Skip to main content

A Study of Model-Order Reduction Techniques for Verification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10381))

Abstract

As formal verification techniques for cyber-physical systems encounter large plant models, techniques for simplifying these models into smaller approximate models are gaining increasing popularity. Model-order reduction techniques take large ordinary differential equation models and simplify them to yield models that are potentially much smaller in size. These approaches typically discover a suitable projection of the state space into a smaller subspace, such that by projecting the dynamics in this subspace, an accurate approximation can be obtained for a given initial set and time horizon of interest. In this paper, we present a study of model-order reduction techniques for verification with non-rigorous error bounds. We design experiments based on the proper orthogonal decomposition technique for finding reduced order models. We find that reduced order models are particularly effective and precise whenever a suitable reduced order model can be found in the first place. We attempt to characterize these models and provide future directions for reduced order modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of CDC 2008, pp. 4042–4048. IEEE (2008)

    Google Scholar 

  2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Inf. 43(7), 451–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reachability for linear systems. In: HSCC, pp. 173–178. ACM (2017)

    Google Scholar 

  4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4, 361–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: Proceedings of RTSS 2012, pp. 183–192. IEEE Computer Society (2012)

    Google Scholar 

  7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_18

    Chapter  Google Scholar 

  8. Chen, Y., White, J., Macromodeling, T.: A quadratic method for nonlinear model order reduction, pp. 477–480 (2000)

    Google Scholar 

  9. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of CDC 1998, vol. 2, pp. 2089–2094 (1998)

    Google Scholar 

  10. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  11. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, Z., Krogh, B.: Reachability analysis of hybrid control systems using reduced-order models. In: Proceedings of the 2004 American Control Conference, vol. 2, pp. 1183–1189, June 2004

    Google Scholar 

  13. Han, Z., Krogh, B.H.: Reachability analysis of large-scale affine systems using low-dimensional polytopes. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 287–301. Springer, Heidelberg (2006). doi:10.1007/11730637_23

    Chapter  Google Scholar 

  14. Homescu, C., Petzold, L.R., Serban, R.: Error estimation for reduced-order models of dynamical systems. SIAM J. Numer. Anal. 43, 2005 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002). doi:10.1007/b98835

    MATH  Google Scholar 

  16. Lall, S., Marsden, J.E.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12, 519–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Pinnau, R.: Model reduction via proper orthogonal decomposition. In: Schilders, W.H.A., van der Vorst, H.A., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications, pp. 95–109. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78841-6_5

    Chapter  Google Scholar 

  19. Rewieski, M., White, J.: Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations. Linear Algebra Appl. 415(2), 426–454 (2006)

    Article  MathSciNet  Google Scholar 

  20. Salimbahrami, B., Lohmann, B.: Order reduction of large scale second-order systems using Krylov subspace methods. Linear Algebra Appl. 415(2), 385–405 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stadlmayr, D., Witteveen, W., Steiner, W.: Reduction of physical and constraint degrees-of-freedom of redundant formulated multibody systems. J. Comput. Nonlinear Dyn. 11, 031010–031010-9 (2015)

    Article  Google Scholar 

  22. Tran, H.D., Nguyen, L.V., Xiang, W., Johnson, T.T.: Order-reduction abstractions for safety verification of high-dimensional linear systems. Discrete Event Dyn. Syst. 27(2), 1–19 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chou, Y., Chen, X., Sankaranarayanan, S. (2017). A Study of Model-Order Reduction Techniques for Verification. In: Abate, A., Boldo, S. (eds) Numerical Software Verification. NSV 2017. Lecture Notes in Computer Science(), vol 10381. Springer, Cham. https://doi.org/10.1007/978-3-319-63501-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63501-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63500-2

  • Online ISBN: 978-3-319-63501-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics