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Abstract

Verification problems of programs written in various paggds
(such as imperative, logic, concurrent, functional, angecth
oriented ones) can be reduced to problems of solving Howursela
constraints on predicate variables that represent unkrindunc-
tive invariants. This paper presents a novel Horn congtsailving
method based on inductive theorem proving: the method esduc
Horn constraint solving to validity checking of first-ordi@rmu-
las with inductively defined predicates, which are then kbdc
by induction on the derivation of the predicates. To aut@mat
inductive proofs, we introduce a novel proof system taiote
Horn constraint solving and use an SMT solver to dischargefpr
obligations arising in the proof search. The main advantaige
the proposed method is that it can venglational specifications
across programs in various paradigms where multiple fanatalls
need to be analyzed simultaneously. The class of speaifitsaii-
cludes practically important ones such as functional edence,
associativity, commutativity, distributivity, monotanity, idempo-
tency, and non-interference. Furthermore, our novel coatlmn

of Horn clause constraints with inductive theorem provingldes
us to naturally and automatically axiomatize recursivecfioms
that are possibly non-terminating, non-deterministighler-order,
exception-raising, and over non-inductively defined dgpes. We
have implemented a relational verification tool for the OCam
functional language based on the proposed method and ebtain
promising results in preliminary experiments.

1. Introduction

Verification problems of programs written in various paggs, in-
cluding imperativel[28], logic, concurrent [27], functir45,[52,
[53,[56], and object-oriented [35] ones, can be reduced tolgms
of solving Horn clause constraints on predicate varialiiasrepre-
sent unknown inductive invariants. A given program is gosged
to satisfy its specification if the Horn constraints genedldtom the
program have a solution (sée][25] for an overview of the api

This paper presents a novel Horn constraint solving method
based on inductive theorem proving: the method reduces Horn

constraint solving to validity checking of first-order fouhas with
inductively defined predicates, which are then checked thydtion

on the derivation of the predicates. The main technicallehge
here is how to automate inductive proofs. To this end, we gsep
an inductive proof system tailored for Horn constraint sajvand

an SMT-based technique to automate proof search in thensyste

Compared to previous Horn constraint solving methad$ [25,

[26,[31[401[ 46/ 50, 53, 54] based on Craig interpolatioh [29, 4
abstract interpretation_[17], and PDR][10], the proposedhot
has two major advantages:

1. It can verifyrelational specificationsvhere multiple function

important ones such as functional equivalence, assoityativ
commutativity, distributivity, monotonicity, idempoteyy and
non-interference.

2. It can solve Horn clause constraints over whatever backgt
theories supported by the underlying SMT solver. Exampte co
straints in Sectiof 313 are over the theories of nonlineidn-ar
metics and algebraic data structures, which have not bgen su
ported by available Horn constraint solvers to our knowéedg

To show the usefulness of our approach, we have implemented
a relational verification tool for the OCaml functional large
based on the proposed method and obtained promising résults
preliminary experiments.

For an example of the reduction from (relational) verifioatio
Horn constraint solving, consider the following functibpeogram
Doy (in OCaml syntaxfll

let rec mult x y =

if y=0 then 0 else x + mult x (y-1)
let rec mult_acc x y a =

if y=0 then a else mult_acc x (y-1) (a+x)
let main x y a =

assert (mult x y + a = mult_acc x y a)

Here, the functiomult takes two integer argumentsy and recur-
sively computes: x y (note thatnult never terminates i§ < 0).
mult_acc is a tail-recursive version afult with an accumula-
tor a. The functionmain contains an assertion with the condi-
tionmult x y + a = mult_acc x y a, which represents a re-
lational specification, namely, the functional equivakein mult
andmult_acc. Our verification problem here is whether for any
integerse, y, anda, the evaluation ofain x y a, under the call-by-
value evaluation strategy adopted by OCaml, never causassan-
tion failure, that isvx, y,a € N. main z y a -/~ “assert false.
By using existing Horn constraint generation methods fdirloa
value functional program5 [B7.153], the relational verifica prob-
lem is reduced to the constraint solving problem of the foilg
Horn clause constraint sét,,,.;::

P(‘r7 07 0)7

P(z,y, x4 r) < P(z,y —Lr)A(y #0),

Q(,0,a,a),

Qz,y,a,1) <= Qz,y — La+z,1) A (y #0),

1= P(xvyvrl) A Q(x7y7a7r2) A (7”1 +a 75 7',2)
Here, the predicate variable (resp.Q) represents an inductive in-
variant among the arguments and the return value of theitumct
mult (resp.mult_acc). The first Horn clausé’(x, 0, 0) is gener-
ated from the then-branch of the definitionmaflt and expresses
thatmult returnsO if 0 is given as the second argument. The sec-

10Our work also applies to programs that require a path-semsinalysis of
intricate control flows caused by non-termination, noredeinism, higher-

calls need to be analyzed simultaneously. As shown in Sec- order functions, and exceptions but, for illustration msgs, we use this

tions[3.3 and}, the class of specifications includes praibtic

simple program as a running example.
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ond clause iH i, P(z,y,x + 1) < P(x,y — 1,7) A (y # 0) logics of pure total functions over inductively-defined alatruc-
is generated from the else-branch and representaithatreturns tures. Consequently, the axiomatization of advanced laggdea-
x + r if the second argument is non-zero and- is returned by tures and specifications becomes a non-straightforwardepso
the recursive calhult x (y-1). The other Horn clauses are sim-  which often requires users’ manual intervention and pégsibs

ilarly generated from the then- and else- branchesiot _acc and a negative effect on the automation of induction later. Thus ap-
the assertion imain. BecauseH.,.,; has a satisfying substitu- proach complements automated inductive theorem provittgthe
tion (i.e., solution)f iy = {P — A(z,y,r).x Xy =7,Q — expressive power of Horn clause constraints and, from thesite
Az,y,a,7).x x y + a = r} for the predicate variable® and point of view, opens the way to leveraging the achievemefiiseo
Q, the correctness of the constraint generation methdd [681-g automated induction community into Horn constraint savin
antees that the call-by-value evaluatiomefin = y a never causes The rest of the paper is organized as follows. In Sedfion 2, we
an assertion failure. will give an overview of our induction-based Horn consttaialv-
The previous Horn constraint solving methods, however; can ing method. Sectidnl 3 formalizes Horn constraint solvingtems
not solve this kind of constraints that require a relatioaal- and shows examples of the reduction from various prograria ver
ysis of multiple predicates. To see why, recall the constrai fication problems to Horn constraint solving problems. Bedf
Hpuit, L <= Plx,y,r1) A Q(z,y,a,m2) A (11 + a # 712) formalizes our constraint solving method and proves itsemts
that asserts the equivalencemoflt andmult_acc, where a re- ness. Sectiof]5 reports on our prototype implementatioacdas
lational analysis of the two predicatés and Q) is required. The the proposed method and the results of preliminary expertisne
previous methods, however, analyze each prediPated @ sep- We compare our method with related work in Secfidn 6 and con-
arately, and therefore must infer nonlinear invariants= = x y clude the paper with some remarks on future work in Segfion 7.
andr, = x X y + a respectively for the predicate applications
P(z,y,m1) andQ(z,y,a,72) to concluder; +a =r2 by cancel- 5 Qyerview of Induction-Based Horn Constraint
ing z x y, because: andy are the only shared arguments between .
P(z,y,r1)andQ(z,y, a,r2). The previous methods can only find Solving Method
solutions that are expressible by efficiently decidableties such In this section, we use the Horn constraint &4.;; in Sectiorl 1
as the quantifier-free linear real (QRA) and integer (QH.IA) as a running example to give an overview of our inductioretas
arithmeti, which are not powerful enough to express the above Horn constraint solving method. Our method interprets #fande
nonlinear invariants and the soluti@p,.;; of H - clauses (i.e., the clauses whose head is a predicate afmpijca
By contrast, our induction-based Horn constraint solviregtrd of a given Horn constraint set as derivation rules for praic
can directly and automatically show that the predicate iagpl applicationsP (%), which we callatomshenceforth. For example,
tions P(z,y,r1) and Q(z,y,a,r2) imply r1 +a = r2 (i.e, the definite clause®,..i;; C H...i; are interpreted as the following
H i 1S solvable), by simultaneously analyzid®(x,y, 1) and derivation rules:
Q(z,y,a,r2). More precisely, our method interpref3 Q as the _ _ _ _
pr(edicates i)nductively defined by the definite clauses, (tfe Fy=0Ar=0 Play—1r—2) Fy70
clauses whose head is a predicate applicatiorfy f.;, and uses P(z,y,7) P(z,y,r)
induction on the derivation oP (z,y,r1) to prove the conjecture . _
Vm,y,rha,rz.(P(:c7y,r1)/\Q(:c7y7a7T2)/\(7“1+a;ér2):>L) ':y_O/\a_T Q($7y_17a+5577") ':y;éo
represented by the goal clause (i.e., the clause whose finatia Q(z,y,a,r) Q(z,y,a,7)
predicate application) ofL.,..... SectiorL2 gives an overview of our  ere the heads of the clauses are changed into the uniform
method using this running example. representations”(z, y,r) and Q(z,y,a,r) of atoms over vari-

The use of Horn clause constraints, which can be considered gpjes. The above rules inductively define the least presirat
as an Intermediate Verification Language (IVL) common torHor terpretation{ P {(z yr) €L [zxy=rAy> O} Q —
constraint solvers and target languages, enables our thétho (., 0,7) € Z* | 2 ¥ y’+ @=rny>0h that satisfies the

\éegfy ;f;g?'onqzl Ii%?gIT:?:tI:Qi;ﬁ;ﬁ?m@%%ﬁ?;t V\rlgﬁmg\alg;; definite clause®,,,..;;. It then follows that a given Horn constraint
Vfl;rioFL)Js adeancéd lan uaue featureslincludin regursz/vetihns set has a solution if and only if all the goal clauses (i.e,dlauses
guag g whose head isot an atom) are valid under the interpretation (see

that are partial (i.e., possibly non-terminating), nomedeinistic, c : :

h L - . . ; orollary[d for the proof). Therefore, constraint solving?®,,.,
higher-order, exception-raising, and over non-indutjiutefined boils dov)\//n to the vaF;idity)checking of the goal clause o !
data types (recall th&{.,., axiomatizes the partial functionm1t

andmult_acc, and see Sectidn 3.3 for more examples). Further- Vz,y,r1,a,r2. (P(z,y,71) A Q(z,y,a,72) A (r1 +a #r2) = 1)
more, we can automate the axiomatization process by usimg pr
gram logics such as Hoare logics for imperative and refinémen
type systems [45, 52,15B,]57] for functional programs. Irt,fee-
searchers have developed and made available tools suchaas Se
Horn [28] and JayHorr [35], respectively for translatingr@ldava Principle 1 (Induction on Derivations) Let P be a property on
programs into Horn clause constraints. In spite of the esgive- derivations D of atoms. We then haveD.P(D) if and only if
ness, Horn clause constraints have a simpler logical sérsam- VD.((VD" < D.P(D")) = P(D)), where D’ < D represents
pared to other popular IVLs like Boogi&l [2] and Why3 [8]. This that D’ is a strict sub-derivation ob.

simplicity enabled us to directly apply inductive theorenoying
and made the correctness proof and implementation easier.

under the least predicate interpretation fandQ.
To check the validity of such a conjecture, our method uses
induction on the derivation of atoms.

Formally, we propose an inductive proof system for deriving

In contrast to our induction method based on the logic of pred judgments of the formD; I'; A; ¢ = L, where L represents the
icates defined by Horn clause constraints, most stateesthau- contradiction,¢ represents a formula without atoms$,represents

tomated inductive theorem provers such as ACL2s [13], Lé6h [ a set of atomd]" represents a set of induction hypotheses and user-

; specified lemmas, anf® represents a set of definite clauses that
Dafny [40), Zeno[2B), HipSpe€[15], and CVGZ]44] are based o define the least predicate interpretation of the predicat&ables

in T or A. Here,T", A, and¢ are allowed to have common free
2Sechttp://smt-1ib.org/|for the definition of the theories. term variables. The free term variables of a claus®ihave the
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pPi)eA  {y} = fus(A) U fus()
Z : fresh c={y—7z=
D;T U{VZ. ((P(at) < P(t)) ANNoA = =(0¢))}; Ao L
DT A0 L
(INDUCT)
Plye A o={T—1t} D:T;AUcA  pAod' F L
(for each (P(z) <= A" A ¢') € D)
DT A0 h
(UNFOLD)
Vi ((P(?) <P %“)) ANA = ¢’) €T dom(o) = {7}
P(ot’) < P(1) EANAAG= NoA
DT A;p N0 - L
DI A9 L
(ApPpPLYL)
Fo=1
DAL (VAaLID 1)

Figure 1. A simplified version of the inference rules in Figlite 3
for the judgmen®D;T'; A; ¢ - L.

scope within the clause, and are considered to be univeipadin-
tified (see Sectioll3 for a formal account). Intuitively, dgment
D;T; A; ¢ = L means that under the least predicate interpretation
induced byD, the formulaAT A AA A ¢ = L is valid. For
example, consider the following judgment,..;::

Imult £ Dmulﬁ 0; {P(CC7y7T1), Q(:C7y7 Q,TQ)} 5 (T1+a 75 T2) HL

If Jpuie is derivable P(x, y,r1)AQ(x, y, a, r2)AN(ri+a # r2) =
L isvalid under the least predicate interpretation induge®f..i:,
and hencéH,..; has a solution.

The inference rules for the judgmept I'; A; ¢ - L are shown
in Figure[3. The rules there, however, are too general amdéfor
for the purpose of providing an overview of the idea. Themefo
we defer a detailed explanation of the rules to Sedfion 4,hemnd
explain a simplified version shown in Figurk 1, obtained frihe
complete version by eliding some conditions and subtletieie
retaining the essence. The rules are designed to exXplaiid D
for iteratively updating the currertnowledgerepresented by the
formula A\ A A ¢ until a contradiction is implied. The first rule
INDUCT selects an atonP(f) € A and performs induction on
the derivation of the atom by adding a new induction hypdthes
VZ. ((P(ct) < P(t)) A \NoA = —=(0¢)) toT. Here, a maw is
used to generalize the free term variablethat occur inA or ¢

(denoted byfus(A) U fus(¢)) into fresh variables, andP(ot) <

P(t) requires that the derivation @f(ot) is a strict sub-derivation
of that of P(t). The second rule NFOLD selects an aton®(t) €
A, performs a case analysis on the last rule used to derivedhe a
which is represented by a definite clausé@if the formP(z) «
A’ A ¢, and updates the current knowledded A ¢ with A(A U

oA\ ANpAod foro = {7 — 't} The third rule AoPLY_L selects an

induction hypothesis i, V2. ((P(?) <Pt))ANNA = ¢’),

and tries to find an instantiatianof the quantified variableg such
that

e the instantiated premis& o A’ of the hypothesis is implied by
the current knowledg@\ A A ¢ and

« the derivation of the aton®(ct’) € o A’ to which the hypothe-
sis is being applied is a strict sub-derivation of that ofdbhem

= (VALID L)
— (VALDLl) — (VALIDLl) — (VALIDL) J—7 (APpPLYL)
2 - 2 (UNFOLD) % (UNFOLD)
L = 2 (UNFOLD)
% (InpbucT)

mult

Jo £ Doputt; Crnate; Ap; 1 +a # 12 b L
Ji 2 Dott; Dot Ags 71 +a #ra Ay=0Ar =0F L
J2 & Dopute; Conate; A1 +a # 12 Ny 0 L
J3 2 Dyptt; Tonate; Ap; 71 +a#r2o Ay=0Ar1 =0Aa=1r2 L
Ja 2 Doit; Tonair; Ag;m1 +a# o Ay=0Ar1 =0Ay#0F L
J5 £ Doputt; Donate; Apsm1+a#r2 Ay #0Ay=0Aa=r2 - L
J6 = Donutt; Uonutt; Ap@im1 +a#ra Ay #0F L
Jr 2 Dott; Dot Apgsm1 +a #ma Ay #0Ar +a=m F L
Toare 2 {V2' 7, a' rh.((P(2, 4, r1) < P(x,y,71))A
Py, r) AQ(2 Yy al rs) = rl +a =75)}
Ag £ {P(z,y,m),Q(z,y,a,m2)}
Ap 2 Ay U{P(z,y — 1,1 — )}
Ag 2 Apu{Q(z,y — 1,a+x,m2)}
Apo 2 ApU{Q(z,y — 1,a+ z,12)}

Figure 2. The structure of an example derivation.Bf..;: .

P(t) on which the induction (that has introduced the hypothe-
sis) has been performed.

If such ac is found, the rule updates the current knowledge with
ANAA ¢ A og'. The fourth rule MLID L checks whethep =

1 is valid, and if it is the case, closes the proof branch under
consideration.

Figure[2 shows the structure (with side-conditions omjtted
of a derivation of the judgmentf,..;;, constructed by using the
simplified version of the inference rules. We below explagwh
the derivation is constructed. First, by performing indluecton the
atom P(z,y,71) in Jmu using the rule NDucT, we obtain the
subgoal J, with an induction hypothesi¥,,...; added. We then
apply UNFOLD to perform a case analysis on the last rule used
to derive the atomP(x,y,r1), and obtain the two subgoal#
and.J> as the result, becaude,,.;; has two clauses with the head
that matches with the atofi(z, y, r1). The two subgoals are then
discharged as follows.

e Subgoal 1:By performing a case analysis 6%z, y, a,r2) in
J1 using the rule WFoLD, we further get two subgoalf and
Ju. Both J3 and J, are proved by the rule ALID 1 because
E ¢3 = L and= ¢4 = L hold.

e Subgoal 2:By performing a case analysis 6%z, y, a,r2) in
Jo using the rule WIFOLD, we obtain two subgoalg; and Js.
Js is proved by the rule ¥LID L becausé= ¢5s = L holds.
We then apply the induction hypothesislip, .,

va'y' o a s (PGl y rh) < Pla,y,m)A
P(x/’ y/’rll) A Q(xly y/7 alv Té) = 7”1 + a/ = Té)

to the atomP(z,y — 1,71 — x) € Apg in Js using the rule
AppPLY L. Note that this can be done by using the quantifier
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instantiationo defined by
{x’»—)x,y’»—)y— 1,7"1 =y —x,a't—)a—kx,ré »—>r2},

because (P(z',y',m1)) = P(x,y — 1,71 —x) < P(x,y,71)
holds and the premise(P(z',y’,71) A Q(z',y',a’,15)) =
P(z,y—1,r1 —x) ANQ(x,y — 1,a+ x, r2) of the instantiated
hypothesis is implied by the current knowleddedpro A 71 +
a # ro Ay # 0. We thus obtain the subgodl, where the
¢-part of the knowledge is updated to

rmAda#treANy#0Ao(r; +ad =r5)
=rmta#zrAy£0A(rn—z)+ (a+z)=rs
=rmta#zraoAy#0ATi +a=ro.

Because this implies a contradictios; is finally proved by
using the rule ¥LiD L.

To automate proof search in the system, this paper proposes

an SMT-based technique: we use an off-the-shelf SMT sotwer f
checking whether the current knowledge implies a conttimufic
(in the rule \ALID 1) and whether there is an elementlothat can

be used to update the current knowledge, by finding a quantifie

instantiationo (in the rule AppLYL). The use of an SMT solver
provides our method with efficient and powerful reasoninguab
data structures supported by SMT, including integers,mewibers,
arrays, algebraic data types (ADTs), and uninterpretedtioms.
There, however, still remain two challenges to be addresseards
full automation:

1. Challenge:How to check (in the rule ApLY_L) the strict sub-
derivation relationP (') < P(t) between the derivation of an
atom P(t') to which an induction hypothesis inis being ap-
plied, and the derivation of the atoR() on which the induc-
tion has been performed? Recall that in the above derivafion
Jmuit, We needed to checR(z,y — 1,71 — ) < P(z,y,71)
before applying the rule APLYL to Js.

vanced language features, including higher-order funstiand
exceptions.

The syntax of Horn Clause Constraint Sets (HCCSs) over the
theory 7z of quantifier-free linear integer arithmetic is defined by

(HCCS9 H ::={hc1,..., hem}
(Horn clausephc::=h < b

(head$ h::= P(7) | L
(bodieg b::= Pi(t1) A A Pp(tm) A @
(Tz-formulag ¢::=t1 <t2 | T| L | =d| dp1 A2 | P1V o
(Tz-term9 t ==z | n | t1 +t2

Here, the meta-variableB andx respectively represent predicate
variables and term variables, ahdepresents a sequence of terms
t1,...,tm. We write the arity of P as ar(P). Note that, in the
syntax of 7z-formulas, linear inequalities; < ¢» can be used to
encodet, < ta, t1 = t2, andty #* to. For examplet: < to

is encoded ag; + 1 < to. The formulaT (resp.L) represents
the tautology (resp. the contradiction). We here restrnicselves
to 7z for simplicity, although our induction-based Horn constta
solving method formalized in Sectifh 4 supports constsaavier
whatever background theories supported by the underlyMg S
solver, including the theories of nonlinear arithmetidgebraic
data structures, and uninterpreted function symbols awrslio

Sectior 3.B.

3.1 Notation for HCCSs

A Horn clause constraint sett is a finite set{hci, ..., hcm}

of Horn clauses. AHorn clauseh < b consists of a head
and a bodyb. We often abbreviate a Horn clauge < T as

h. We write pus(hc) for the set of the predicate variables that
occur inhc and definepvs(H) = U, .c pvs(hc). Similarly, we
write fus(hc) for the set of the term variables ibc and define
Jus(H) = U,.cq fos(he). We assume that for amye, hea € H,

Our solution: The formalized rules presented in Secfibn 4 keep ., # heo impliesfus(hei) N fus(hez) = 0. We writeH |  for the

sufficient information for checking the strict sub-derigat re-
lation: we associate each induction hypothesiF imith anin-
duction identifiera,, and each atom il with a setM of iden-
tifiers indicating which hypotheses can be applied to thenato
Further details are explained in Sectidn 4.

2. Challenge:In which order should the rules be applied?

Our solution: This paper adopts the following simple strategy,

and evaluates it by experiments.
o Repeatedly apply the rulemeLY L if possible, until no new

knowledge is obtained. (Even if the rule does not apply, ap-

plications of NDucT and UINFOLD explained in the follow-
ing items may make ApLY_L applicable.)

e If the current knowledge cannot be updated by using the

rule APPLYL, select some atom from in a breadth-first
manner, and apply the ruleibucT to the atom.

e Apply the rule LINFOLD whenever NDUCT is applied.

e Try to apply the rule ¥XLID L whenever thep-part of the
knowledge is updated.

3. Horn Constraint Solving Problems

This section formalizes Horn constraint solving problenmsl a
proves the correctness of our reduction from Horn condtsailv-
ing to inductive theorem proving in Corollaky 1. Sectlonlal80
shows example Horn constraint solving problems reducenh fro
(relational) verification problems of programs that useows ad-

set of Horn clauses i of the formP(¢) < b. We definel{(P) =
ALIG N i AT = ) i Hp = {P(ti) <bi}, .
where{y} = fus(H[p) and{z} N {y} = 0. By using(P), an
HCCS™H is logically interpreted as the formula

/\ Vie. (H(P)@p)= P(ir)),
Pepus(H)

wherezp = x1,...,Zq(p). A Horn clause with the head of
the form P(t) (resp. L) is called adefinite clause (resp. goal
clause). We writedef (H) (resp. goal(H)) for the subset ofH
consisting of only the definite (resp. goal) clauses. Noat#h =

def (H) U goal(H) anddef (H) N goal(H) = 0.

3.2 Predicate Interpretation

A predicate interpretatiorp for an HCCS# is a map from each
predicate variablé® € pus(#) to a subset o ("), We write the
domain ofp asdom(p). We write p1 C p2 if p1(P) C p2(P)
for all P € pus(H). We call an interpretatiop a solution of
‘H and writep = H if p = he holds for all he € #H. For
example,pmu = {P +— {(m,y,r) VA |z xy= r} ,Q —
{(z,y,a,r) €Z* |2 x y+a =r}} is a solution of the HCCS
H muie in Sectior 1.

Definition 1 (Horn Constraint Solving Problems)y Horn con-
straint solving problenis the problem of checking whether a given
HCCSH has a solution.
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We now establish the reduction from Horn constraint solv-
ing to inductive theorem proving, which is the foundationooir
induction-based Horn constraint solving method.

The definite clausedef () are considered to inductively de-
fine theleast predicate interpretatiofor H as the least fixed-point
wFy of the following function on predicate interpretations.

Pu(p) = {P = {@ e2"® | p = H(P)@)} | P € dom(p)}

BecauseF, is continuous[[33], the least fixed-poiptFs, of Fy
exists. Furthermore, we can express it as

uFu = Fi(P 0| P € pus(3)}),

i€N

where F}, meansi-times application off’. It immediately fol-
lows that the least predicate interpretatiof’y is a solution of
def (H) because any fixed-point dfy is a solution ofdef (H).
Furthermore Fy, is the least solution. Formally, we can prove the
following proposition.

Proposition 1. pFy | def(H) holds, and for allp such that
p = def (H), pFy C pholds.

On the other hand, the goal clausgs:/(7{) are considered
as specifications of the least predicate interpretatidh,. As a
corollary of Propositiofi]1, it follows tha# has a solution if and
only if . Fy, satisfies the specificationgal ().

Corollary 1. p = H for somep if and only if uF3 = goal(H)

In Sectior#, we present an induction-based method for pgovi
wFy = goal(H).

3.3 Examples Reduced from Program Verification Problems

This section shows example Horn constraint solving problem
reduced from (relational) verification problems of progsathat
use advanced language features such as algebraic datmrgtsyc
higher-order functions, and exceptions. The reductiom use¢his
section is mostly based on an existing Horn constraint geioer
method [[5B] for an ML-like (i.e., call-by-value, staticgityped,
and higher-order) functional language. The method can éé s
reduce a given assertion safety verification problem defiretolwv
into a Horn constraint solving problem.

Definition 2 (Assertion Safety Verification Problemsfn asser-
tion safety verification problem of a given functional pragr, with
a special functiomain of the ordinary ML typeint — --- —

int — unit, is the problem of deciding whether

an,..

. My € Z.mainny ...n,, —/~" assert false,

where— is the one-step evaluation relation. We call the program
safeif this property holds, andinsafeotherwise.

The constraint generation method is based on refinemers [Big
which are used internally to express value dependent iivauict-
variants and specifications of the program. The followirgptiem
states the soundness of the reduction.

Theorem 1(Soundness [53]) Let# be the HCCS generated from
a programD. If there exists a solutiop of , thenD is safe.

We now show example Horn constraints generated by the

method. The partial recursive functions shown in Sedcibrrel a
automatically axiomatized using refinement types as falow

Example 1. Recall the progranD,,,..; in Sectiofll. The constraint
generation method first prepares the following refinemeue tgm-

plates for the functions i, .

mult :
mult_acc :

(z :int) = (y: int) — {r: int | P(z,y,7)}
(z:int) — (y : int) — (@ : int) —
{r:int | Q(z,y,a,r)}

Here, the predicate variablé (resp. Q) represents an inductive
invariant among the arguments and the return value of thetfan
mult (resp.mult_acc). The constraint generation method then
type-checks the program against the type templates, aralnsbt
the Horn constraint set.,...; in Sectior L, which has a solution if
and only if the program is typable under a refinement typeesyst
The refinement type system guarantees that if a given program
typable, the evaluation @fain n never causes an assertion failure
for any integem. a

Example 2. Consider the following program.

let rec sum n =
if n < O then
else if n =0
let rec sum_acc
if n < O then
else if n =0
let main n a =

n+ sum (n + 1)

then 0 else n + sum (n - 1)

na-=

sum_acc (n + 1) (a + n)

then a else sum_acc (n - 1) (a + n)
assert(sum n + a = sum_acc n a)

In a similar manner to Examplg 1, we obtain the following Horn
constraint set:
P(0,0),
P(z,r+z) < P(z+1,7) ANz <0,
P(z,r+xz)< Plzx—1,r) Az >0,
Q(07 a’7 a’)?
Qz,a,r) <= Q(z+ 1,a+z,7) ANz <0,
Qz,a,7) = Q(x—1l,a+z,7) ANz >0,
1L <= Pl,rm)ANQ(x,a,m2) A1+ a # 12
Here, the predicate variablé (resp. Q) represents an inductive
invariant among the arguments and the return value of the-fun

tion sum (resp.sum_acc). Here, suppose that the main function is
replaced by

let main n =

if n >= 0 then assert (2 * sumn =n * (n + 1))

We then obtain the following goal clause over the nonlineseger
arithmetic instead:

lL<Plx,r)ANe>0A2xr#zx (z+1)
|

The method can automatically axiomatize complex recursive
functions on integers.

