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Abstract
Verification problems of programs written in various paradigms
(such as imperative, logic, concurrent, functional, and object-
oriented ones) can be reduced to problems of solving Horn clause
constraints on predicate variables that represent unknowninduc-
tive invariants. This paper presents a novel Horn constraint solving
method based on inductive theorem proving: the method reduces
Horn constraint solving to validity checking of first-orderformu-
las with inductively defined predicates, which are then checked
by induction on the derivation of the predicates. To automate
inductive proofs, we introduce a novel proof system tailored to
Horn constraint solving and use an SMT solver to discharge proof
obligations arising in the proof search. The main advantageof
the proposed method is that it can verifyrelational specifications
across programs in various paradigms where multiple function calls
need to be analyzed simultaneously. The class of specifications in-
cludes practically important ones such as functional equivalence,
associativity, commutativity, distributivity, monotonicity, idempo-
tency, and non-interference. Furthermore, our novel combination
of Horn clause constraints with inductive theorem proving enables
us to naturally and automatically axiomatize recursive functions
that are possibly non-terminating, non-deterministic, higher-order,
exception-raising, and over non-inductively defined data types. We
have implemented a relational verification tool for the OCaml
functional language based on the proposed method and obtained
promising results in preliminary experiments.

1. Introduction
Verification problems of programs written in various paradigms, in-
cluding imperative [28], logic, concurrent [27], functional [45, 52,
53, 56], and object-oriented [35] ones, can be reduced to problems
of solving Horn clause constraints on predicate variables that repre-
sent unknown inductive invariants. A given program is guaranteed
to satisfy its specification if the Horn constraints generated from the
program have a solution (see [25] for an overview of the approach).

This paper presents a novel Horn constraint solving method
based on inductive theorem proving: the method reduces Horn
constraint solving to validity checking of first-order formulas with
inductively defined predicates, which are then checked by induction
on the derivation of the predicates. The main technical challenge
here is how to automate inductive proofs. To this end, we propose
an inductive proof system tailored for Horn constraint solving and
an SMT-based technique to automate proof search in the system.

Compared to previous Horn constraint solving methods [25,
26, 31, 41, 46, 50, 53, 54] based on Craig interpolation [18, 42],
abstract interpretation [17], and PDR [10], the proposed method
has two major advantages:

1. It can verifyrelational specificationswhere multiple function
calls need to be analyzed simultaneously. As shown in Sec-
tions 3.3 and 5, the class of specifications includes practically

important ones such as functional equivalence, associativity,
commutativity, distributivity, monotonicity, idempotency, and
non-interference.

2. It can solve Horn clause constraints over whatever background
theories supported by the underlying SMT solver. Example con-
straints in Section 3.3 are over the theories of nonlinear arith-
metics and algebraic data structures, which have not been sup-
ported by available Horn constraint solvers to our knowledge.

To show the usefulness of our approach, we have implemented
a relational verification tool for the OCaml functional language
based on the proposed method and obtained promising resultsin
preliminary experiments.

For an example of the reduction from (relational) verification to
Horn constraint solving, consider the following functional program
Dmult (in OCaml syntax).1

let rec mult x y =
if y=0 then 0 else x + mult x (y-1)

let rec mult_acc x y a =
if y=0 then a else mult_acc x (y-1) (a+x)

let main x y a =
assert (mult x y + a = mult_acc x y a)

Here, the functionmult takes two integer argumentsx, y and recur-
sively computesx × y (note thatmult never terminates ify < 0).
mult acc is a tail-recursive version ofmult with an accumula-
tor a. The functionmain contains an assertion with the condi-
tion mult x y + a = mult_acc x y a, which represents a re-
lational specification, namely, the functional equivalence of mult
andmult acc. Our verification problem here is whether for any
integersx, y, anda, the evaluation ofmain x y a, under the call-by-
value evaluation strategy adopted by OCaml, never causes anasser-
tion failure, that is∀x, y, a ∈ N. main x y a 6−→ ∗assert false.
By using existing Horn constraint generation methods for call-by-
value functional programs [37, 53], the relational verification prob-
lem is reduced to the constraint solving problem of the following
Horn clause constraint setHmult :



P (x, 0, 0),
P (x, y, x+ r) ⇐ P (x, y − 1, r) ∧ (y 6= 0),
Q(x, 0, a, a),
Q(x, y, a, r) ⇐ Q(x, y − 1, a+ x, r) ∧ (y 6= 0),
⊥ ⇐ P (x, y, r1) ∧Q(x, y, a, r2) ∧ (r1 + a 6= r2)





Here, the predicate variableP (resp.Q) represents an inductive in-
variant among the arguments and the return value of the function
mult (resp.mult acc). The first Horn clauseP (x, 0, 0) is gener-
ated from the then-branch of the definition ofmult and expresses
thatmult returns0 if 0 is given as the second argument. The sec-

1 Our work also applies to programs that require a path-sensitive analysis of
intricate control flows caused by non-termination, non-determinism, higher-
order functions, and exceptions but, for illustration purposes, we use this
simple program as a running example.
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ond clause inHmult , P (x, y, x+ r) ⇐ P (x, y − 1, r) ∧ (y 6= 0)
is generated from the else-branch and represents thatmult returns
x + r if the second argumenty is non-zero andr is returned by
the recursive callmult x (y-1). The other Horn clauses are sim-
ilarly generated from the then- and else- branches ofmult acc and
the assertion inmain. BecauseHmult has a satisfying substitu-
tion (i.e., solution)θmult = {P 7→ λ(x, y, r).x × y = r,Q 7→
λ(x, y, a, r).x × y + a = r} for the predicate variablesP and
Q, the correctness of the constraint generation method [53] guar-
antees that the call-by-value evaluation ofmain x y a never causes
an assertion failure.

The previous Horn constraint solving methods, however, can-
not solve this kind of constraints that require a relationalanal-
ysis of multiple predicates. To see why, recall the constraint in
Hmult , ⊥ ⇐ P (x, y, r1) ∧ Q(x, y, a, r2) ∧ (r1 + a 6= r2)
that asserts the equivalence ofmult and mult acc, where a re-
lational analysis of the two predicatesP andQ is required. The
previous methods, however, analyze each predicateP andQ sep-
arately, and therefore must infer nonlinear invariantsr1 = x × y
and r2 = x × y + a respectively for the predicate applications
P (x, y, r1) andQ(x, y, a, r2) to concluder1 + a = r2 by cancel-
ing x× y, becausex andy are the only shared arguments between
P (x, y, r1) andQ(x, y, a, r2). The previous methods can only find
solutions that are expressible by efficiently decidable theories such
as the quantifier-free linear real (QFLRA) and integer (QFLIA)
arithmetic2, which are not powerful enough to express the above
nonlinear invariants and the solutionθmult of Hmult .

By contrast, our induction-based Horn constraint solving method
can directly and automatically show that the predicate applica-
tions P (x, y, r1) and Q(x, y, a, r2) imply r1 + a = r2 (i.e.,
Hmult is solvable), by simultaneously analyzingP (x, y, r1) and
Q(x, y, a, r2). More precisely, our method interpretsP,Q as the
predicates inductively defined by the definite clauses (i.e., the
clauses whose head is a predicate application) ofHmult , and uses
induction on the derivation ofP (x, y, r1) to prove the conjecture
∀x, y, r1, a, r2. (P (x, y, r1) ∧Q(x, y, a, r2) ∧ (r1 + a 6= r2) ⇒ ⊥)
represented by the goal clause (i.e., the clause whose head is not a
predicate application) ofHmult . Section 2 gives an overview of our
method using this running example.

The use of Horn clause constraints, which can be considered
as an Intermediate Verification Language (IVL) common to Horn
constraint solvers and target languages, enables our method to
verify relational specifications across programs written in vari-
ous paradigms. Horn clause constraints can naturally axiomatize
various advanced language features including recursive functions
that are partial (i.e., possibly non-terminating), non-deterministic,
higher-order, exception-raising, and over non-inductively defined
data types (recall thatHmult axiomatizes the partial functionsmult
andmult acc, and see Section 3.3 for more examples). Further-
more, we can automate the axiomatization process by using pro-
gram logics such as Hoare logics for imperative and refinement
type systems [45, 52, 53, 57] for functional programs. In fact, re-
searchers have developed and made available tools such as Sea-
Horn [28] and JayHorn [35], respectively for translating C and Java
programs into Horn clause constraints. In spite of the expressive-
ness, Horn clause constraints have a simpler logical semantics com-
pared to other popular IVLs like Boogie [2] and Why3 [8]. This
simplicity enabled us to directly apply inductive theorem proving
and made the correctness proof and implementation easier.

In contrast to our induction method based on the logic of pred-
icates defined by Horn clause constraints, most state-of-the-art au-
tomated inductive theorem provers such as ACL2s [13], Leon [49],
Dafny [40], Zeno [48], HipSpec [15], and CVC4 [44] are based on

2 Seehttp://smt-lib.org/ for the definition of the theories.

logics of pure total functions over inductively-defined data struc-
tures. Consequently, the axiomatization of advanced language fea-
tures and specifications becomes a non-straightforward process,
which often requires users’ manual intervention and possibly has
a negative effect on the automation of induction later. Thus, our ap-
proach complements automated inductive theorem proving with the
expressive power of Horn clause constraints and, from the opposite
point of view, opens the way to leveraging the achievements of the
automated induction community into Horn constraint solving.

The rest of the paper is organized as follows. In Section 2, we
will give an overview of our induction-based Horn constraint solv-
ing method. Section 3 formalizes Horn constraint solving problems
and shows examples of the reduction from various program veri-
fication problems to Horn constraint solving problems. Section 4
formalizes our constraint solving method and proves its correct-
ness. Section 5 reports on our prototype implementation based on
the proposed method and the results of preliminary experiments.
We compare our method with related work in Section 6 and con-
clude the paper with some remarks on future work in Section 7.

2. Overview of Induction-Based Horn Constraint
Solving Method

In this section, we use the Horn constraint setHmult in Section 1
as a running example to give an overview of our induction-based
Horn constraint solving method. Our method interprets the definite
clauses (i.e., the clauses whose head is a predicate application)
of a given Horn constraint set as derivation rules for predicate
applicationsP (t̃), which we callatomshenceforth. For example,
the definite clausesDmult ⊆ Hmult are interpreted as the following
derivation rules:

|= y = 0 ∧ r = 0

P (x, y, r)

P (x, y − 1, r − x) |= y 6= 0

P (x, y, r)

|= y = 0 ∧ a = r

Q(x, y, a, r)

Q(x, y − 1, a+ x, r) |= y 6= 0

Q(x, y, a, r)

Here, the heads of the clauses are changed into the uniform
representationsP (x, y, r) andQ(x, y, a, r) of atoms over vari-
ables. The above rules inductively define the least predicate in-
terpretation{P 7→

{
(x, y, r) ∈ Z

3 | x× y = r ∧ y ≥ 0
}
, Q 7→

{(x, y, a, r) ∈ Z
4 | x × y + a = r ∧ y ≥ 0}} that satisfies the

definite clausesDmult . It then follows that a given Horn constraint
set has a solution if and only if all the goal clauses (i.e., the clauses
whose head isnot an atom) are valid under the interpretation (see
Corollary 1 for the proof). Therefore, constraint solving of Hmult

boils down to the validity checking of the goal clause

∀x, y, r1, a, r2. (P (x, y, r1) ∧Q(x, y, a, r2) ∧ (r1 + a 6= r2) ⇒ ⊥)

under the least predicate interpretation forP andQ.
To check the validity of such a conjecture, our method uses

induction on the derivation of atoms.

Principle 1 (Induction on Derivations). Let P be a property on
derivationsD of atoms. We then have∀D.P(D) if and only if
∀D. ((∀D′ ≺ D.P(D′)) ⇒ P(D)), whereD′ ≺ D represents
thatD′ is a strict sub-derivation ofD.

Formally, we propose an inductive proof system for deriving
judgments of the formD; Γ;A;φ ⊢ ⊥, where⊥ represents the
contradiction,φ represents a formula without atoms,A represents
a set of atoms,Γ represents a set of induction hypotheses and user-
specified lemmas, andD represents a set of definite clauses that
define the least predicate interpretation of the predicate variables
in Γ or A. Here,Γ, A, andφ are allowed to have common free
term variables. The free term variables of a clause inD have the
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P (t̃) ∈ A {ỹ} = fvs(A) ∪ fvs(φ)
x̃ : fresh σ = {ỹ 7→ x̃}

D; Γ ∪
{
∀x̃.
((
P (σt̃) ≺ P (t̃)

)
∧
∧
σA⇒ ¬(σφ)

)}
;A;φ ⊢ ⊥

D; Γ;A;φ ⊢ ⊥
(INDUCT)

P (t̃) ∈ A σ =
{
x̃ 7→ t̃

}
D; Γ;A ∪ σA′;φ ∧ σφ′ ⊢ ⊥

(for each (P (x̃) ⇐ A′ ∧ φ′) ∈ D)

D; Γ;A;φ ⊢ h
(UNFOLD)

∀x̃.
((
P (t̃′) ≺ P (t̃)

)
∧
∧
A′ ⇒ φ′

)
∈ Γ dom(σ) = {x̃}

P (σt̃′) ≺ P (t̃) |=
∧
A ∧ φ⇒

∧
σA′

D; Γ;A;φ ∧ σφ′ ⊢ ⊥

D; Γ;A;φ ⊢ ⊥
(APPLY⊥)

|= φ⇒ ⊥

D; Γ;A;φ ⊢ ⊥
(VALID⊥)

Figure 1. A simplified version of the inference rules in Figure 3
for the judgmentD; Γ;A;φ ⊢ ⊥.

scope within the clause, and are considered to be universally quan-
tified (see Section 3 for a formal account). Intuitively, a judgment
D; Γ;A;φ ⊢ ⊥ means that under the least predicate interpretation
induced byD, the formula

∧
Γ ∧

∧
A ∧ φ ⇒ ⊥ is valid. For

example, consider the following judgmentJmult :

Jmult , Dmult ; ∅; {P (x, y, r1), Q(x, y, a, r2)} ; (r1+a 6= r2) ⊢ ⊥

If Jmult is derivable,P (x, y, r1)∧Q(x, y, a, r2)∧(r1+a 6= r2) ⇒
⊥ is valid under the least predicate interpretation induced by Dmult ,
and henceHmult has a solution.

The inference rules for the judgmentD; Γ;A;φ ⊢ ⊥ are shown
in Figure 3. The rules there, however, are too general and formal
for the purpose of providing an overview of the idea. Therefore,
we defer a detailed explanation of the rules to Section 4, andhere
explain a simplified version shown in Figure 1, obtained fromthe
complete version by eliding some conditions and subtletieswhile
retaining the essence. The rules are designed to exploitΓ andD
for iteratively updating the currentknowledgerepresented by the
formula

∧
A ∧ φ until a contradiction is implied. The first rule

INDUCT selects an atomP (t̃) ∈ A and performs induction on
the derivation of the atom by adding a new induction hypothesis
∀x̃.
((
P (σt̃) ≺ P (t̃)

)
∧
∧
σA⇒ ¬(σφ)

)
to Γ. Here, a mapσ is

used to generalize the free term variablesỹ that occur inA or φ
(denoted byfvs(A) ∪ fvs(φ)) into fresh variables̃x, andP (σt̃) ≺
P (t̃) requires that the derivation ofP (σt̃) is a strict sub-derivation
of that ofP (t̃). The second rule UNFOLD selects an atomP (t̃) ∈
A, performs a case analysis on the last rule used to derive the atom,
which is represented by a definite clause inD of the formP (x̃) ⇐
A′ ∧ φ′, and updates the current knowledge

∧
A ∧ φ with

∧
(A ∪

σA′)∧φ∧σφ′ for σ =
{
x̃ 7→ t̃

}
. The third rule APPLY⊥ selects an

induction hypothesis inΓ, ∀x̃.
((
P (t̃′) ≺ P (t̃)

)
∧
∧
A′ ⇒ φ′

)
,

and tries to find an instantiationσ of the quantified variables̃x such
that

• the instantiated premise
∧
σA′ of the hypothesis is implied by

the current knowledge
∧
A ∧ φ and

• the derivation of the atomP (σt̃′) ∈ σA′ to which the hypothe-
sis is being applied is a strict sub-derivation of that of theatom

J3
(VALID⊥)

J4
(VALID⊥)

J1
(UNFOLD)

J5
(VALID⊥)

J7
(VALID⊥)

J6
(APPLY⊥)

J2
(UNFOLD)

J0
(UNFOLD)

Jmult

(INDUCT)

J0 , Dmult ; Γmult ;A∅; r1 + a 6= r2 ⊢ ⊥

J1 , Dmult ; Γmult ;A∅; r1 + a 6= r2 ∧ y = 0 ∧ r1 = 0 ⊢ ⊥

J2 , Dmult ; Γmult ;AP ; r1 + a 6= r2 ∧ y 6= 0 ⊢ ⊥

J3 , Dmult ; Γmult ;A∅; r1 + a 6= r2 ∧ y = 0 ∧ r1 = 0 ∧ a = r2 ⊢ ⊥

J4 , Dmult ; Γmult ;AQ; r1 + a 6= r2 ∧ y = 0 ∧ r1 = 0 ∧ y 6= 0 ⊢ ⊥

J5 , Dmult ; Γmult ;AP ; r1 + a 6= r2 ∧ y 6= 0 ∧ y = 0 ∧ a = r2 ⊢ ⊥

J6 , Dmult ; Γmult ;APQ; r1 + a 6= r2 ∧ y 6= 0 ⊢ ⊥

J7 , Dmult ; Γmult ;APQ; r1 + a 6= r2 ∧ y 6= 0 ∧ r1 + a = r2 ⊢ ⊥

Γmult , {∀x′, y′, r′1, a
′, r′2.((P (x′, y′, r′1) ≺ P (x, y, r1))∧

P (x′, y′, r′1) ∧Q(x′, y′, a′, r′2) ⇒ r′1 + a′ = r′2)}

A∅ , {P (x, y, r1), Q(x, y, a, r2)}

AP , A∅ ∪ {P (x, y − 1, r1 − x)}

AQ , A∅ ∪ {Q(x, y − 1, a+ x, r2)}

APQ , AP ∪ {Q(x, y − 1, a+ x, r2)}

Figure 2. The structure of an example derivation ofJmult .

P (t̃) on which the induction (that has introduced the hypothe-
sis) has been performed.

If such aσ is found, the rule updates the current knowledge with∧
A ∧ φ ∧ σφ′. The fourth rule VALID⊥ checks whetherφ ⇒

⊥ is valid, and if it is the case, closes the proof branch under
consideration.

Figure 2 shows the structure (with side-conditions omitted)
of a derivation of the judgmentJmult , constructed by using the
simplified version of the inference rules. We below explain how
the derivation is constructed. First, by performing induction on the
atomP (x, y, r1) in Jmult using the rule INDUCT, we obtain the
subgoalJ0 with an induction hypothesisΓmult added. We then
apply UNFOLD to perform a case analysis on the last rule used
to derive the atomP (x, y, r1), and obtain the two subgoalsJ1
andJ2 as the result, becauseDmult has two clauses with the head
that matches with the atomP (x, y, r1). The two subgoals are then
discharged as follows.

• Subgoal 1:By performing a case analysis onQ(x, y, a, r2) in
J1 using the rule UNFOLD, we further get two subgoalsJ3 and
J4. Both J3 andJ4 are proved by the rule VALID⊥ because
|= φ3 ⇒ ⊥ and|= φ4 ⇒ ⊥ hold.

• Subgoal 2:By performing a case analysis onQ(x, y, a, r2) in
J2 using the rule UNFOLD, we obtain two subgoalsJ5 andJ6.
J5 is proved by the rule VALID⊥ because|= φ5 ⇒ ⊥ holds.
We then apply the induction hypothesis inΓmult ,

∀x′, y′, r′1, a
′, r′2.((P (x′, y′, r′1) ≺ P (x, y, r1))∧

P (x′, y′, r′1) ∧Q(x′, y′, a′, r′2) ⇒ r′1 + a′ = r′2)

to the atomP (x, y − 1, r1 − x) ∈ APQ in J6 using the rule
APPLY⊥. Note that this can be done by using the quantifier
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instantiationσ defined by
{
x′ 7→ x, y′ 7→ y − 1, r′1 7→ r1 − x, a′ 7→ a+ x, r′2 7→ r2

}
,

becauseσ(P (x′, y′, r′1)) = P (x, y− 1, r1 − x) ≺ P (x, y, r1)
holds and the premiseσ(P (x′, y′, r′1) ∧ Q(x′, y′, a′, r′2)) =
P (x, y− 1, r1 −x)∧Q(x, y− 1, a+x, r2) of the instantiated
hypothesis is implied by the current knowledge

∧
APQ ∧ r1 +

a 6= r2 ∧ y 6= 0. We thus obtain the subgoalJ7, where the
φ-part of the knowledge is updated to

r1 + a 6= r2 ∧ y 6= 0 ∧ σ(r′1 + a′ = r′2)

≡ r1 + a 6= r2 ∧ y 6= 0 ∧ (r1 − x) + (a+ x) = r2

≡ r1 + a 6= r2 ∧ y 6= 0 ∧ r1 + a = r2.

Because this implies a contradiction,J7 is finally proved by
using the rule VALID⊥.

To automate proof search in the system, this paper proposes
an SMT-based technique: we use an off-the-shelf SMT solver for
checking whether the current knowledge implies a contradiction
(in the rule VALID⊥) and whether there is an element ofΓ that can
be used to update the current knowledge, by finding a quantifier
instantiationσ (in the rule APPLY⊥). The use of an SMT solver
provides our method with efficient and powerful reasoning about
data structures supported by SMT, including integers, realnumbers,
arrays, algebraic data types (ADTs), and uninterpreted functions.
There, however, still remain two challenges to be addressedtowards
full automation:

1. Challenge:How to check (in the rule APPLY⊥) the strict sub-
derivation relationP (t̃′) ≺ P (t̃) between the derivation of an
atomP (t̃′) to which an induction hypothesis inΓ is being ap-
plied, and the derivation of the atomP (t̃) on which the induc-
tion has been performed? Recall that in the above derivationof
Jmult , we needed to checkP (x, y − 1, r1 − x) ≺ P (x, y, r1)
before applying the rule APPLY⊥ to J6.

Our solution: The formalized rules presented in Section 4 keep
sufficient information for checking the strict sub-derivation re-
lation: we associate each induction hypothesis inΓ with an in-
duction identifierα, and each atom inA with a setM of iden-
tifiers indicating which hypotheses can be applied to the atom.
Further details are explained in Section 4.

2. Challenge:In which order should the rules be applied?

Our solution: This paper adopts the following simple strategy,
and evaluates it by experiments.

• Repeatedly apply the rule APPLY⊥ if possible, until no new
knowledge is obtained. (Even if the rule does not apply, ap-
plications of INDUCT and UNFOLD explained in the follow-
ing items may make APPLY⊥ applicable.)

• If the current knowledge cannot be updated by using the
rule APPLY⊥, select some atom fromA in a breadth-first
manner, and apply the rule INDUCT to the atom.

• Apply the rule UNFOLD whenever INDUCT is applied.

• Try to apply the rule VALID⊥ whenever theφ-part of the
knowledge is updated.

3. Horn Constraint Solving Problems
This section formalizes Horn constraint solving problems and
proves the correctness of our reduction from Horn constraint solv-
ing to inductive theorem proving in Corollary 1. Section 3.3also
shows example Horn constraint solving problems reduced from
(relational) verification problems of programs that use various ad-

vanced language features, including higher-order functions and
exceptions.

The syntax of Horn Clause Constraint Sets (HCCSs) over the
theoryTZ of quantifier-free linear integer arithmetic is defined by

(HCCSs) H : := {hc1, . . . , hcm}

(Horn clauses) hc : := h⇐ b

(heads) h : := P (t̃) | ⊥

(bodies) b : := P1(t̃1) ∧ · · · ∧ Pm(t̃m) ∧ φ

(TZ-formulas) φ : := t1 ≤ t2 | ⊤ | ⊥ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2

(TZ-terms) t : := x | n | t1 + t2

Here, the meta-variablesP andx respectively represent predicate
variables and term variables, andt̃ represents a sequence of terms
t1, . . . , tm. We write the arity ofP as ar(P ). Note that, in the
syntax ofTZ-formulas, linear inequalitiest1 ≤ t2 can be used to
encodet1 < t2, t1 = t2, and t1 6= t2. For example,t1 < t2
is encoded ast1 + 1 ≤ t2. The formula⊤ (resp.⊥) represents
the tautology (resp. the contradiction). We here restrict ourselves
to TZ for simplicity, although our induction-based Horn constraint
solving method formalized in Section 4 supports constraints over
whatever background theories supported by the underlying SMT
solver, including the theories of nonlinear arithmetics, algebraic
data structures, and uninterpreted function symbols as shown in
Section 3.3.

3.1 Notation for HCCSs

A Horn clause constraint setH is a finite set{hc1, . . . , hcm}
of Horn clauses. AHorn clauseh ⇐ b consists of a headh
and a bodyb. We often abbreviate a Horn clauseh ⇐ ⊤ as
h. We write pvs(hc) for the set of the predicate variables that
occur inhc and definepvs(H) =

⋃
hc∈H pvs(hc). Similarly, we

write fvs(hc) for the set of the term variables inhc and define
fvs(H) =

⋃
hc∈H fvs(hc). We assume that for anyhc1, hc2 ∈ H,

hc1 6= hc2 impliesfvs(hc1)∩fvs(hc2) = ∅. We writeH↾P for the
set of Horn clauses inH of the formP (t̃) ⇐ b. We defineH(P ) =
λx̃.∃ỹ.

∨m

i=1(bi ∧ x̃ = t̃i) if H↾P =
{
P (t̃i) ⇐ bi

}
i∈{1,...,m}

where{ỹ} = fvs(H↾P ) and{x̃} ∩ {ỹ} = ∅. By usingH(P ), an
HCCSH is logically interpreted as the formula

∧

P∈pvs(H)

∀x̃P . (H(P )(x̃P ) ⇒ P (x̃P )) ,

where x̃P = x1, . . . , xar(P ). A Horn clause with the head of
the formP (t̃) (resp.⊥) is called adefiniteclause (resp. agoal
clause). We writedef (H) (resp.goal(H)) for the subset ofH
consisting of only the definite (resp. goal) clauses. Note thatH =
def (H) ∪ goal(H) anddef (H) ∩ goal(H) = ∅.

3.2 Predicate Interpretation

A predicate interpretationρ for an HCCSH is a map from each
predicate variableP ∈ pvs(H) to a subset ofZar(P ). We write the
domain ofρ asdom(ρ). We writeρ1 ⊆ ρ2 if ρ1(P ) ⊆ ρ2(P )
for all P ∈ pvs(H). We call an interpretationρ a solution of
H and writeρ |= H if ρ |= hc holds for all hc ∈ H. For
example,ρmult = {P 7→

{
(x, y, r) ∈ Z

3 | x× y = r
}
, Q 7→{

(x, y, a, r) ∈ Z
4 | x× y + a = r

}
} is a solution of the HCCS

Hmult in Section 1.

Definition 1 (Horn Constraint Solving Problems). A Horn con-
straint solving problemis the problem of checking whether a given
HCCSH has a solution.
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We now establish the reduction from Horn constraint solv-
ing to inductive theorem proving, which is the foundation ofour
induction-based Horn constraint solving method.

The definite clausesdef (H) are considered to inductively de-
fine theleast predicate interpretationfor H as the least fixed-point
µFH of the following function on predicate interpretations.

FH(ρ) =
{
P 7→

{
(x̃) ∈ Z

ar(P )
∣∣∣ ρ |= H(P )(x̃)

} ∣∣∣ P ∈ dom(ρ)
}

BecauseFH is continuous [33], the least fixed-pointµFH of FH

exists. Furthermore, we can express it as

µFH =
⋃

i∈N

F i
H({P 7→ ∅ | P ∈ pvs(H)}),

whereF i
H meansi-times application ofFH. It immediately fol-

lows that the least predicate interpretationµFH is a solution of
def (H) because any fixed-point ofFH is a solution ofdef (H).
Furthermore,µFH is the least solution. Formally, we can prove the
following proposition.

Proposition 1. µFH |= def (H) holds, and for allρ such that
ρ |= def (H), µFH ⊆ ρ holds.

On the other hand, the goal clausesgoal(H) are considered
as specifications of the least predicate interpretationµFH. As a
corollary of Proposition 1, it follows thatH has a solution if and
only if µFH satisfies the specificationsgoal(H).

Corollary 1. ρ |= H for someρ if and only ifµFH |= goal(H)

In Section 4, we present an induction-based method for proving
µFH |= goal(H).

3.3 Examples Reduced from Program Verification Problems

This section shows example Horn constraint solving problems
reduced from (relational) verification problems of programs that
use advanced language features such as algebraic data structures,
higher-order functions, and exceptions. The reduction used in this
section is mostly based on an existing Horn constraint generation
method [53] for an ML-like (i.e., call-by-value, statically-typed,
and higher-order) functional language. The method can be used to
reduce a given assertion safety verification problem definedbelow
into a Horn constraint solving problem.

Definition 2 (Assertion Safety Verification Problems). An asser-
tion safety verification problem of a given functional program, with
a special functionmain of the ordinary ML typeint → · · · →
int → unit, is the problem of deciding whether

∀n1, . . . , nm ∈ Z. main n1 . . . nm −→∗/ assert false,

where−→ is the one-step evaluation relation. We call the program
safeif this property holds, andunsafeotherwise.

The constraint generation method is based on refinement types [57],
which are used internally to express value dependent inductive in-
variants and specifications of the program. The following theorem
states the soundness of the reduction.

Theorem 1(Soundness [53]). LetH be the HCCS generated from
a programD. If there exists a solutionρ ofH, thenD is safe.

We now show example Horn constraints generated by the
method. The partial recursive functions shown in Section 1 are
automatically axiomatized using refinement types as follows.

Example 1. Recall the programDmult in Section 1. The constraint
generation method first prepares the following refinement type tem-

plates for the functions inDmult .

mult : (x : int) → (y : int) → {r : int | P (x, y, r)}
mult acc : (x : int) → (y : int) → (a : int) →

{r : int | Q(x, y, a, r)}

Here, the predicate variableP (resp.Q) represents an inductive
invariant among the arguments and the return value of the function
mult (resp. mult acc). The constraint generation method then
type-checks the program against the type templates, and obtains
the Horn constraint setHmult in Section 1, which has a solution if
and only if the program is typable under a refinement type system.
The refinement type system guarantees that if a given programis
typable, the evaluation ofmain n never causes an assertion failure
for any integern.

Example 2. Consider the following program.

let rec sum n =
if n < 0 then n + sum (n + 1)
else if n = 0 then 0 else n + sum (n - 1)

let rec sum_acc n a =
if n < 0 then sum_acc (n + 1) (a + n)
else if n = 0 then a else sum_acc (n - 1) (a + n)

let main n a = assert(sum n + a = sum_acc n a)

In a similar manner to Example 1, we obtain the following Horn
constraint set:




P (0, 0),
P (x, r + x) ⇐ P (x+ 1, r) ∧ x < 0,
P (x, r + x) ⇐ P (x− 1, r) ∧ x > 0,
Q(0, a, a),
Q(x, a, r) ⇐ Q(x+ 1, a+ x, r) ∧ x < 0,
Q(x, a, r) ⇐ Q(x− 1, a+ x, r) ∧ x > 0,
⊥ ⇐ P (x, r1) ∧Q(x, a, r2) ∧ r1 + a 6= r2





Here, the predicate variableP (resp.Q) represents an inductive
invariant among the arguments and the return value of the func-
tion sum (resp.sum acc). Here, suppose that the main function is
replaced by

let main n =
if n >= 0 then assert (2 * sum n = n * (n + 1))

We then obtain the following goal clause over the nonlinear integer
arithmetic instead:

⊥ ⇐ P (x, r) ∧ x ≥ 0 ∧ 2× r 6= x× (x+ 1)

The method can automatically axiomatize complex recursive
functions on integers.

Example 3. Consider the following program with complex recur-
sion.

let rec mc91 x =
if x > 100 then x - 10 else mc91 (mc91 (x + 11))

let main x = if x <= 101 then assert(mc91 x = 91)

By using the refinement type template

mc91 : (x : int) → {r : int | P (x, r)}

the constraint generation method returns the following Horn con-
straint set:




P (x, x− 10) ⇐ x > 100,
P (x, s) ⇐ P (x+ 11, r) ∧ P (r, s) ∧ x ≤ 100,
⊥ ⇐ P (x, r) ∧ x ≤ 101 ∧ r 6= 91






Here, the predicate variableP represents an inductive invariant
among the arguments and the return value of the functionmc91.
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Our method can also handle recursive functions on non-inductively
defined data types such as real numbers.

Example 4. Consider the following program that models a dynam-
ical system from [38].

let rec dyn_sys vc =
let fa = 0.5418 *. vc *. vc in (* the force control *)
let fr = 1000. -. fa in
let ac = 0.0005 *. fr in
let vc’ = vc +. ac in
assert (vc’ < 49.61); (* the safety velocity *)
dyn_sys vc’

let main () = dyn_sys 0. (* the initial velocity *)

By using the refinement type template

dyn sys : {x : real | P (x)} → unit

the constraint generation method returns the following Horn con-
straint set:




P (vc′) ⇐ P (vc) ∧ fa = 0.5418 × vc × vc ∧ fr = 1000 − fa∧
ac = 0.0005 × fr ∧ vc′ = vc + ac ∧ vc′ < 49.61,

P (0),
⊥ ⇐ P (vc) ∧ fa = 0.5418 × vc × vc ∧ fr = 1000 − fa∧

ac = 0.0005 × fr ∧ vc′ = vc + ac ∧ vc′ ≥ 49.61





Here, the predicate variableP represents an inductive invariant on
the argument of the functiondyn sys.

