the precision η = 0.01 was considered in all experiments.

The resulting verification times are given in Table 4. We depict the different
benchmark instances with the number of states of the MA (Column #states)
and the considered objective (as discussed in App. G.1). Besides the run-times
of IMCA, we depict the run-times of our implementation (effectively perform-
ing multi-objective model checking with only one objective) in Column Storm

(multi). Column Storm (single) shows the run-times obtained when Storm is
invoked with standard (single-objective) model checking methods.

45

https://github.com/buschko/imca

	Markov Automata with Multiple Objectives