Example 3. Consider the following program with complex recur-
sion.

let rec mc91 x =
if x > 100 then x - 10 else mc91 (mc91 (x + 11))
let main x = if x <= 101 then assert(mc91 x = 91)

By using the refinement type template

mc9l: (x:int) — {r:int | P(z,r)}
the constraint generation method returns the following iHoon-
straint set:

P(a,z — 10) < 2 > 100,
P(z,s) < P(z+11,7) A P(r,s) Az < 100,
1L < Plxz,r)ANe <101 Ar#91

Here, the predicate variablé® represents an inductive invariant
among the arguments and the return value of the funaticst.
O
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Our method can also handle recursive functions on non-tiailyg
defined data types such as real numbers.

Example 4. Consider the following program that models a dynam-
ical system from([38].

let rec dyn_sys vc =

The method can also axiomatize higher-order functions into
Horn clause constraints automatically.

Example 6. Consider the following higher-order program.

type list = Nil | Cons of int * list

let fa = 0.5418 *. vc *. vc in (* the force control *)let rec sum_list 1 = match 1 with
let fr = 1000. -. fa in | Nil -> 0
let ac = 0.0005 *. fr in | Cons(x, xs) -> x + sum_list xs
let vc’ = vc +. ac in let rec fold_left f s 1 = match 1 with
assert (vc’ < 49.61); (x the safety velocity *) | Nil -> s
dyn_sys vc’ | Cons(x, xs) -> fold_left f (f s x) xs
let main () = dyn_sys 0. (* the initial velocity *) let plus x y =x +y
let main 1 = assert(sum_list 1 = fold_left plus O 1)

By using the refinement type template

dyn-sys: {x:real|P(z)}— unit

the constraint generation method returns the following iHoon-
straint set:
P(vc") <= P(vc) A fa = 0.5418 X vc x ve A fr = 1000 — faA
ac = 0.0005 x fr A ve' = vc + ac A ve' < 49.61,
P(0),
1L < P(ve) A fa = 0.5418 X ve x ve A fr = 1000 — faA
ac = 0.0005 x fr Ave’ = ve + ac A ve’ > 49.61

Here, the predicate variabl® represents an inductive invariant on
the argument of the functiadyn_sys. |

The constraint generation method can handle functional pro
grams that manipulate user-defined algebraic data stasctur

Example 5. Consider the following program that manipulates
lists.

type list = Nil | Cons of int * list

let rec append 1 ys = match 1 with
| Nil -> ys
| Cons(x, xs) -> Cons(x, append xs ys)
rec drop n 1 = match 1 with
| Nil -> Nil
| Cons(x, xs) ->
if n = 0 then Cons(x, xs) else drop (n - 1) xs
rec take n 1 = match 1 with

| Nil -> Nil

| Cons(x, xs) ->

if n = 0 then Nil else Cons(x, take (n - 1) xs)

let main n xs =

assert(append (take n xs) (drop n xs) = xs)

By using the refinement type templates

append : (x:1list) — (y:1list) — {r:1list | P(z,y,7)}
drop: (x:int)— (y:1list) — {r:1list| Q(z,y,7)}
take: (x:int)— (y:1list) — {r:1list| R(z,y,7)}

the constraint generation method returns the following tHoon-
straint set over the theory of algebraic data structures:

P(Nil lz,lz)

P(Cons(z,1),l2,Cons(z,1)) < P(l,l2,r),
Q(n,Nil,Nil),
Q(n, Cons( ,I"),Cons(z,l")) <= n =0,
Q(n,Cons(z,l'),r) = Q(n—1,I',r) An #£0,
R(n,Nil,Nil),
R(n, Cons(:c ),Nil) = n =0,
R(n,Cons(z,l"),Cons(x,7)) < Q(n— 1,I',7) An # 0,
L <= Pn,l,ri) ANQ(n,l,r2) AN R(ri,ra,m) A1 #1

By using the refinement type templates

sum list : (z:1list) — {r:int | P(z,7)}
fold left: (f:(a:int)— (b:int) — {c:int| Q(a,b,0)})
— (z:int) — (y: list) — {z : int | R(z,y, 2)}
plus: (x:int) — (y:1list) — {r:1list| S(z,y,7)}

the constraint generation method returns the following iHoon-
straint set over the theories of linear integer arithmeti@aalge-
braic data structures:

P(Nil,0),
P(Cons(z,l'),x+r) <= P(l',r),
R(s,Nil, s),
R(s,Cons(x,l'),r") < Q(s,z,7) AN R(r,l',7"),
S(x7 y7 x + y)7
Q(z,y,2) < S(z,y,2),
1 < P(Z,T1) /\R(O,l,?”z) AT 75 [

O

The method can also axiomatize recursive functions that may
raise exceptions into Horn clause constraints.

Example 7. Consider the following higher-order program that
manipulates lists and possibly raises and catches exaeptio

exception Not_found
type int_option = None | Some of int

let rec find p 1 = match 1 with

| [1 -> raise Not_found

| x::xs -> if p x then x else find p xs
let rec find_opt p 1 = match 1 with

| [0 -> None

| x::xs -> if p x then Some x else find_opt p xs
let main p 1 = try find_opt p 1 = Some (find p 1)

with Not_found -> find_opt p 1 = None

Here,find andfind_opt respectively use the exceptibort _found
and the option typent_option, defined respectively in the first
and the second lines, for finding the first element of thellisat-
isfying the predicate : int — bool. The constraint generation
method cannot directly handle this program because thenlyidg
refinement type system does not support exceptions. Noteyan
that we can mechanically transform the program into theofelhg
one by eliminating exceptions using a selective CPS tramsfo
tion [47].

= Not_found
None | Some of int

type exc
type int_option =
let rec find p 1 ok ex = match 1 with

| [1 -> ex Not_found

| x::xs -> if p x then ok x else find p xs ok ex
let rec find opt p 1 = match 1 with
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| [1 -> None

| x::xs -> if p x then Some x else find_opt p xs
let main p 1 =

find p 1 (fun x -> assert (find_opt p 1

(fun Not_found -> assert (find_opt p 1

Some x))
None) )

Note here that two function argumentk and ex of the ordinary
ML typeint — unit, which respectively represent continuations
for normal and exceptional cases, are added to the fundtiari.
The constraint generation method then prepares the follgwe-
finement type templates:

find: (x:int — bool) — (y:list) —
({z:int | Por(z,y,2)} — unit) —
{w : exc | Pez(z,y,w)} — unit) — unit
find opt : (x:int — bool) — (y:list) —

{z: int_option | Q(x,y, 2)}

Here, the predicate variabl®,; represents invariants among the
first and the second arguments fifnd and the argument of the
third argumentok of £ind. The predicate variablé., represents
invariants among the first and the second argumentsiafi and

the argument of the fourth argumeak of find. The predicate
variable @ represents invariants among the arguments and the
return value off ind_opt. The constraint generation method then
obtains the following Horn constraint set over the theoonébnear
integer arithmetic, algebraic data structures, and unipteted
function symbols:

Pop(p,zzs,r)<=px=T,

Por(p,z :: zs,7) <= Pop(p,xzs,7) A\px = L,

P (p,[],Not_Found),

Pex(p,x 2 28,7) <= Peg(p,xs,r) Apx = L,

Q(p, [] None),

Q(p, cxs,Somex) =pr=T,

Q(pﬁv 3 56877“) < Q(p,zs,r) Apz =1,

1 < Por(p,l,71) AN Q(p,l,72) A Some r1 # 12

1 < P.x(p,l,71) A1 # Not_Found

1 < Pex(p,l,Not_Found) A Q(p,l,72) A None # o

Here,p is an uninterpreted function symbol, which is essential for
the success of Horn constraint solving here because we rmeed t
express the fact that the multiple occurrence® af in the body
of different clauses return the same value if the same foumds
passed ap. a

Our method also supports demonic hon-determinism.

Example 8. Consider the following higher-order program that
callsrand_int to generate random integers.

let rec randpos dummy =
let n = rand_int () in
if n > O then n else randpos dummy
let rec sum_fun f n
if n O then £ O
else f n + sum_fun f (n - 1)
let main n assert (sum_fun randpos n > 0)

Note that the specification is satisfied because the funetindpos
never returns a non-positive integer. By using the refinermgre
templates

randpos :

(z:int) — {y : list | P(z,y)}
sum_fun : b

(f:(a:int) = {b: 1nt|Q(a )} —
(z:int) = {y :int | R(f,z,vy)}

we obtain the following Horn constraint set:

P(z,y) <y >0,
P(z,y) < P(z,y) Ny <0,
Q(a,b) <= Q(z,r) A (a b) Nz #0,
Q(a,b) < P(a,b),
R(f,0,y) < Q(0, ),
R(f,z,r1+12) <
Q( 7y)/\Q($,T1)/\R(f7CC—17T2)/\$;£0,
1 < Q(randpos,z,y) Ny <0

a

Our method based on Horn clause constraints is not limited to
relational verification of functional programs. By comiigithe
constraint generation tools for € [28] and Java [35], we can a
iomatize relational verification problems across funaiipimper-
ative, object-oriented, and, of course, (constraint)dqgiograms
into Horn clause constraints.

Example 9. Consider the following C program.

int mult(int x, int y) {
int r=0; while(y '=0) r =1 +x; y=1y - 1;

return r;
}
Using the Hoare logic, we obtain the following Horn constrizget:
I(z,y,7)<=1r=0,

I(z,y—l,r+:p)<:I(x,y,r)/\y7é0,
R(z,y,r) < I(z,y,r) Ay =0

Here, the predicate variablé represents the loop invariant of the
while loop, andR represents invariants among the argumentg
and the return value- of the procedurenult. The goal clause
1 < P(z,y,r1) AN R(z,y,m2) A r1 # 72, With the predicate

P defined byH,,..: in Sectior1L, represents the equivalence of C
and OCaml implementations afilt. |

It is also worth mentioning here that there have also been
proposed techniques for reducing verification problems oftim
threaded programg_[25,]27] and functional programs with the
call-by-need evaluation stratedy [56] into Horn constraiolving
problems. Angelic non-determinisrn [29] and temporal S
tions [7] can also be automatically axiomatized into Horauske
constraints extended with existentially quantified heads.