The constraint generation method can handle functional pro-
grams that manipulate user-defined algebraic data structures.

Example 5. Consider the following program that manipulates
lists.

type list = Nil | Cons of int * list

let rec append l ys = match l with
| Nil -> ys
| Cons(x, xs) -> Cons(x, append xs ys)

let rec drop n l = match l with
| Nil -> Nil
| Cons(x, xs) ->

if n = 0 then Cons(x, xs) else drop (n - 1) xs
let rec take n l = match l with
| Nil -> Nil
| Cons(x, xs) ->

if n = 0 then Nil else Cons(x, take (n - 1) xs)
let main n xs =
assert(append (take n xs) (drop n xs) = xs)

By using the refinement type templates

append : (x : list) → (y : list) → {r : list | P (x, y, r)}
drop : (x : int) → (y : list) → {r : list | Q(x, y, r)}
take : (x : int) → (y : list) → {r : list | R(x, y, r)}

the constraint generation method returns the following Horn con-
straint set over the theory of algebraic data structures:




P (Nil, l2, l2),
P (Cons(x, l), l2, Cons(x, r)) ⇐ P (l, l2, r),
Q(n, Nil, Nil),
Q(n, Cons(x, l′), Cons(x, l′)) ⇐ n = 0,
Q(n, Cons(x, l′), r) ⇐ Q(n− 1, l′, r) ∧ n 6= 0,
R(n, Nil, Nil),
R(n, Cons(x, l′), Nil) ⇐ n = 0,
R(n, Cons(x, l′), Cons(x, r)) ⇐ Q(n− 1, l′, r) ∧ n 6= 0,
⊥ ⇐ P (n, l, r1) ∧Q(n, l, r2) ∧ R(r1, r2, r) ∧ r 6= l





The method can also axiomatize higher-order functions into
Horn clause constraints automatically.

Example 6. Consider the following higher-order program.

type list = Nil | Cons of int * list

let rec sum_list l = match l with
| Nil -> 0
| Cons(x, xs) -> x + sum_list xs

let rec fold_left f s l = match l with
| Nil -> s
| Cons(x, xs) -> fold_left f (f s x) xs

let plus x y = x + y
let main l = assert(sum_list l = fold_left plus 0 l)

By using the refinement type templates

sum list : (x : list) → {r : int | P (x, r)}
fold left : (f : (a : int) → (b : int) → {c : int | Q(a, b, c)})

→ (x : int) → (y : list) → {z : int | R(x, y, z)}
plus : (x : int) → (y : list) → {r : list | S(x, y, r)}

the constraint generation method returns the following Horn con-
straint set over the theories of linear integer arithmetic and alge-
braic data structures:





P (Nil, 0),
P (Cons(x, l′), x+ r) ⇐ P (l′, r),
R(s,Nil, s),
R(s,Cons(x, l′), r′) ⇐ Q(s, x, r) ∧R(r, l′, r′),
S(x, y, x+ y),
Q(x, y, z) ⇐ S(x, y, z),
⊥ ⇐ P (l, r1) ∧ R(0, l, r2) ∧ r1 6= r2






The method can also axiomatize recursive functions that may
raise exceptions into Horn clause constraints.

Example 7. Consider the following higher-order program that
manipulates lists and possibly raises and catches exceptions.

exception Not_found
type int_option = None | Some of int

let rec find p l = match l with
| [] -> raise Not_found
| x::xs -> if p x then x else find p xs

let rec find_opt p l = match l with
| [] -> None
| x::xs -> if p x then Some x else find_opt p xs

let main p l = try find_opt p l = Some (find p l)
with Not_found -> find_opt p l = None

Here,find andfind_opt respectively use the exceptionNot_found
and the option typeint_option, defined respectively in the first
and the second lines, for finding the first element of the listl sat-
isfying the predicatep : int → bool. The constraint generation
method cannot directly handle this program because the underlying
refinement type system does not support exceptions. Note, however,
that we can mechanically transform the program into the following
one by eliminating exceptions using a selective CPS transforma-
tion [47].

type exc = Not_found
type int_option = None | Some of int

let rec find p l ok ex = match l with
| [] -> ex Not_found
| x::xs -> if p x then ok x else find p xs ok ex

let rec find_opt p l = match l with
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| [] -> None
| x::xs -> if p x then Some x else find_opt p xs

let main p l =
find p l (fun x -> assert (find_opt p l = Some x))
(fun Not_found -> assert (find_opt p l = None))

Note here that two function argumentsok and ex of the ordinary
ML typeint → unit, which respectively represent continuations
for normal and exceptional cases, are added to the functionfind.
The constraint generation method then prepares the following re-
finement type templates:

find : (x : int → bool) → (y : list) →
({z : int | Pok(x, y, z)} → unit) →
({w : exc | Pex(x, y, w)} → unit) → unit

find opt : (x : int → bool) → (y : list) →
{z : int option | Q(x, y, z)}

Here, the predicate variablePok represents invariants among the
first and the second arguments offind and the argument of the
third argumentok of find. The predicate variablePex represents
invariants among the first and the second arguments offind and
the argument of the fourth argumentex of find. The predicate
variable Q represents invariants among the arguments and the
return value offind_opt. The constraint generation method then
obtains the following Horn constraint set over the theoriesof linear
integer arithmetic, algebraic data structures, and uninterpreted
function symbols:






Pok(p, x :: xs, r) ⇐ p x = ⊤,
Pok(p, x :: xs, r) ⇐ Pok(p, xs, r) ∧ p x = ⊥,
Pex(p, [ ], Not Found),
Pex(p, x :: xs, r) ⇐ Pex(p, xs, r) ∧ p x = ⊥,
Q(p, [ ], None),
Q(p, x :: xs, Some x) ⇐ p x = ⊤,
Q(p, x :: xs, r) ⇐ Q(p, xs, r) ∧ p x = ⊥,
⊥ ⇐ Pok(p, l, r1) ∧Q(p, l, r2) ∧ Some r1 6= r2
⊥ ⇐ Pex(p, l, r1) ∧ r1 6= Not Found
⊥ ⇐ Pex(p, l, Not Found) ∧Q(p, l, r2) ∧ None 6= r2






Here,p is an uninterpreted function symbol, which is essential for
the success of Horn constraint solving here because we need to
express the fact that the multiple occurrences ofp x in the body
of different clauses return the same value if the same function is
passed asp.

Our method also supports demonic non-determinism.

Example 8. Consider the following higher-order program that
callsrand_int to generate random integers.

let rec randpos dummy =
let n = rand_int () in
if n > 0 then n else randpos dummy

let rec sum_fun f n =
if n = 0 then f 0
else f n + sum_fun f (n - 1)

let main n = assert (sum_fun randpos n > 0)

Note that the specification is satisfied because the functionrandpos
never returns a non-positive integer. By using the refinement type
templates

randpos : (x : int) → {y : list | P (x, y)}
sum fun : (f : (a : int) → {b : int | Q(a, b)}) →

(x : int) → {y : int | R(f, x, y)}

we obtain the following Horn constraint set:





P (x, y) ⇐ y > 0,
P (x, y) ⇐ P (x, y) ∧ y ≤ 0,
Q(a, b) ⇐ Q(x, r) ∧Q(a, b) ∧ x 6= 0,
Q(a, b) ⇐ P (a, b),
R(f, 0, y) ⇐ Q(0, y),
R(f, x, r1 + r2) ⇐

Q(0, y) ∧Q(x, r1) ∧R(f, x− 1, r2) ∧ x 6= 0,
⊥ ⇐ Q(randpos , x, y) ∧ y ≤ 0






Our method based on Horn clause constraints is not limited to
relational verification of functional programs. By combining the
constraint generation tools for C [28] and Java [35], we can ax-
iomatize relational verification problems across functional, imper-
ative, object-oriented, and, of course, (constraint) logic programs
into Horn clause constraints.

Example 9. Consider the following C program.

int mult(int x, int y) {
int r=0; while(y != 0) r = r + x; y = y - 1;
return r;

}

Using the Hoare logic, we obtain the following Horn constraint set:




I(x, y, r) ⇐ r = 0,
I(x, y − 1, r + x) ⇐ I(x, y, r) ∧ y 6= 0,
R(x, y, r) ⇐ I(x, y, r) ∧ y = 0





Here, the predicate variableI represents the loop invariant of the
while loop, andR represents invariants among the argumentsx, y
and the return valuer of the proceduremult. The goal clause
⊥ ⇐ P (x, y, r1) ∧ R(x, y, r2) ∧ r1 6= r2, with the predicate
P defined byHmult in Section 1, represents the equivalence of C
and OCaml implementations ofmult.

It is also worth mentioning here that there have also been
proposed techniques for reducing verification problems of multi-
threaded programs [25, 27] and functional programs with the
call-by-need evaluation strategy [56] into Horn constraint solving
problems. Angelic non-determinism [29] and temporal specifica-
tions [7] can also be automatically axiomatized into Horn clause
constraints extended with existentially quantified heads.

4. Induction-based Horn Constraint Solving
Method

As explained in Section 2, our method is based on the reduction
from Horn constraint solving into inductive theorem proving. The
correctness of the reduction is established by Corollary 1 in Sec-
tion 3. The remaining task is to develop an automated method for
proving the inductive conjectures obtained from Horn clause con-
straints. To this end, Section 4.1 formalizes our inductiveproof sys-
tem tailored to Horn constraint solving and proves its correctness.
Section 4.2 discusses how to automate proof search in the system
using an SMT solver.

4.1 Inductive Proof System

We formalize a general and more elaborate version of the induc-
tive proof system explained in Section 2. A judgment of the ex-
tended system is of the formD; Γ;A;φ ⊢ h, whereD is a set
of definite clauses andφ represents a formula without atoms. We
here assume thatD(P ) is defined similarly asH(P ). The as-
serted propositionh on the right is now allowed to be an atom
P (t̃) instead of⊥. For deriving such judgments, we will introduce
new rules FOLD and VALIDP later in this section.Γ represents a
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Perform induction on the derivation of the atomP (t̃):
PM
◦ (t̃) ∈ A Γ′ = Γ ∪

{
(α ⊲ P (t̃), A, φ, h)

}

D; Γ′; (A \ PM
◦ (t̃)) ∪

{
PM
α (t̃)

}
;φ ⊢ h (α : fresh)

D; Γ;A;φ ⊢ h
(INDUCT)

Case-analyze the last rule used (wherem rules are possible):
PM
α (t̃) ∈ A D(P )(t̃) =

∨m

i=1 ∃x̃i. (φi ∧
∧
Ai)

D; Γ;A ∪Ai
M∪{α}
◦ ;φ ∧ φi ⊢ h (for each i ∈ {1, . . . ,m})

D; Γ;A;φ ⊢ h
(UNFOLD)

Apply an induction hypothesis or a user-specified lemma inΓ:
(g,A′, φ′,⊥) ∈ Γ dom(σ) = fvs(A′)
|= φ⇒ Jσg∈AK |= φ⇒ JσA′⊆AK

{x̃} = fvs(φ′) \ dom(σ) D; Γ;A;φ ∧ ∀x̃.¬(σφ′) ⊢ h

D; Γ;A;φ ⊢ h
(APPLY⊥)

Apply an induction hypothesis or a user-specified lemma inΓ:
(g,A′, φ′, P (t̃)) ∈ Γ dom(σ) = fvs(A′) ∪ fvs(t̃)

|= φ⇒ Jσg∈AK |= φ⇒ ∃x̃.(σφ′) |= φ⇒ JσA′⊆AK
{x̃} = fvs(φ′) \ dom(σ) D; Γ;A ∪

{
P ∅
◦ (σt̃)