4. Induction-based Horn Constraint Solving

Method

As explained in Sectioh] 2, our method is based on the reductio
from Horn constraint solving into inductive theorem prayifhe
correctness of the reduction is established by Corollany $éc-
tion[3. The remaining task is to develop an automated metbiod f
proving the inductive conjectures obtained from Horn odacsn-
straints. To this end, Sectibn 4.1 formalizes our induqgtiaof sys-
tem tailored to Horn constraint solving and proves its adrress.
Sectio 4.P discusses how to automate proof search in thensys
using an SMT solver.

4.1

We formalize a general and more elaborate version of thecindu
tive proof system explained in Sectibh 2. A judgment of the ex
tended system is of the for®;T"; A;¢ + h, whereD is a set
of definite clauses and represents a formula without atoms. We
here assume thab(P) is defined similarly ast(P). The as-
serted propositiorh on the right is now allowed to be an atom
P(t) instead ofL. For deriving such judgments, we will introduce
new rules LD and \ALID P later in this sectionI" represents a

Inductive Proof System
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Perform induction on the derivation of the atdp(t):
PMt)eA T =TU{(a>P(l),A ¢ h)}
DT (A\PY @) U{PY(®)};¢Fh (o fresh)
DT Ao h

(INDUCT)

Case-analy~ze the last rule us~ed (whereules are possible):
PY(t)e A D(P)(t) = VL, 3z (¢i AN\ Ai)
DiT; AU ALY g A -h (foreachi € {1,...,m})

DT A0 h

(UNFOLD)

Apply an induction hypothesis or a user-specified lemmiain
(9,A,¢',L)eTl  dom(o) = fus(A)
Eo=[oged] o= [0ACA]

{2} = fus(¢’) \dom(o) DI A5 AVZA(0¢)) F R
DT A0 h

(ApPpPLYL)

Apply an induction hypothesis or a user-specified lemmia:in
(9,A",¢', P(H)) €T dom(o) = fus(A") U fus(?)
o= [og€A] o= 3i(0¢) b= [0A'CA]
{7} = Jus(¢/) \dom(e) DT AU{PI(oD)} 50t h

DT A0 h

(APPLYP)

Apply eldefinite clause i®: N
(Pt)y<=¢d ANA)eD  dom(o) = fus(A") U fos(t)

F ¢ = 33.(0¢) F ¢ = [0A'CA]
{7} = fus(¢/) \dom(e) DT AU{P(oD)} 50t h

DT A0 h

(FoLD)

Check if the current knowledge entails the asserted propnosi

Fo=1 E o= [P(t)eA]
DAL AP SRS PO

(VALID P)

Auxiliary functions:

[POea] s\ i=7

P(t')eA
[ecA] &£ T
[aDP JEA] £ [[ E{PM €A|a€M}]]
[A1CA ]2 A\ [P(DEA:]

P(t)€A;

Figure 3. The inference rules for the judgmept T'; A; ¢ + h.

set{(g1, A1, é1,h1), ..., (Gm, Am, dm, hm)} consisting of user-
specified lemmas and induction hypotheses, wheie eithere or
a> P(t). (e, A, ¢,h) € T represents the user-specified lemma

V. (/\A A= h) where {7} = fus(A, ¢, h),

while (a> P(t), A, ¢, h) € T represents the induction hypothesis

V. ((P(?) <P@)ANANG = h)
where {Z} = fus(P(1), A, ¢, h)

that has been introduced by induction on the derivation@gtiom
P(t"). Here,« represents thinduction identifierassigned to the
application of induction that has introduced the hypotheliote
thath on the right-hand side e is now allowed to be an atom of
the formQ(¢). We will introduce a new rule APLYP later in this
section for using such lemmas and hypotheses to obtain newlkn
edge.A is also extended to be a P! (1), - ., Pl (fm) }

of annotated atoms. Each eIemeFr;ﬁ{ has two annotations:

e an induction identifiery indicating that the induction with the
identifier« is performed on the atom by the rukeducT. If the
rule INDUCT has never been applied to the atamis set to be
a special identifier denoted hy

e a set of induction identifierd/ indicating that ifa’ € M, the
derivation D of the atom P2/ () satisfiesD < D’ for the
derivation D’ of the atomP(#') on which the induction with
the identifiera’ is performed. Thus, an induction hypothesis
(/>P(t), A',¢', W) € T can be applied to the atom () €
Aonlyif o/ € M holds.

Note that we use these annotations only for guiding indactiv
proofs andP2 (1) is logically equivalent taP(t). We often omit
these annotations when they are clear from the context.

The inference rules for the judgment I'; A; ¢ - h are defined
in Figurel3. The ruleNibucT selects an ator® () € A and per-
forms induction on the derivation of the atom. This rule gafes
a fresh induction identifierx # o, adds a new induction hypoth-
esis(a> P(t), A, ¢, h) to I, and replaces the atoi (t) with
the annotated onE’M( t) for remembering that the induction with
the identifier« is performed on it. The rule NFOLD selects an
atom P2 (t) € A and performs a case analysis on the last rule
P(t) < ¢; A\ A; used to derive the atom. As the result, the goal
is broken intom-subgoals if there are: rules possibly used to de-
rive the atom. The rule adds;>"*} and; respectively to4 and
¢ in thei-th subgoal, wheret ! represents{PM | P(t) € A}.
Note here that each atom i#; is annotated wnhl\/[ U {a} be-
cause the derivation of the atar is a strict sub-derivation of that
of the atomP2! () on which the induction with the identifiex
has been performed. if = o, it is the case that the rulesbucT
has never been applied to the atdtff () yet. The rules &pLY.L
and APPLYP select(g, A’,¢',h) € T, which represents a user-
specified lemma ify = e and an induction hypothesis otherwise,
and try to add new knowledge respectively to ¢hend theA-part
of the current knowledge: the rules try to find an instargiat for
the free term variables ify, A’, ¢’, h), which are considered to be
universally quantified, and then uség, A’, ¢’, h) to obtain new
knowledge. Contrary to the ruleNsFoLD, the rule FOLD tries to
use a definite claus@(t) < ¢’ A A A’ € D from the body to
the head direction: &LD tries to findo such that (¢’ A \ A') is
implied by the current knowledge, and update it witkiot). This
rule is useful when we check the correctness of user spetiied
mas. The rule XLID L checks if¢ is unsatisfiable, while the rule
VALID P checks if the asserted propositiét(t) on the right-hand
side of the judgment is implied by the current knowleglgel A ¢.

Given a Horn constraint solving problefd, our method re-
duces the problem into an inductive theorem proving probdsm
follows. For each goal clause imal(H) = {\ Ai A ¢s = L}~
we check the judgmentef (H); 0; A;%; ¢; - L is derivable by the
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inductive proof system. Here, each atominis initially annotated
with () ando.

We now prove the correctness of our method, which follows
from the soundness of the inductive proof system. To state th
soundness, we first defirffé", A]]k, which represents the conjunc-
tion of user-specified lemmas and induction hypothes&dmstan-
tiated for the atoms occurring in thetimes unfolding ofA.

[T, A]° = [T] (A),

[T, AJ*"* = [I] (4) A

/\ \7 Iz, ((m A [[RAiéuu{a}]]k) 7

PM(t)eAi=1

whereD(P) (tN) = V’?; 3z;. (s A\ A;) and[I'] is defined by:

A=A U [(g46n]A),
(g,A,9,h)ET
[(e, A, ¢, 1 :{\ﬁ. NANG= | {7} = fes(A, 6,0},

[(a> P(D), 4,6, )] (4) =
z -7 PU() € A'a € M,
{v . /\A/\<z>/\tflf {Z} = fus(t, A, ¢, h) }

Intuitively, [I'] (A) represents the conjunction of user-specified
lemmas and induction hypotheseslIinnstantiated for the atoms

-

5. Implementation and Preliminary Experiments

We have implemented a Horn constraint solver based on the pro
posed method and integrated it, as a backend solver, withx-an e
isting verification tool called Refinement Carnl[52-54], &ine-
ment type checking and inference tool for the OCaml funetion
language based on Horn constraint solving. Our solver caergée

a proof tree like the one in Figulé 2 as a certificate, if thegiMorn
constraint set is judged to have a solution. Furthermonesolver
can generate a counterexample, if the constraint set ity

be unsolvable. We adopted Z3[19] as the underlying SMT solve
The details of the implementation are explained in Seéfi@inthe
web interface of the verification tool as well as all the benark
programs used in the experiments reported here are aaftaioh
http://www.cs.tsukuba.ac.jp/~uhiro/.

We have tested our constraint solver on two benchmark sets.
The first set is 85 benchmarks from the test suite for autainate
induction provided by the authors of the IsaPlanner sysizi |
The benchmark set consists of verification problems of imat
specifications of pure mathematical functions on inductiega
structures, most of which cannot be verified by the previoasnH
constraint solverg [25, 26,131,141] 46| 50, 53, 54]. The bewck
set has also been used to evaluate previous automated iveduct
theorem provers [15, 40,144.148]. The experiment resultshis t
benchmark set are reported in Secfiod 5.2.

To demonstrate advantages of our novel combination of Horn
constraint solving with inductive theorem proving, we hare-

in A. The soundness of the inductive proof system is now stated by pared the second benchmark set consisting of verificatiolol@ms

the following lemma (see Appendix] A for a proof).

Lemma 1 (Soundness)If D;T'; A; ¢ - h is derivable, then there
is k such thatuFp = [T, A]" A A A A ¢ = hholds.

The correctness of our Horn constraint solving method ¥adlo
immediately from LemmB]1 and Corolldy 1 as follows.