}
;φ ⊢ h

D; Γ;A;φ ⊢ h
(APPLYP )

Apply a definite clause inD:
(P (t̃) ⇐ φ′ ∧

∧
A′) ∈ D dom(σ) = fvs(A′) ∪ fvs(t̃)

|= φ⇒ ∃x̃.(σφ′) |= φ⇒ JσA′⊆AK
{x̃} = fvs(φ′) \ dom(σ) D; Γ;A ∪

{
P ∅
◦ (σt̃)

}
;φ ⊢ h

D; Γ;A;φ ⊢ h
(FOLD)

Check if the current knowledge entails the asserted proposition:

|= φ⇒ ⊥

D; Γ;A;φ ⊢ ⊥
(VALID⊥)

|= φ⇒
q
P (t̃)∈A

y

D; Γ;A;φ ⊢ P (t̃)
(VALIDP )

Auxiliary functions:
q
P (t̃)∈A

y
,

∨

P (t̃′)∈A

t̃ = t̃′

J•∈AK , ⊤
q
α ⊲ P (t̃)∈A

y
,

r
P (t̃)∈

{
PM (t̃′) ∈ A | α ∈M

}z

JA1⊆A2K ,
∧

P (t̃)∈A1

q
P (t̃)∈A2

y

Figure 3. The inference rules for the judgmentD; Γ;A;φ ⊢ h.

set{(g1, A1, φ1, h1), . . . , (gm, Am, φm, hm)} consisting of user-
specified lemmas and induction hypotheses, wheregi is either• or
α ⊲ P (t̃). (•, A, φ, h) ∈ Γ represents the user-specified lemma

∀x̃.
(∧

A ∧ φ⇒ h
)

where{x̃} = fvs(A,φ, h),

while (α ⊲ P (t̃), A, φ, h) ∈ Γ represents the induction hypothesis

∀x̃.
((
P (t̃) ≺ P (t̃′)

)
∧
∧
A ∧ φ⇒ h

)

where{x̃} = fvs(P (t̃), A, φ, h)

that has been introduced by induction on the derivation of the atom
P (t̃′). Here,α represents theinduction identifierassigned to the
application of induction that has introduced the hypothesis. Note
thath on the right-hand side of⇒ is now allowed to be an atom of
the formQ(t̃). We will introduce a new rule APPLYP later in this
section for using such lemmas and hypotheses to obtain new knowl-
edge.A is also extended to be a set

{
P1

M1

α1
(t̃1), . . . , Pm

Mm

αm
(t̃m)

}

of annotated atoms. Each elementPM
α (t̃) has two annotations:

• an induction identifierα indicating that the induction with the
identifierα is performed on the atom by the rule INDUCT. If the
rule INDUCT has never been applied to the atom,α is set to be
a special identifier denoted by◦.

• a set of induction identifiersM indicating that ifα′ ∈ M , the
derivationD of the atomPM

α (t̃) satisfiesD ≺ D′ for the
derivationD′ of the atomP (t̃′) on which the induction with
the identifierα′ is performed. Thus, an induction hypothesis
(α′⊲P (t̃′), A′, φ′, h′) ∈ Γ can be applied to the atomPM

α (t̃) ∈
A only if α′ ∈M holds.

Note that we use these annotations only for guiding inductive
proofs andPM

α (t̃) is logically equivalent toP (t̃). We often omit
these annotations when they are clear from the context.

The inference rules for the judgmentD; Γ;A;φ ⊢ h are defined
in Figure 3. The rule INDUCT selects an atomPM

◦ (t̃) ∈ A and per-
forms induction on the derivation of the atom. This rule generates
a fresh induction identifierα 6= ◦, adds a new induction hypoth-
esis(α ⊲ P (t̃), A, φ, h) to Γ, and replaces the atomPM

◦ (t̃) with
the annotated onePM

α (t̃) for remembering that the induction with
the identifierα is performed on it. The rule UNFOLD selects an
atomPM

α (t̃) ∈ A and performs a case analysis on the last rule
P (t̃) ⇐ φi ∧

∧
Ai used to derive the atom. As the result, the goal

is broken intom-subgoals if there arem rules possibly used to de-
rive the atom. The rule addsAi

M∪{α}
◦ andφi respectively toA and

φ in thei-th subgoal, whereAM
α represents

{
PM
α (t̃)

∣∣ P (t̃) ∈ A
}

.
Note here that each atom inAi is annotated withM ∪ {α} be-
cause the derivation of the atomAi is a strict sub-derivation of that
of the atomPM

α (t̃) on which the induction with the identifierα
has been performed. Ifα = ◦, it is the case that the rule INDUCT

has never been applied to the atomPM
α (t̃) yet. The rules APPLY⊥

and APPLYP select(g,A′, φ′, h) ∈ Γ, which represents a user-
specified lemma ifg = • and an induction hypothesis otherwise,
and try to add new knowledge respectively to theφ- and theA-part
of the current knowledge: the rules try to find an instantiationσ for
the free term variables in(g,A′, φ′, h), which are considered to be
universally quantified, and then useσ(g,A′, φ′, h) to obtain new
knowledge. Contrary to the rule UNFOLD, the rule FOLD tries to
use a definite clauseP (t̃) ⇐ φ′ ∧

∧
A′ ∈ D from the body to

the head direction: FOLD tries to findσ such thatσ(φ′ ∧
∧
A′) is

implied by the current knowledge, and update it withP (σt̃). This
rule is useful when we check the correctness of user specifiedlem-
mas. The rule VALID⊥ checks ifφ is unsatisfiable, while the rule
VALIDP checks if the asserted propositionP (t̃) on the right-hand
side of the judgment is implied by the current knowledge

∧
A∧ φ.

Given a Horn constraint solving problemH, our method re-
duces the problem into an inductive theorem proving problemas
follows. For each goal clause ingoal(H) = {

∧
Ai ∧ φi ⇒ ⊥}mi=1,

we check the judgmentdef (H); ∅;Ai
∅
◦;φi ⊢ ⊥ is derivable by the
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inductive proof system. Here, each atom inAi is initially annotated
with ∅ and◦.

We now prove the correctness of our method, which follows
from the soundness of the inductive proof system. To state the
soundness, we first defineJΓ, AKk, which represents the conjunc-
tion of user-specified lemmas and induction hypotheses inΓ instan-
tiated for the atoms occurring in thek-times unfolding ofA.

JΓ, AK0 = JΓK (A),

JΓ, AKk+1 = JΓK (A) ∧
∧

PM
α

(t̃)∈A

m∨

i=1

∃x̃i.

(
φi ∧

r
Γ, Ai

M∪{α}
◦

zk
)
,

whereD(P )(t̃) =
∨m

i=1 ∃x̃i. (φi ∧
∧
Ai) andJΓK is defined by:

JΓK (A′) =
∧ ⋃

(g,A,φ,h)∈Γ

J(g,A, φ, h)K (A′),

J(•, A, φ, h)K (A′) =
{
∀x̃.

∧
A ∧ φ⇒ h

∣∣∣ {x̃} = fvs(A,φ, h)
}
,

q
(α ⊲ P (t̃), A, φ, h)

y
(A′) =

{
∀x̃.

∧
A ∧ φ ∧ t̃ = t̃′ ⇒ h

∣∣∣∣
PM (t̃′) ∈ A′, α ∈M,
{x̃} = fvs(t̃, A, φ, h)

}
.

Intuitively, JΓK (A) represents the conjunction of user-specified
lemmas and induction hypotheses inΓ instantiated for the atoms
in A. The soundness of the inductive proof system is now stated by
the following lemma (see Appendix A for a proof).

Lemma 1 (Soundness). If D; Γ;A;φ ⊢ h is derivable, then there
is k such thatµFD |= JΓ, AKk ∧

∧
A ∧ φ⇒ h holds.

The correctness of our Horn constraint solving method follows
immediately from Lemma 1 and Corollary 1 as follows.

Theorem 2. Suppose thatH is an HCCS withgoal(H) =
{
∧
Ai ∧ φi ⇒ ⊥}m

i=1. It then follows thatρ |= H for someρ
if def (H); ∅;Ai;φi ⊢ ⊥ is derivable for alli = 1, . . . ,m.

Proof. Suppose thatdef (H); ∅;Ai;φi ⊢ ⊥ for all i = 1, . . . ,m.
By Lemma 1 and the fact thatµFdef (H) |=

∧
Ai ⇒ J∅, AiKk, we

getµFdef (H) |=
∧
Ai ∧ φi ⇒ ⊥. We therefore haveµFdef (H) |=

goal(H). It then follows thatρ |= H for someρ by Corollary 1.

4.2 Rule Application Strategy

We now elaborate on our rule application strategy shown in Sec-
tion 2. Because all the inference rules except VALID⊥ and VALIDP
add new knowledge toA and/orφ, we repeatedly apply them until
VALID⊥ and VALIDP close all the proof branches under consider-
ation. More specifically, we adopt the following strategy:

• Repeatedly apply the rules APPLY⊥, APPLYP , and FOLD if
possible until no new knowledge is obtained. (Even if the
rules do not apply, applications of INDUCT and UNFOLD ex-
plained in the following items may make APPLY⊥, APPLYP ,
and FOLD applicable.)

• If the current knowledge cannot be updated by using the above
rules, select some atom fromA in a breadth-first manner, and
apply the rule INDUCT to the atom.

• Apply the rule UNFOLD whenever INDUCT is applied.

• Try to apply the rules VALID⊥ and VALIDP whenever the
current knowledge is updated.

5. Implementation and Preliminary Experiments
We have implemented a Horn constraint solver based on the pro-
posed method and integrated it, as a backend solver, with an ex-
isting verification tool called Refinement Caml [52–54], a refine-
ment type checking and inference tool for the OCaml functional
language based on Horn constraint solving. Our solver can generate
a proof tree like the one in Figure 2 as a certificate, if the given Horn
constraint set is judged to have a solution. Furthermore, our solver
can generate a counterexample, if the constraint set is judged to
be unsolvable. We adopted Z3 [19] as the underlying SMT solver.
The details of the implementation are explained in Section 5.1. The
web interface of the verification tool as well as all the benchmark
programs used in the experiments reported here are available from
http://www.cs.tsukuba.ac.jp/~uhiro/.

We have tested our constraint solver on two benchmark sets.
The first set is 85 benchmarks from the test suite for automated
induction provided by the authors of the IsaPlanner system [21].
The benchmark set consists of verification problems of relational
specifications of pure mathematical functions on inductivedata
structures, most of which cannot be verified by the previous Horn
constraint solvers [25, 26, 31, 41, 46, 50, 53, 54]. The benchmark
set has also been used to evaluate previous automated inductive
theorem provers [15, 40, 44, 48]. The experiment results on this
benchmark set are reported in Section 5.2.

To demonstrate advantages of our novel combination of Horn
constraint solving with inductive theorem proving, we havepre-
pared the second benchmark set consisting of verification problems
of (mostly relational) specifications of programs that use various
advanced language features, which are naturally and automatically
axiomatized by our method using predicates defined by Horn clause
constraints as the least satisfying interpretation. The experiment re-
sults on this benchmark set are reported in Section 5.3.