Theorem 2. Suppose that{ is an HCCS withgoal(H) =
{NAin¢p; = L}7" . It then follows thatp = 7 for somep
if def (H);0; Ai; ¢ + Lis derivable foralli = 1,...,m

Proof. Suppose thatlef (H); 0; Ai; ¢; = L foralli = 1,.

By Lemma[l and the fact thatF ;) = A A = [0, A]] ‘we

getuFaerny E N\ Ai A i = L. We therefore haVﬁchfm) =

goal(H). It then follows thatp = H for somep by Corollary(d.
O

4.2 Rule Application Strategy

We now elaborate on our rule application strategy shown i+ Se
tion[2. Because all the inference rules except N L and \ALID P
add new knowledge t@d and/or¢, we repeatedly apply them until
VALID L and \VALID P close all the proof branches under consider-
ation. More specifically, we adopt the following strategy:

e Repeatedly apply the rulespLy L, APPLYP, and FoLD if
possible until no new knowledge is obtained. (Even if the
rules do not apply, applications olbucT and UNFOLD ex-
plained in the following items may makep®LYl, APPLYP,
and FoLD applicable.)

o If the current knowledge cannot be updated by using the above

rules, select some atom frorh in a breadth-first manner, and
apply the rule NDUCT to the atom.

e Apply the rule INFOLD whenever NDUCT is applied.

e Try to apply the rules XLiD L and \ALID P whenever the
current knowledge is updated.

of (mostly relational) specifications of programs that uaeous
advanced language features, which are naturally and atitaiia
axiomatized by our method using predicates defined by Hawrsel
constraints as the least satisfying interpretation. Tipegment re-
sults on this benchmark set are reported in Se€fidn 5.3.

5.1 Implementation Details

This section describes details of the implementation. Wsaéx

how to check the correctness of user specified lemmas and how
to generate a counterexample if the given Horn constraintas

no solution, respectively in Sections 5J1.1 &nd 5.1.2.i8efL1.3
describes implementation details of the rulesPAYL, APPLYP,

and FoLD in Figure[3. In particular, we discuss how to find an
assignment for free term variables that occur in the element’of
selected by the rules.

5.1.1 Checking the correctness of user-specified lemmas

Our system allows users to specify lemmas as the irlitigDur
tool checks thaD; 0; A; ¢ - h is derivable for each user-specified
lemma(e, A, ¢, h) by using the exact same rules in Figlife 3. We
use the rule BLD, in addition to the rules ApLY_L and APPLYP,

to update the current knowledge. To avoid redundant apjita

of FoLD, we select only definite clausesTmwith the head of the
form P(¢') if h = P(t) and we do notusedip atallif h = L

5.1.2 Counterexample generation

Our tool can conclude that the goal clause (or the user{fspéci
lemma) currently solving has no solution if a subgoal of ttwenf
D;T; A; ¢ - L satisfying the following conditions is obtained:

¢ all the atoms inA are already unfolded by the ruleN8oLD but
e ¢ is satisfiable.

Note that the first condition ensures that thgpart of the current
knowledge under-approximates the body of the goal clause.
Our tool then returns a satisfying modelk®found by the under-
lying SMT solver as a counterexample witnessing the undita
of the given Horn constraint set. Some readers may notitehba
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counterexample generation is essentially the same as ¢certin
of constraint logic programs [B3].

5.1.3 Finding an assignment for quantifier instantiation

We here explain how to find for instantiating quantified variables
of lemmas and induction hypotheses by using an SMT solvéren t
implementation of the rule ApLYL. The same technique is also
used for findings in the rules BLD and APPLYP.

Recall that, in order to apply the ruleP®LY_L to a judgment
D;T; A;¢ = h, we need to find an assignmemtfor free term
variables in(g, A’, ¢, h’') € T'. Note here that the atom that occurs
in g also occurs ind’. We below assume that all the arguments
of the atoms inA’ are distinct term variables. This does not lose
generality because we can always repldg) € A’ by P(7)
with freshZ by adding the constrairi = 7 to ¢'. First of all, we
construct, for eactP(z) € A’, the set{{# > 1; }}," | of assign-
ments, whereP(t1), ..., P(tm) € A. Here, ifg = a > P(%),
the set{{z — E}}Z’;l of assignments is constructed only from

PMi(ty),...,PM™(t,) € A suchthata € M;. For example,
let us considey = a > Pi(71), A" = {P1(Z1), P1(22), P»(T3)}

andA = {Pl{“}(fl),le(tNQ),Pgw(fg)}. For the atome?, (71),

Py (%2), andP» (), we respectively obtain the set$z: +— 1} },
{{F2 = 1}, {Z2 = t2}}, and{{Zs > £3} } of assignments. We
then compute all the combination of assignments, and filter o
those that contradict with. For the above example, we obtain the
following two as candidates af:

o1 = {§1 — tl,fz — tl,fg — t:;}
o2 = {fl — t1,/f2 — t27/f3 — tS}

For the rules BLD and APPLYP, we use the same technique
explained above for ApLY_L, but additionally check the condition
E ¢ = 37. 0¢’, where{Z} = fus(¢’) \ dom(o).

5.2 Experiments on IsaPlanner benchmark set

The IsaPlanner benchmark set consists of 85 conjecturesttdr
recursive functions on inductively defined data structwesh as
natural numbers, lists, and binary trees. We have tranksthise
conjectures into assertion safety verification problem©@aml
programs. In the translation, we encoded natural numbenrg us
integer primitives, and defined lists and binary trees astakic
data types in OCaml. More specifically, natural numbem@nd.S ¢

are respectively encoded @andt’ + 1 for ¢’ obtained by encoding

t. To preserve the semantics of natural numbers, we tradslate
conjectures of the formz € N. ¢ intoVe € Z. (z > 0 = ¢).

The translated verification problems are then verified bywewr
ification tool. Our tool automatically reduced the verifioatprob-
lems into Horn constraint solving problems by using the tamnst
generation method [53], and automatically (i.e., withaing user-
specified lemmas) solved 68 out of 85 verification problems. W
have manually analyzed the experiment results and fourtd8tha
out of 17 failed verification problems require lemma disagvéhe
other 9 problems caused timeout of Z3. It was because thapule
plication strategy implemented in our tool caused uselessuds
in proofs and put heavier burden on Z3 than necessary.

The experiment results on the IsaPlanner benchmark set show

that our Horn-clause-based axiomatization of total réeer&inc-
tions does not cause significant negative impacts on theretion

of induction; According to[[48] that uses the IsaPlannerdben
mark set to compare state-of-the-art automated indudtigerem
provers based on logics of pure total functions over indebtt
defined data structures, IsaPlanner] [21] proved 47 out of 85,
Dafny [40] proved 45, ACL2$[13] proved 74, and Zehd [48] prdv

82. The HipSped [15] inductive prover and the SMT solver CVC4
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extended with inductior [44] are reported to have provedI80.
contrast to our Horn-clause-based method, these indutiarem
provers can be, and in fact are directly applied to prove tire ¢
jectures in the benchmark set, because the benchmark getrton
only pure total functions over inductively-defined dataistares.

It is also worth noting that, all the inductive provers thairnw
best results (greater than 70) on the benchmark set supypiort a
matic lemma discovery, in a stark contrast to our tool. Faneple,
the above result (80 out of 85) of CVC4 is obtained when they en
able an automatic lemma discovery technique proposéd jrajdt
use a different encoding (callelti in [44]) of natural numbers than
ours. When they disable the lemma discovery technique am@ us
similar encoding to ours (calledtt in [44]), CVC4 is reported to
have proved 64. Thus, we believe that extending our methtd wi
automatic lemma discovery, which has been comprehensstetly
ied by the automated induction communltyl[13, (15,32 35/444,
further makes induction-based Horn constraint solving qréuw.

5.3 Experiments on benchmark set consisting of programs
with various advanced language features

We prepared and tested our tool with the second benchmark set
consisting of (mostly relational) assertion safety veaificn prob-
lems of programs that use various advanced language featuich
as partial (i.e., possibly non-terminating) functionsyh@r-order
functions, exceptions, non-determinism, algebraic dgtad, and
non-inductively defined data types (e.qg., real numbers}.l3énch-
mark set also includes integer functions with complex reicur
and a verification problem concerning the equivalence offanms
written in different language paradigms. All the verificatiprob-
lems except four (ID9—22 in Table[1) are relational ones where
safe inductive invariants are not expressible inlQR, and there-
fore not solvable by the previous Horn constraint solvesssidown
in Section[3.B, these verification problems are naturally an-
tomatically axiomatized by our method using predicatesneefi
by Horn clause constraints as the least satisfying inteafos.
By contrast, these assertion safety verification problearmat
be straightforwardly axiomatized and proved by the previau-
tomated inductive theorem provers based on logics of pueg to
functions on inductively-defined data structures: the @rdtization
process of these verification problems using pure totaltfons of-
ten requires users’ manual intervention and possibly caaisega-
tive effect on the automation of induction, because, in tloegss,
one needs to take into consideration the evaluation stestegd
complex control flows caused by higher-order functions add-s
effects such as non-termination, exceptions, and norrrdatesm.
Additionally, the axiomatization process needs to preséranch-
ing and calling context information in order to perform pasimd
context-sensitive verification.

Table[1 summarizes the experiment results on the benchmark
set. The column “specification” represents the relatiopat#ica-
tion verified and the column “kind” shows the kind of the sfieci
cation, where “equiv”, “assoc”, “comm”, “dist”, “mono”, tlem”,
“nonint”, and “nonrel” respectively represent the equérale, asso-
ciativity, commutativity, distributivity, monotonicifyidempotency,
non-interference, and non-relational. The column “lagguéea-
tures” shows the language features used in the verificatimvigm,
where each character has the following meaning.