5.1 Implementation Details

This section describes details of the implementation. We explain
how to check the correctness of user specified lemmas and how
to generate a counterexample if the given Horn constraint set has
no solution, respectively in Sections 5.1.1 and 5.1.2. Section 5.1.3
describes implementation details of the rules APPLY⊥, APPLYP ,
and FOLD in Figure 3. In particular, we discuss how to find an
assignmentσ for free term variables that occur in the element ofΓ
selected by the rules.

5.1.1 Checking the correctness of user-specified lemmas

Our system allows users to specify lemmas as the initialΓ. Our
tool checks thatD; ∅;A;φ ⊢ h is derivable for each user-specified
lemma(•, A, φ, h) by using the exact same rules in Figure 3. We
use the rule FOLD, in addition to the rules APPLY⊥ and APPLYP ,
to update the current knowledge. To avoid redundant applications
of FOLD, we select only definite clauses inD with the head of the
formP (t̃′) if h = P (t̃) and we do not use FOLD at all if h = ⊥.

5.1.2 Counterexample generation

Our tool can conclude that the goal clause (or the user-specified
lemma) currently solving has no solution if a subgoal of the form
D; Γ;A;φ ⊢ ⊥ satisfying the following conditions is obtained:

• all the atoms inA are already unfolded by the rule UNFOLD but

• φ is satisfiable.

Note that the first condition ensures that theφ-part of the current
knowledge under-approximates the body of the goal clause.

Our tool then returns a satisfying model ofφ found by the under-
lying SMT solver as a counterexample witnessing the unsolvability
of the given Horn constraint set. Some readers may notice that the
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counterexample generation is essentially the same as the execution
of constraint logic programs [33].

5.1.3 Finding an assignmentσ for quantifier instantiation

We here explain how to findσ for instantiating quantified variables
of lemmas and induction hypotheses by using an SMT solver in the
implementation of the rule APPLY⊥. The same technique is also
used for findingσ in the rules FOLD and APPLYP .

Recall that, in order to apply the rule APPLY⊥ to a judgment
D; Γ;A;φ ⊢ h, we need to find an assignmentσ for free term
variables in(g,A′, φ′, h′) ∈ Γ. Note here that the atom that occurs
in g also occurs inA′. We below assume that all the arguments
of the atoms inA′ are distinct term variables. This does not lose
generality because we can always replaceP (t̃) ∈ A′ by P (x̃)
with freshx̃ by adding the constraint̃x = t̃ to φ′. First of all, we
construct, for eachP (x̃) ∈ A′, the set

{{
x̃ 7→ t̃i

}}m
i=1

of assign-
ments, whereP (t̃1), . . . , P (t̃m) ∈ A. Here, if g = α ⊲ P (x̃),
the set

{{
x̃ 7→ t̃i

}}m
i=1

of assignments is constructed only from
PM1(t̃1), . . . , P

Mm(t̃m) ∈ A such thatα ∈ Mi. For example,
let us considerg = α ⊲ P1(x̃1), A′ = {P1(x̃1), P1(x̃2), P2(x̃3)}

andA =
{
P1

{α}(t̃1), P1
∅(t̃2), P2

∅(t̃3)
}

. For the atomsP1(x̃1),

P1(x̃2), andP2(x̃3), we respectively obtain the sets
{{
x̃1 7→ t̃1

}}
,

{{x̃2 7→ t̃1}, {x̃2 7→ t̃2}}, and
{{
x̃3 7→ t̃3

}}
of assignments. We

then compute all the combination of assignments, and filter out
those that contradict withφ. For the above example, we obtain the
following two as candidates ofσ:

σ1 =
{
x̃1 7→ t̃1, x̃2 7→ t̃1, x̃3 7→ t̃3

}

σ2 =
{
x̃1 7→ t̃1, x̃2 7→ t̃2, x̃3 7→ t̃3

}

For the rules FOLD and APPLYP , we use the same technique
explained above for APPLY⊥, but additionally check the condition
|= φ⇒ ∃x̃. σφ′, where{x̃} = fvs(φ′) \ dom(σ).

5.2 Experiments on IsaPlanner benchmark set

The IsaPlanner benchmark set consists of 85 conjectures fortotal
recursive functions on inductively defined data structuressuch as
natural numbers, lists, and binary trees. We have translated these
conjectures into assertion safety verification problems ofOCaml
programs. In the translation, we encoded natural numbers using
integer primitives, and defined lists and binary trees as algebraic
data types in OCaml. More specifically, natural numbersZ andS t
are respectively encoded as0 andt′+1 for t′ obtained by encoding
t. To preserve the semantics of natural numbers, we translated
conjectures of the form∀x ∈ N. φ into ∀x ∈ Z. (x ≥ 0 ⇒ φ).

The translated verification problems are then verified by ourver-
ification tool. Our tool automatically reduced the verification prob-
lems into Horn constraint solving problems by using the constraint
generation method [53], and automatically (i.e., without using user-
specified lemmas) solved 68 out of 85 verification problems. We
have manually analyzed the experiment results and found that 8
out of 17 failed verification problems require lemma discovery. The
other 9 problems caused timeout of Z3. It was because the ruleap-
plication strategy implemented in our tool caused useless detours
in proofs and put heavier burden on Z3 than necessary.

The experiment results on the IsaPlanner benchmark set show
that our Horn-clause-based axiomatization of total recursive func-
tions does not cause significant negative impacts on the automation
of induction; According to [48] that uses the IsaPlanner bench-
mark set to compare state-of-the-art automated inductive theorem
provers based on logics of pure total functions over inductively-
defined data structures, IsaPlanner [21] proved 47 out of 85,
Dafny [40] proved 45, ACL2s [13] proved 74, and Zeno [48] proved
82. The HipSpec [15] inductive prover and the SMT solver CVC4

extended with induction [44] are reported to have proved 80.In
contrast to our Horn-clause-based method, these inductivetheorem
provers can be, and in fact are directly applied to prove the con-
jectures in the benchmark set, because the benchmark set contains
only pure total functions over inductively-defined data structures.

It is also worth noting that, all the inductive provers that won
best results (greater than 70) on the benchmark set support auto-
matic lemma discovery, in a stark contrast to our tool. For example,
the above result (80 out of 85) of CVC4 is obtained when they en-
able an automatic lemma discovery technique proposed in [44] and
use a different encoding (calleddti in [44]) of natural numbers than
ours. When they disable the lemma discovery technique and use a
similar encoding to ours (calleddtt in [44]), CVC4 is reported to
have proved 64. Thus, we believe that extending our method with
automatic lemma discovery, which has been comprehensivelystud-
ied by the automated induction community [13, 15, 32, 36, 44,48],
further makes induction-based Horn constraint solving powerful.

5.3 Experiments on benchmark set consisting of programs
with various advanced language features

We prepared and tested our tool with the second benchmark set
consisting of (mostly relational) assertion safety verification prob-
lems of programs that use various advanced language features such
as partial (i.e., possibly non-terminating) functions, higher-order
functions, exceptions, non-determinism, algebraic data types, and
non-inductively defined data types (e.g., real numbers). The bench-
mark set also includes integer functions with complex recursion
and a verification problem concerning the equivalence of programs
written in different language paradigms. All the verification prob-
lems except four (ID19–22 in Table 1) are relational ones where
safe inductive invariants are not expressible in QFLIA, and there-
fore not solvable by the previous Horn constraint solvers. As shown
in Section 3.3, these verification problems are naturally and au-
tomatically axiomatized by our method using predicates defined
by Horn clause constraints as the least satisfying interpretation.
By contrast, these assertion safety verification problems cannot
be straightforwardly axiomatized and proved by the previous au-
tomated inductive theorem provers based on logics of pure total
functions on inductively-defined data structures: the axiomatization
process of these verification problems using pure total functions of-
ten requires users’ manual intervention and possibly causes a nega-
tive effect on the automation of induction, because, in the process,
one needs to take into consideration the evaluation strategies and
complex control flows caused by higher-order functions and side-
effects such as non-termination, exceptions, and non-determinism.
Additionally, the axiomatization process needs to preserve branch-
ing and calling context information in order to perform path- and
context-sensitive verification.

Table 1 summarizes the experiment results on the benchmark
set. The column “specification” represents the relational specifica-
tion verified and the column “kind” shows the kind of the specifi-
cation, where “equiv”, “assoc”, “comm”, “dist”, “mono”, “idem”,
“nonint”, and “nonrel” respectively represent the equivalence, asso-
ciativity, commutativity, distributivity, monotonicity, idempotency,
non-interference, and non-relational. The column “language fea-
tures” shows the language features used in the verification problem,
where each character has the following meaning.

H: higher-order functions

E: exceptions

P: partial (i.e., possibly non-terminating) functions

D: demonic non-determinism

R: real functions

I: integer functions with complex recursion
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Table 1. Experiment results on programs that use various language features
ID specification kind language features result time (sec.)
1 mult x y + a = mult acc x y a equiv P ✓ 0.257
2 mult x y = mult acc x y 0 equiv P ✓† 0.435
3 mult (1 + x) y = y + mult x y equiv P ✓ 0.233
4 y ≥ 0 ⇒ mult x (1 + y) = x+ mult x y equiv P ✓ 0.248
5 mult x y = mult y x comm P ✓‡ 0.345
6 mult (x+ y) z = mult x z + mult y z dist P ✓ 1.276
7 mult x (y + z) = mult x y + mult x z dist P ✗ n/a
8 mult (mult x y) z = mult x (mult y z) assoc P ✗ n/a
9 0 ≤ x1 ≤ x2 ∧ 0 ≤ y1 ≤ y2 ⇒ mult x1 y1 ≤ mult x2 y2 mono P ✓ 0.265
10 sum x+ a = sum acc x a equiv ✓ 0.384
11 sum x = x+ sum (x− 1) equiv ✓ 0.272
12 x ≤ y ⇒ sum x ≤ sum y mono ✓ 0.350
13 x ≥ 0 ⇒ sum x = sum down 0 x equiv P ✓ 0.312
14 x < 0 ⇒ sum x = sum up x 0 equiv P ✓ 0.368
15 sum down x y = sum up x y equiv P ✗ n/a
16 sum x = apply sum x equiv H ✓ 0.286
17 mult x y = apply2 mult x y equiv H, P ✓ 0.279
18 repeat x (add x) a y = a+ mult x y equiv H, P ✓ 0.317
19 x ≤ 101 ⇒ mc91 x = 91 nonrel I ✓ 0.165
20 x ≥ 0 ∧ y ≥ 0 ⇒ ack x y > y nonrel I ✓ 0.212
21 x ≥ 0 ⇒ 2× sum x = x× (x+ 1) nonrel N ✓ 0.196
22 dyn sys 0. −→∗/ assert false nonrel R,N ✓ 0.144
23 flip mod y x = flip mod y (flip mod y x) idem P ✓ 7.712
24 noninter h1 l1 l2 l3 = noninter h2 l1 l2 l3 nonint P ✓ 0.662
25 try find opt p l = Some (find p l) with

Not Found → find opt p l = None equiv H, E ✓ 0.758
26 try mem (find ((=) x) l) l with Not Found → ¬(mem x l) equiv H, E ✓ 0.764
27 sum list l = fold left (+) 0 l equiv H ✓ 3.681
28 sum list l = fold right (+) l 0 equiv H ✓ 0.329
29 sum fun randpos n > 0 equiv H,D ✓ 0.240
30 mult x y = mult Ccode(x, y) equiv P, C ✓ 0.217
† A lemmaPmult acc(x, y, a, r) ⇒ Pmult acc(x, y, a− x, r − x) is used
‡ A lemmaPmult(x, y, r) ⇒ Pmult(x− 1, y, r − y) is used

Pf above represents the predicate that axiomatizes the function f .
The experiments were conducted on a machine with Intel(R) Xeon(R) CPU E5-2680 v3 (2.50 GHz, 16 GB of memory).

N: nonlinear functions

C: procedures written in different programming paradigms

The column “result” represents whether our verification method
succeeded✓or failed✗. The column “time” represents the elapsed
time for verification in seconds.

Overall, the experiment results are promising, which show that
our tool can automatically solve relational verification problems
that use various advanced language features, in a practicaltime with
surprisingly few user-specified lemmas. We also want to emphasize
that the problem ID5, which required a lemma, is a relational
verification problem involving two function calls with significantly
different control flows: one recureses onx and the other recurses
on y. Thus, the result demonstrates an advantage of our induction-
based method that it can exploit lemmas to fill the gap between
function calls with different control flows. Our tool, however, failed
to verify the distributivity ID7 of mult, the associativity ID8 of
mult, and the equivalence ID15 of sum down and sum up. ID7
could be reduced to ID6 and solved, if a lemmaPmult(x, y, r) ⇒
Pmult(y, x, r), which represents the commutativity ofmult, was
used to rewrite the conjecture

Pmult(x, y+z, s1)∧Pmult(x, y, s2)∧Pmult(x, z, s3) ⇒ s1 = s2+s3

obtained from the specificationmult x (y + z) = mult x y +
mult x z into

Pmult(y+z, x, s1)∧Pmult(y, x, s2)∧Pmult(z, x, s3) ⇒ s1 = s2+s3

by replacing atoms of the formPmult(t1, t2, t3)withPmult(t2, t1, t3).
The rule APPLYP, however, replaces each atomPmult(t1, t2, t3)
with Pmult(t1, t2, t3) ∧ Pmult(t2, t1, t3) instead by keeping the
original atom so that we can monotonically increase the current
knowledge. Our tool supports an option for the rule APPLYP of
eliminating the original atom, and if it is enabled, ID7 is verified.
The associativity verification problem ID8 is even more difficult.
In addition to the above lemma, a lemmaPmult(x + y, z, r) ⇒
∃s1, s2.(Pmult(x, z, s1)∧Pmult(y, z, s2)∧r = s1+s2) is required.
This lemma, however, is currently not of the form supported by
our inductive proof system. In ID15, the functionssum down and
sum up use different recursion parameters (resp.y andx), and re-
quires lemmasPsum down(x, y, s) ⇒ ∃s1, s2.(Psum down(0, y, s1) ∧
Psum down(0, x − 1, s2) ∧ s = s1 − s2) andPsum up(x, y, s) ⇒
∃s1, s2.(Psum down(0, y, s1)∧Psum down(0, x−1, s2)∧s = s1−s2).
These lemmas are provable by induction on the derivation of
Psum down(x, y, s) andPsum up(x, y, s), respectively. However, as in
the case of ID8, our proof system does not support the form of the
lemmas. To put it differently, ID8 and ID15 demonstrate the in-
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completeness of our inductive proof system. Our future workthus
includes an extension of the proof system to support more general
form of lemmas and judgments.

6. Related Work
As discussed in Section 1, Horn constraint solving methods have
been extensively studied [25, 26, 31, 41, 46, 50, 53, 54]. In contrast
to the proposed induction based method, these methods do not
support Horn clause constraints over the theories of algebraic data
structures and nonlinear arithmetics, and cannot verify most if not
all relational specifications shown in Section 5.

Because state-of-the-art SMT solvers such as Z3 [19] and CVC4
support quantifier instantiation heuristics, one may thinkthat they
alone are sufficient for checking the validity of the logicalinterpre-
tation of Horn clause constraints shown in Section 3.1. However,
they alone are not sufficient for proving most conjectures that re-
quire nontrivial use of induction such as the benchmark problems
in Section 5.3 In fact, [44] reports that Z3 (resp. CVC4 without in-
duction) alone have proved only 35 (resp. 34) out of 85 problems
in the IsaPlanner benchmark set.

Automated inductive theorem proving techniques and tools
have long been studied, for example and to name a few: the Boyer-
Moore theorem provers [36] like ACL2s [13], rewriting induction
provers [43] like SPIKE [9], proof planners like CLAM [11, 12, 32,
34] and IsaPlanner [20, 21], and SMT-based induction provers like
Leon [49], Dafny [40], Zeno [48], HipSpec [15], and CVC4 [44].
These automated provers are mostly based on logics of pure total
functions over inductive data types. Consequently, users of these
provers are required to axiomatize advanced language features and
specifications (e.g., ones discussed in Section 3.3) using pure to-
tal functions as necessary. The axiomatization process, however,
is non-trivial, error-prone, and possibly causes a negative effect
on the automation of induction. For example, if a partial function
(e.g.,f(x) = f(x) + 1) is input, Zeno goes into an infinite loop
and CVC4 is unsound (unless control literals proposed in [49] are
used in the axiomatization). We have also confirmed that CVC4
failed to verify complex integer functions like the McCarthy 91
and the Ackermann functions (resp. ID19 and ID20 in Table 1).
By contrast, our method supports advanced language features and
specifications via Horn-clause encoding of their semanticsbased on
program logics such as Hoare logics and refinement type systems.

To aid verification of relational specifications of functional pro-
grams, Giesl [23] proposed context-moving transformations and
Asada et al. [1] proposed a kind of tupling transformation. SymD-
iff [30, 39] is a transformation-based tool built on top of Boo-
gie [2] for equivalence verification of imperative programs. Self-
composition [3] is a program transformation technique to reduce k-
safety [16, 51] verification into ordinary safety verification, and has
been applied to non-interference [4, 51, 55] and regressionverifica-
tion [22] of imperative programs. These transformations are useful
for some patterns of relational verification problems, which are,
however, less flexible than our approach based on a more general
principle of induction. For example, Asada et al.’s transformation
enables verification of the functional equivalence of recursive func-
tions with the same recursion pattern (e.g., ID1 in Table 1), but does
not help verification of the commutativity ofmult (ID5 in Table 1).
Because each transformation is designed for a particular target lan-
guage, the transformations cannot be applied to aid relational veri-
fication across programs written in different paradigms (e.g., ID30
in Table 1). Moreover, the correctness proof of the transformations
tends to be harder because it involves the operational semantics of

3 This point is also mentioned in the tutorial of Z3
(http://rise4fun.com/Z3/tutorial/guide ).

the target language, which is complex compared to the logical se-
mantics of Horn clause constraints.

There have been proposed program logics for relational verifica-
tion [5, 6, 14, 24]. In particular, the relational refinementtype sys-
tem proposed in [6] can be applied to differential privacy and other
relational security verification problems of higher-orderfunctional
programs. This approach is, however, not automated.

7. Conclusion and Future Work
We have proposed a novel Horn constraint solving method based
on an inductive proof system and an SMT-based technique to auto-
mate proof search in the system. We have shown that our methodis
able to solve Horn clause constraints obtained from relational veri-
fication problems that were not possible with the previous methods
based on interpolating theorem proving. Furthermore, our novel
combination of Horn clause constraints with inductive theorem
proving enabled our method to automatically axiomatize andver-
ify relational specifications of programs that use various advanced
language features.

As a future work, we are planning to extend our inductive proof
system to support more general form of lemmas and judgments.
We are also planning to extend our proof search method to sup-
port automatic lemma discovery as in the state-of-the-art inductive
theorem provers [13, 15, 44, 48]. To aid users to better understand
verification results of our method, it is important to generate a sym-
bolic representation of a solution of the original Horn constraint set
from the found inductive proof. It is however often the case that a
solution of Horn constraint sets that require relational analysis (e.g.,
Hmult ) is not expressible by a formula of the underlying logic. It
therefore seems fruitful to generate a symbolic representation of
mutual summaries in the sense of [30] across multiple predicates
(e.g.,P,Q of Hmult ).
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IFF: A language-agnostic semantic diff tool for imperativeprograms.
In CAV ’12, pages 712–717. Springer, 2012.

[40] K. R. M. Leino. Automating induction with an SMT solver.In VMCAI
’12, volume 7148 ofLNCS, pages 315–331. Springer, 2012.

[41] K. McMillan and A. Rybalchenko. Computing relational fixed points
using interpolation. Technical Report MSR-TR-2013-6, 2013.

[42] K. L. McMillan. An interpolating theorem prover.Theoretical Com-
puter Science, 345(1):101–121, 2005.

[43] U. S. Reddy. Term rewriting induction. InCADE-10, volume 449 of
LNCS, pages 162–177. Springer, 1990.

[44] A. Reynolds and V. Kuncak. Induction for SMT solvers. InVMCAI
’15, volume 8931 ofLNCS, pages 80–98. Springer, 2015.

[45] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. InPLDI ’08,
pages 159–169. ACM, 2008.
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A. Proof of Lemma 1
We first show lemmas used to prove Lemma 1.

Lemma 2. |= φ⇒
q
P (t̃)∈A

y
implies|=

∧
A ∧ φ⇒ P (t̃).

Proof. By the definition of
q
P (t̃)∈A

y
.

Lemma 3. |= φ⇒ JA1⊆A2K implies|=
∧
A2 ∧ φ⇒

∧
A1.

Proof. By the definition ofJA1⊆A2K and Lemma 2.

Lemma 4. Suppose that(g,A′, φ′, h) ∈ Γ and |= φ ⇒ Jσg∈AK
for someσ with dom(σ) = fvs(A′) ∪ fvs(h). It then follows
that |= JΓK (A) ∧

∧
σA′ ∧ φ ⇒ (σh ∨ ∀x̃.¬(σφ′)), where

{x̃} = fvs(φ′) \ dom(σ).

Proof. We perform a case analysis ong.

• Suppose thatg = •. By the definition ofJΓK (A), we obtain

|= JΓK (A) ⇒ ∀x̃′.
(∧

A′ ∧ φ′ ⇒ h
)
,

where{x̃′} = fvs(A′) ∪ fvs(φ′) ∪ fvs(h). Therefore, we get

|= JΓK (A) ⇒
∧
σA′ ∧ ∃x̃.(σφ′) ⇒ σh,

where{x̃} = fvs(φ′) \ dom(σ). It immediately follows that

|= JΓK (A) ∧
∧
σA′ ∧ φ⇒ (σh ∨ ∀x̃.¬(σφ′)).

• Suppose thatg = α ⊲ P (t̃). We assume thatφ is not equivalent
to ⊥ (otherwise, the lemma is trivial). By|= φ ⇒ Jσg∈AK,
there isPM (t̃′) ∈ A such thatα ∈ M and|= φ ⇒ σt̃ = t̃′.
By the definition ofJΓK (A), we obtain

|= JΓK (A) ⇒ ∀x̃′.
(∧

A′ ∧ φ′ ∧ t̃ = t̃′ ⇒ h
)
,

where{x̃′} = fvs(t̃)∪ fvs(A′)∪ fvs(φ′)∪ fvs(h). Therefore,
we get

|= JΓK (A) ⇒
∧
σA′ ∧ ∃x̃.(σφ′) ∧ σt̃ = t̃′ ⇒ σh,

where{x̃} = fvs(φ′) \ dom(σ). We thus obtain

|= JΓK (A) ∧
∧
σA′ ∧ φ⇒ (σh ∨ ∀x̃.¬(σφ′)).