H:
E: exceptions

partial (i.e., possibly non-terminating) functions
demonic non-determinism

higher-order functions

P:

D:
R: real functions
I:

integer functions with complex recursion
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Table 1. Experiment results on programs that use various languagerés

[ ID | specification | kind | language feature$ result | time (sec.)]
1 | mltzy+a=multacczya equiv P a 0.257
2 | multzy=mult.acczyl equiv P at 0.435
3 |mlt(l+x)y=y+multzy equiv P ] 0.233
4 | y>0=>multz(l+y)=z+multzy equiv P a 0.248
5 | mltzy=multyxz comm P O? 0.345
6 | mult (z+y)z=multzz+multyz dist P O 1.276
7 | muiltz (y+2) =multzy+multzz dist P O n/a
8 | mult (mult z y) z = mult x (mult y 2) assoc P O n/a
9 | 0<x1 <22N0<y1 <yo = mult z1 y1 < mult z2 Yo mono P 0 0.265
10 | sumz 4+ a = sum_acc x a equiv a 0.384
11 | sumz =x + sum (z — 1) equiv O 0.272
12 | s <y=sumz < sumy mono a 0.350
13| 2> 0= sumz = sumdown 0 x equiv P ] 0.312
14 | £ < 0= sumz = sumup x 0 equiv P ] 0.368
15 | sum down x y = sum_up = y equiv P O n/a
16 | sum z = apply sum z equiv H d 0.286
17 | mult x y = apply2 mult z y equiv H, P d 0.279
18 | repeat z (addz)ay =a+multzy equiv H, P ] 0.317
19| <101 = mc91 z =91 nonrel | H] 0.165
20 z>0ANy>0=ackzy >y nonrel I u 0.212
2l [ z>0=2xsumzx =z X (x + 1) nonrel N O 0.196
22 | dyn_sys 0. —/>"assert false nonrel R,N a 0.144
23 | flipmod y x = flip_mod y (flip-mod y x) idem P d 7.712
24 | noninter hi 1 l> l3 = noninter ho [ 2 I3 nonint P 0O 0.662
25 | try find opt p ! = Some (find p [) with

Not_Found — find_ opt p ! = None equiv H, E ad 0.758
26 | try mem (find ((=) x) ) [ with Not_Found — —(mem = [) | equiv H, E O 0.764
27 | sum list [ = fold left (+) 0! equiv H O 3.681
28 | sum list [ = fold right (+)10 equiv H O 0.329
29 | sum_fun randposn >0 equiv H,D a 0.240

[ 30 | mult z y = mult_Ccode(z,y) [ equiv | P,C [ O ] 0.217

T AlemmaPuic ace (2, Y, a,7) = Puatace(2,y,a — z,r — ) is used

A lemma P (2, y,7) = Paue(z — 1,y,7 — y) is used

Py above represents the predicate that axiomatizes the dmngti
The experiments were conducted on a machine with Intel(RNKR) CPU E5-2680 v3 (2.50 GHz, 16 GB of memory).

N: nonlinear functions
C: procedures written in different programming paradigms

The column “result” represents whether our verification hodt
succeededlor failed [l The column “time” represents the elapsed
time for verification in seconds.

Overall, the experiment results are promising, which shuat t
our tool can automatically solve relational verificatiorolplems
that use various advanced language features, in a pradatiealvith
surprisingly few user-specified lemmas. We also want to exrsigk
that the problem IB, which required a lemma, is a relational
verification problem involving two function calls with sidicantly
different control flows: one recureses orand the other recurses
ony. Thus, the result demonstrates an advantage of our inauctio
based method that it can exploit lemmas to fill the gap between
function calls with different control flows. Our tool, howay failed
to verify the distributivity ID7 of mult, the associativity 1B of
mult, and the equivalence of sum_down and sum_up. ID7
could be reduced to I®and solved, if a lemm&, (z,y, ) =
Pt (y, z,7), Which represents the commutativity ofilt, was
used to rewrite the conjecture

Prte (2, y+2, 1) APmat (2, y, $2) APt (T, 2, 83) = s1 = s2+S3
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obtained from the specificatiamlt z (y + z) = mult = y +
mult x z into

Pt (y+2z, 2, $1) APt (Y, T, $2)APauie (2, T, 83) = s1 = s2+s3

by replacing atoms of the forfw« (¢1, t2, t3) With P (t2, €1, t3).
The rule APPLYP, however, replaces each atdfhus (¢1, t2,t3)
With Puue(t1,%2,t3) A Paas(t2,t1,t3) instead by keeping the
original atom so that we can monotonically increase theecrr
knowledge. Our tool supports an option for the rulerAYP of
eliminating the original atom, and if it is enabled,1s verified.
The associativity verification problem His even more difficult.

In addition to the above lemma, a lemnfau: (z + y, z,7) =
Js1, s2.(Pmat (2, 2, $1) A Panit (Y, 2, $2) AT = s1+s2) is required.
This lemma, however, is currently not of the form supportgd b
our inductive proof system. In I, the functionssum_down and
sum_up use different recursion parameters (regandzx), and re-
quires lemmassun_dow (%, y, s) = Is1, s2.(Peundown (0, Y, 51) A
Powaom(0, 2 — 1,52) A s = s1 — s2) and Pesunwp(7,9,5) =
351, $2.(Poundown (0, Y, $1) A Pounaoun (0, £ — 1, $2) As = 1 — 52).
These lemmas are provable by induction on the derivation of
Paun_dom (2, y, s) and Psunwp (, y, s), respectively. However, as in
the case of 1B, our proof system does not support the form of the
lemmas. To put it differently, IB and ID15 demonstrate the in-
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completeness of our inductive proof system. Our future whus
includes an extension of the proof system to support morergén
form of lemmas and judgments.

6. Related Work
As discussed in Sectidd 1, Horn constraint solving methade h

been extensively studied [25] 26| 81, 41,46 50| 53, 54]ohirast

the target language, which is complex compared to the lbg&a
mantics of Horn clause constraints.

There have been proposed program logics for relationdic@ri
tion [5,[6,[14 24]. In particular, the relational refineméygie sys-
tem proposed irl [6] can be applied to differential privacy ather
relational security verification problems of higher-oréi@nctional
programs. This approach is, however, not automated.

to the proposed induction based method, these methods do nof/, Conclusion and Future Work

support Horn clause constraints over the theories of atgeblata
structures and nonlinear arithmetics, and cannot verifgtrifaot
all relational specifications shown in Sectidn 5.

Because state-of-the-art SMT solvers such a§ 23 [19] and4CVC
support quantifier instantiation heuristics, one may thihet they
alone are sulfficient for checking the validity of the logiggkrpre-
tation of Horn clause constraints shown in Secfiod 3.1. Hewe
they alone are not sulfficient for proving most conjectured tk-
quire nontrivial use of induction such as the benchmark lerab
in Sectiorl ¥ In fact, [44] reports that Z3 (resp. CVC4 without in-
duction) alone have proved only 35 (resp. 34) out of 85 prokle
in the IsaPlanner benchmark set.

Automated inductive theorem proving techniques and tools
have long been studied, for example and to name a few: therBoye
Moore theorem prover$ [B6] like ACL25 [13], rewriting indian
provers[[4B] like SPIKE]9], proof planners like CLAM 111122,
[34] and IsaPlannel [20, 21], and SMT-based induction peoliee
Leon [49], Dafny [4D], Zeno[[48], HipSpet [15], and CV(d4][44]
These automated provers are mostly based on logics of ptale to
functions over inductive data types. Consequently, ustthase
provers are required to axiomatize advanced languagerésaaind
specifications (e.g., ones discussed in Sedfioh 3.3) using fo-
tal functions as necessary. The axiomatization processever,
is non-trivial, error-prone, and possibly causes a negatiffect
on the automation of induction. For example, if a partialction
(e.q.,f(z) = f(x) + 1) is input, Zeno goes into an infinite loop
and CVC4 is unsound (unless control literals proposetl il §4@
used in the axiomatization). We have also confirmed that CVC4
failed to verify complex integer functions like the McCartB1
and the Ackermann functions (resp.liDand 1D20 in Table[1).
By contrast, our method supports advanced language feadnck
specifications via Horn-clause encoding of their semabtised on
program logics such as Hoare logics and refinement typeragste

To aid verification of relational specifications of functamro-
grams, Giesl[[23] proposed context-moving transformatiand
Asada et al[[1] proposed a kind of tupling transformatioypm®-
iff [B0, B9] is a transformation-based tool built on top of ®o
gie [2] for equivalence verification of imperative prograrse|f-
composition|[B] is a program transformation technique thice k-
safety [16[ 5l1] verification into ordinary safety verificatj and has
been applied to non-interferen¢é[[4} 51, 55] and regresaidfica-
tion [22] of imperative programs. These transformatioresteeful
for some patterns of relational verification problems, ahéare,
however, less flexible than our approach based on a moreajener
principle of induction. For example, Asada et al.’s transfation
enables verification of the functional equivalence of reimarfunc-
tions with the same recursion pattern (e.g.l IDTable1), but does
not help verification of the commutativity efi1t (ID5 in Table1).
Because each transformation is designed for a particulgettian-
guage, the transformations cannot be applied to aid rekaticeri-
fication across programs written in different paradigmg.(éD30
in Table[1). Moreover, the correctness proof of the tramsédions
tends to be harder because it involves the operational sermaf

3This point is also mentioned in the tutorial of Z3

(http://rise4fun.com/Z3/tutorial/guide).
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We have proposed a novel Horn constraint solving methoddbase
on an inductive proof system and an SMT-based techniquette au
mate proof search in the system. We have shown that our mathod
able to solve Horn clause constraints obtained from refativeri-
fication problems that were not possible with the previouthoes
based on interpolating theorem proving. Furthermore, amweh
combination of Horn clause constraints with inductive tleao
proving enabled our method to automatically axiomatize eerd

ify relational specifications of programs that use variodgaaced
language features.