Lemma 5. if k1 ≤ k2, then|= JΓ, AKk2 ⇒ JΓ, AKk1 holds.

Proof. By the definition ofJ•, •K•.

Lemma 6. We have

µFD |= JΓ, AKk ∧ P (t̃) ⇒
r
Γ, A ∪

{
P ∅
◦ (t̃)

}zk

.

Proof. By the definition ofJ•, •K•.

Lemma 7. If PM
α (t̃) ∈ A, then for eachi ∈ {1, . . . ,m},

µFD |= JΓ, AKk+1 ⇒
m∨

i=1

∃x̃i.

(
φi ∧

r
Γ, A ∪Ai

M∪{α}
◦

zk
)
,

whereD(P )(t̃) =
∨m

i=1 ∃x̃i. (φi ∧
∧
Ai).

Proof. By the definition ofJ•, •K•.

Lemma 8. Suppose thatPM
◦ (t̃) ∈ A andα does not occur inΓ

or A. We then obtain

|= JΓ, AKk ∧
r{

(α ⊲ P (t̃), A, φ, h)
}
,
{
PM
α (t̃)

}zk

⇒
r
Γ ∪

{
(α ⊲ P (t̃), A, φ, h)

}
, (A \ PM

◦ (t̃)) ∪
{
PM
α (t̃)

}zk

Proof. By the definition ofJ•, •K•, we get

|= JΓ, AKk ∧
q{

(α ⊲ P (t̃), A, φ, h)
}
, A

yk
∧

r
Γ,
{
PM
α (t̃)

}zk

∧
r{

(α ⊲ P (t̃), A, φ, h)
}
,
{
PM
α (t̃)

}zk

⇒
r
Γ ∪

{
(α ⊲ P (t̃), A, φ, h)

}
, (A \ PM

◦ (t̃)) ∪
{
PM
α (t̃)

}zk

Becauseα does not occur inΓ orA andPM
◦ (t̃) ∈ A, we obtain

|= JΓ, AKk ∧
r{

(α ⊲ P (t̃), A, φ, h)
}
,
{
PM
α (t̃)

}zk

⇒
r
Γ ∪

{
(α ⊲ P (t̃), A, φ, h)

}
, (A \ PM

◦ (t̃)) ∪
{
PM
α (t̃)

}zk

BecauseµFD is the least interpretation, we obtain:

Lemma 9. For all P ∈ pvs(D) andψ with fvs(ψ) ⊆ {x̃}, we get

µFD |= ∀x̃. ({P 7→ λx̃.ψ}D(P )(x̃) ⇒ ψ) ⇒ ∀x̃.(P (x̃) ⇒ ψ)

Lemma 10. For all P ∈ pvs(D) andϕ with fvs(ϕ) ⊆ {x̃}, we
get

µFD |= ∀x̃. ((∀p ≺ P. {P 7→ λx̃.ϕ} p(x̃)) ⇒ ϕ) ⇒ ∀x̃.(P (x̃) ⇒ ϕ),

wherep ≺ P is a predicate obtained by unfoldingP at least once.

Proof. By Lemma 9 withψ = ∀p � P. {P 7→ λx̃.ϕ} p(x̃).

Lemma 11. Suppose thatP ∈ pvs(D), PM
◦ (t̃) ∈ A, α does not

occur inA, and the following holds

µFD |=
r{

(α ⊲ P (t̃), A, φ, h)
}
,
{
PM
α (t̃)

}zk

∧
∧
A ∧ φ⇒ h

It then follows thatµFD |=
∧
A ∧ φ⇒ h.

Proof. By Lemma 10.

We now prove Lemma 1.

Proof of Lemma 1.By induction on the derivation ofD; Γ;A;φ ⊢
h.

• CaseINDUCT: We have
PM
◦ (t̃) ∈ A,

Γ′ = Γ ∪
{
(α ⊲ P (t̃), A, φ, h)

}
,

D; Γ′;A′;φ ⊢ h,
A′ = (A \ PM

◦ (t̃)) ∪
{
PM
α (t̃)

}
, and

α is fresh.
By I.H., there isk′ such that

µFD |=
q
Γ′, A′yk′

∧
∧
A′ ∧ φ⇒ h

By Lemma 8, we get

µFD |=
r{

(α ⊲ P (t̃), A, φ, h)
}
,
{
PM
α (t̃)

}zk′

∧
∧
A′ ∧ φ ∧ JΓ, AKk

′

⇒ h
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By the fact|= A⇔ A′ and the definition ofJ•, •K•, we get

µFD |=
r{

(α ⊲ P (t̃), A, φ ∧ JΓ, AKk
′

, h)
}
,
{
PM
α (t̃)

}zk′

∧
∧
A ∧ φ ∧ JΓ, AKk

′

⇒ h

Therefore, by Lemma 11, fork = k′, we get

µFD |= JΓ, AKk ∧
∧
A ∧ φ ⇒ h

• CaseUNFOLD: For eachi ∈ {1, . . . , m}, we have
PM
α (t̃) ∈ A,

D(P )(t̃) =
∨m

i=1 ∃x̃i. (φi ∧
∧
Ai), and

D; Γ;A ∪Ai
M∪{α}
◦ ;φ ∧ φi ⊢ h.

By I.H., for eachi ∈ {1, . . . ,m}, there iski such that

µFD |=
r
Γ, A ∪ Ai

M∪{α}
◦

zki

∧
∧(

A ∪Ai
M∪{α}
◦

)
∧φ∧φi ⇒ h

It then follows immediately that

µFD |=
∧
A ∧ φ∧

m∨

i=1

(
φi ∧

r
Γ, A ∪Ai

M∪{α}
◦

zki

∧
∧
Ai

M∪{α}
◦

)
⇒ h

By Lemma 7, we get

µFD |= JΓ, AKk
′+1 ⇒

m∨

i=1

∃x̃i.

(
φi ∧

r
Γ, A ∪Ai

M∪{α}
◦

zk′
)
,

wherek′ = max {ki}
m

i=1. Therefore, by Lemma 5, we obtain

µFD |= JΓ, AKk
′+1 ∧

∧
A ∧ φ ∧

(
m∨

i=1

(
φi ∧

∧
Ai

))
⇒ h

From the factsµFD |= P (t̃) ⇔
∨m

i=1 ∃x̃i. (φi ∧
∧
Ai) and

PM
α (t̃) ∈ A, for k = k′ + 1, we get

µFD |= JΓ, AKk ∧
∧
A ∧ φ⇒ h.

• CaseAPPLY⊥: We have
(g,A′, φ′,⊥) ∈ Γ,
dom(σ) = fvs(A′),
|= φ⇒ Jσg∈AK,
|= φ⇒ JσA′⊆AK,
{x̃} = fvs(φ′) \ dom(σ), and
D; Γ;A;φ ∧ ∀x̃.¬(σφ′) ⊢ h.

By (g,A′, φ′,⊥) ∈ Γ, |= φ⇒ Jσg∈AK, and Lemmas 4 and 5,
for somek1, we get

|= JΓ, AKk1 ∧
∧
σA′ ∧ φ⇒ ∀x̃.¬(σφ′)

By |= φ⇒ JσA′⊆AK and Lemma 3, we obtain

|= JΓ, AKk1 ∧
∧
A ∧ φ⇒ ∀x̃.¬(σφ′)

By I.H., there isk2 such that

µFD |= JΓ, AKk2 ∧
∧
A ∧ φ ∧ ∀x̃.¬(σφ′) ⇒ h

Therefore, fork = max(k1, k2), by Lemma 5, we obtain

µFD |= JΓ, AKk ∧
∧
A ∧ φ⇒ h.

• CaseAPPLYP : We have
(g,A′, φ′, P (t̃)) ∈ Γ,
dom(σ) = fvs(A′) ∪ fvs(t̃),
|= φ⇒ Jσg∈AK,
|= φ⇒ ∃x̃.(σφ′),

|= φ⇒ JσA′⊆AK,
{x̃} = fvs(φ′) \ dom(σ),

D; Γ;A ∪
{
P ∅
◦ (σt̃)

}
;φ ⊢ h

By (g,A′, φ′, P (t̃)) ∈ Γ, |= φ ⇒ Jσg∈AK, and Lemmas 4
and 5, for somek1, we get

|= JΓ, AKk1 ∧
∧
σA′ ∧ φ ∧ ∃x̃.(σφ′) ⇒ P (σt̃)

Then, by|= φ⇒ JσA′⊆AK, Lemma 3, and|= φ⇒ ∃x̃.(σφ′),
we get

|= JΓ, AKk1 ∧
∧
A ∧ φ⇒ P (σt̃)

By I.H., there isk2 such that

µFD |=
r
Γ, A ∪

{
P ∅
◦ (σt̃)

}zk2

∧
∧(

A ∪
{
P ∅
◦ (σt̃)

})
∧φ⇒ h

By Lemma 6, we obtain

µFD |= JΓ, AKk2 ∧ P (σt̃) ⇒
r
Γ, A ∪

{
P ∅
◦ (σt̃)

}zk2

It then follows that

µFD |= JΓ, AKk2 ∧
∧(

A ∪
{
P ∅
◦ (σt̃)

})
∧ φ⇒ h

Therefore, fork = max(k1, k2), by Lemma 5, we get

µFD |= JΓ, AKk ∧
∧
A ∧ φ⇒ h

• CaseFOLD: We have(
P (t̃) ⇐ φ′ ∧

∧
A′
)
∈ D,

dom(σ) = fvs(A′) ∪ fvs(t̃),
|= φ⇒ ∃x̃.(σφ′),
|= φ⇒ JσA′⊆AK,
{x̃} = fvs(φ′) \ dom(σ),

D; Γ;A ∪
{
P ∅
◦ (σt̃)

}
;φ ⊢ h

By P (t̃) ⇐ φ′ ∧
∧
A′ ∈ D, dom(σ) = fvs(A′) ∪ fvs(t̃), and

{x̃} = fvs(φ′) \ dom(σ), we obtain

µFD |=
∧
σA′ ∧ ∃x̃.(σφ′) ⇒ P (σt̃)

By |= φ ⇒ JσA′⊆AK, Lemma 3, and|= φ ⇒ ∃x̃.(σφ′), we
get

µFD |=
∧
A ∧ φ⇒ P (σt̃)

By I.H., there isk′ such that

µFD |=
r
Γ, A ∪

{
P ∅
◦ (σt̃)

}zk′

∧
∧(

A ∪
{
P ∅
◦ (σt̃)

})
∧φ⇒ h

By Lemma 6, we obtain

µFD |= JΓ, AKk
′

∧ P (σt̃) ⇒
r
Γ, A ∪

{
P ∅
◦ (σt̃)

}zk′

It then follows that

µFD |= JΓ, AKk
′

∧
∧(

A ∪
{
P ∅
◦ (σt̃)

})
∧ φ⇒ h

Therefore, fork = k′, we obtain

µFD |= JΓ, AKk ∧
∧
A ∧ φ⇒ h

• CaseVALID⊥: We haveh = ⊥ and |= φ ⇒ ⊥. Therefore,
µFD |= JΓ, AKk ∧

∧
A ∧ φ⇒ h holds for anyk.

• CaseVALIDP : We haveh = P (t̃) and |= φ ⇒
q
P (t̃)∈A

y
.

By lemma 2, we get|=
∧
A ∧ φ ⇒ P (t̃). It then follows that

µFD |= JΓ, AKk ∧
∧
A ∧ φ⇒ P (t̃) for anyk.
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