As a future work, we are planning to extend our inductive proo
system to support more general form of lemmas and judgments.
We are also planning to extend our proof search method to sup-
port automatic lemma discovery as in the state-of-thenaltigtive
theorem provers [13, 115,144.148]. To aid users to better staied
verification results of our method, it is important to genemasym-
bolic representation of a solution of the original Horn doaisit set
from the found inductive proof. It is however often the cdsatta
solution of Horn constraint sets that require relationallgsis (e.g.,
Hmuit) 1S NOt expressible by a formula of the underlying logic. It
therefore seems fruitful to generate a symbolic repreientaf
mutual summaries in the sense [ofl[30] across multiple pagekc
(e.9.,P, Q of Hpuur)-
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A. Proof of Lemmal[l
We first show lemmas used to prove Lenima 1.

Lemma2. = ¢ = [P(t)€A] impliesE= AN AN ¢ = P(3).
Proof. By the definition of [ P(¢)€ A] . O
Lemma 3. = ¢ = [A1CAz] implies|= A A2 A ¢ = N Al
Proof. By the definition off A1 C A-] and LemmaD. |

Lemma 4. Suppose thatg, A’,¢’,h) € T and = ¢ = [ocg€A]
for somec with dom(c) = fus(A’) U fus(h). It then follows
that = [I](A) A NodA" A ¢ = (och V VZ.~(0¢')), where
{z} = fvs(¢') \ dom(o).

Proof. We perform a case analysis gn
e Suppose thag = . By the definition of[I'] (A), we obtain
=[] (A) = V&' (/\A’ NG = h) 7
where{z'} = fvs(A
= [r1A
where{z} = fvs(¢’) \ dom(o). It immediately follows that
ETT(A) A N\oA Ap = (ohVVE(c¢)).

e Suppose thaj = a'> P(). We assume that is not equivalent
to L (otherwise, the lemma is trivial). Bl= ¢ = [[ageA]]
there isPM (') € A suchthatr € M andf= ¢ = ot = t'.
By the definition of[I'] (A), we obtain

= [I] (A) = V&' (/\A’A¢’A€:E’ :>h),

where{z'} = fus(t) U fus(A
we get

F=r]A
where{z} = fvs(¢') \ dom(o). We thus obtain

"YU fus(¢') U fus(h). Therefore, we get
:>/\0A AIZ.(0¢") = oh,

"YU fus(¢') U fus(h). Therefore,

:>/\0A AFZ.(0¢') Aot =t = oh,

ETT(A) A N\oA Ap = (ohVVE(0¢)).
O

Lemma 5. if k1 < ko, thenl= [I', A]*2 = [T, A]** holds.
Proof. By the definition offe, e]°. O
Lemma 6. We have

uPs = [0, A1 A P() = [r a0 {PP@D}]
Proof. By the definition offe, e]°. O
Lemma 7. If PM () € A, then for each € {1,...,m},

pFp = [T, A = \7 5. (@- A [[RAU Aié”U{“}]]k> 7
i=1

whereD(P)(t) = /7", 37 (¢ AN\ Ai).
Proof. By the definition offe, e]°. O

Lemma 8. Suppose thaP’’ (t) € A and« does not occur i’
or A. We then obtain

I, A1 A [{(en P, A 60} (P D}]" =
[ru{tas P@, 46w} (a\ R B U {P2®H}]

Proof. By the definition offe, ¢]°, we get

=T, A] A [{(as P(D), A, ¢,h)}, A]" A
[[r,{ng(%“)}]]k A [{es P, A0} { P D ’{}]]k =
[ru{asP@),a.6,m}, (a\ P @) u{PY @ }]]

Becausex does not occur ifi or A andPoM( t) € A, we obtain

E 0 AT A [{(a0 P@), 46,0}, {P2(5) ’{}]]k =

w{rrol]

Because.Fp is the least interpretation, we obtain:
Lemma 9. For all P € pvs(D) and with fus(¢)) C {Z}, we get
wFp EVZ. ({P — Az} D(P)(Z) = ¢) = VZ.(P(Z) = )

Lemma 10. For all P € pus(D) and ¢ with fus(¢) C {z}, we
get

uFp EVZ. (Vp < P.{P — A\Z.¢} p(T)) =
wherep < P is a predicate obtained by unfolding at least once.

[[r U{(asP@),A,6,h)},(A\ PM @)
O

Proof. By Lemmd® withy) = Vp < P.{P — A\Z.¢o}p(z). O

Lemma 11. Suppose thaP € pus(D), P (t) € A, a does not
occur in A, and the following holds

uFo = [{@e PO, A 60} {PY@Y] AN ANG= b
It then follows thaiuFp = A A A ¢ = h.

Proof. By Lemma[10. O
We now prove Lemm@l1.

Proof of Lemm&]1By induction on the derivation db; I"; A; ¢ -
h.

e CaselNDUCT: We have
= PM(1) € A,
T =TU{(a>P(t), A ¢,h)},
s DT Ao - h
- A/ (A \ P]\/I
" o is fresh.
By I.H., there isk’ such that

o 1 [0 AT AN NG h
By Lemmd8, we get
/J'FD ': H{(OCDP(Z)7A7¢7h)}7{Polzu(?)}]]k A
/\A’/\gz&/\[[nA}]’“':h

YU {PM (t)}, and
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By the fact= A < A’ and the definition ofie, e]*, we get

wFo £ [{(es PO A0 n A w} {PM}] A
NANSAD, AT = h
Therefore, by Lemmial1, for = k', we get
pFp = [0, A]*A NANG = h

CaseUNFoLD: Foreachi € {1,...
» PM(t) € A,
* D(P)(1) = Vi, 3. (¢: A \ Ai), and
* D;T; AU AL g A g+ .

By I.H., for eachi € {1,...,m}, there isk; such that

,m}, we have

k;
uFp = [[D AU Aié”U{a}]] A\ (A U Aié”U{“})/\qs/\@ =h
It then follows immediately that
1Pp = [\ AN oA

m

0 (oon [roaoadeo]™ s ) <

i=1

By LemmdT, we get
/ " K
pFp = [0, A = \/ 32 (éi A [[F,A u Aiﬂw{‘”]] ) :
=1

wherek’ = max {k;};" ,. Therefore, by Lemmia 5, we obtain

1=

uFp = [0 AP A NAAGA <\/ (@-A/\Ai)> =h
i=1
From the factuFp | P(t) < V7, 37:. (¢: A \ Ai) and
PM(t) € A, fork = k' + 1, we get
pPp = [T, A[°A NANG = h.

CaseAPpPLYL: We have

* (g, A4, L) €T,

» dom(o) = fus(A’),

" = ¢ = [og€eA],
= ¢ = [0A'CA],

» {7} = fus(¢') \ dom(c), and

= D;T; A; 0 AVZT.~(0¢") - h.
By (¢,4",¢', 1) €T, E ¢ = [og€A], and LemmaEl4 arid 5,
for somek;, we get

=0 AL A \oA' A= Va~(0¢)
By = ¢ = [0 A’CA] and Lemm&R, we obtain
AT A NAAG = VE~(0d)
By I.H., there isk2 such that
pPp = [0, A A \ AN ¢ AVE~(0¢') = h
Therefore, fork = max(k1, k2), by Lemmdb, we obtain
pPp = [T, A[°A NANG = h.

e CaseAPPLYP: We have
(g, A8, PD)ET,
= dom(c) = fus(A’) U fus(t),
* = ¢ = [ogeA],
'E o= 37.(0¢),

15

s g = [0A'CA],
» {T} = fs(¢') \ dom(o),
-D;F;AU{P?(JN)};quh

By (g,A',¢', P(t)) € T, = ¢ = [og€A], and Lemma§l4
and®, for somé:;, we get

= [0, A] A \oA' ApATT(0¢) = P(ot)

Then, by ¢ = [0 A'CA], Lemmd3, and= ¢ = 37.(c¢’),
we get

= [, A] A \NAAG = P(ot)
By I.H., there isk2 such that
uPp = [T, AU {Pc?(a%“)}]]k%/\ (A0 {PloD)}) o= h
By Lemmd®, we obtain
pFp = [T, A]*2 A P(ot) = [[F,AU {PC?(O?)H] .
It then follows that
nFp = [T, A]™ A /\ (A U {Pf(atN)}) Np=h
Therefore, fork = max(k1, k=), by Lemmdb, we get
pPp = [T A]°A NANG = b
e CaseFoLD: We have

» (P(t)y <= ¢ ANA) €D,

= dom(c) = fus(A) U fus(t),

" ¢ = 3.(0¢),

sk ¢ = [oA'CA]

* {&} = fus(¢') \ dom(o),

« DI AU {Po‘ﬂ(a?)} o+
By P(t) < ¢' AN A’ € D, dom(c) = fvs(A") U fus(t), and
{Z} = fvs(¢') \ dom(c), we obtain

wFp = /\O’Al A3Z.(0¢") = P(ot)
By E ¢ = [0A'CA], Lemmd3, and= ¢ = 37.(0¢’), we
get
wFp = /\A/\d):> P(ot)

By I.H., there isk’ such that

Fp = [[RA U {Pg(af)}]]k,/\/\ (A U {Pf(af)})ms = h
By Lemmd®, we obtain
uFo = [, AIY A P(oT) = [T, AU {Pf(ﬂ}]]k/
It then follows that
uFp = [0, A A N (A U {Pf(a?)}) Aé=h
Therefore, fork = k', we obtain
pPp = [T, A]°A NANG = b

e CaseVALID L: We haveh = L and ¢ = L. Therefore,
wFp = [T, A]* A N A A ¢ = h holds for anyk.

e CaseVALID P: We haveh = P(t) andf= ¢ = [P(t)€A].
By lemmd2, we gel= \ A A ¢ = P(%). It then follows that
uFp = [, A]* ANANA ¢ = P(t) for anyk.

a
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