
Chapter 12

Parallel Model Checking Algorithms for

Linear-Time Temporal Logic

Jiri Barnat, Vincent Bloemen, Alexandre Duret-Lutz, Alfons Laarman, Laure
Petrucci, Jaco van de Pol, and Etienne Renault

Abstract Model checking is a fully automated, formal method for demonstrating
absence of bugs in reactive systems. Here, bugs are violations of properties in
Linear-time Temporal Logic (LTL). A fundamental challenge to its application is the
exponential explosion in the number of system states. The current chapter discusses
the use of parallelism in order to overcome this challenge. We reiterate the textbook
automata-theoretic approach, which reduces the model checking problem to the
graph problem of finding cycles. We discuss several parallel algorithms that attack
this problem in various ways, each with different characteristics: Depth-first search
(DFS) based algorithms rely on heuristics for good parallelization, but exhibit a
low complexity and good on-the-fly behavior. Breadth-first search (BFS) based
approaches, on the other hand, offer good parallel scalability and support distributed
parallelism. In addition, we present various simpler model checking tasks, which
still solve a large and important subset of the LTL model checking problem, and
show how these can be exploited to yield more efficient algorithms. In particular,

Jiri Barnat
Masaryk University, Brno, Czech Republic, e-mail: xbarnat@fi.muni.cz

Vincent Bloemen
University of Twente, Enschede, The Netherlands, e-mail: v.bloemen@utwente.nl

Alexandre Duret-Lutz
LRDE, Epita, Paris, France, e-mail: adl@lrde.epita.fr

Alfons Laarman
Leiden University, Leiden, The Netherlands, e-mail: a.w.laarman@liacs.leidenuniv.nl

Laure Petrucci
LIPN, CNRS, Paris, France, e-mail: Laure.Petrucci@lipn.univ-paris13.fr

Jaco van de Pol
University of Twente, Enschede, The Netherlands, e-mail: j.c.vandepol@utwente.nl

Etienne Renault
LRDE, Epita, Paris, France, e-mail: renault@lrde.epita.fr

457© Springer International Publishing AG, part of Springer Nature 2018
Y. Hamadi und L. Sais (eds.), Handbook of Parallel Constraint Reasoning,
https://doi.org/10.1007/978-3-319-63516-3_12

xbarnat@fi.muni.cz
v.bloemen@utwente.nl
adl@lrde.epita.fr
a.w.laarman@liacs.leidenuniv.nl
Laure.Petrucci@lipn.univ-paris13.fr
j.c.vandepol@utwente.nl
renault@lrde.epita.fr
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63516-3_12&domain=pdf

458 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

we provide simplified DFS-based search algorithms and show that the BFS-based
algorithms exhibit optimal runtimes in certain cases.

12.1 Introduction

This chapter discusses parallel algorithms for model checking properties of Linear-
time Temporal Logic (LTL). Model checking [30, 8] is a verification technique to
establish the correctness of hardware and software systems. In contrast to theorem
proving, model checking is a fully automated procedure, invented by the Turing
Award winners Clarke, Emerson, and Sifakis (2007). In contrast to testing, it is a
complete and exhaustive method. Nowadays, along with testing and static analysis,
model checking is an indispensable industrial tool for eliminating bugs and increasing
confidence in hardware designs (e.g., at Intel [45] and IBM [15]) and software
products (e.g., at Microsoft [9]). For an example case study, refer to Chapter 16,
An Application of Parallel Satisfiability Solving to the Verification of Complex
Embedded Systems.

Formally, model checking solves the problem: “Does model M satisfy property P?”
(M � P). Here the model M is a finite abstraction of a hardware or software system,
provided in the form of a transition system. The paths in the graph of model M
consist of infinite sequences of states connected by state transitions. Paths correspond
to possible runs of the system. The property P is specified in some temporal logic.
In this chapter, we restrict the discussion to Linear-time Temporal Logic (LTL). An
LTL property denotes a set of paths, so P can be viewed as a specification of the
correct runs of the system. Section 12.2 will formalize the syntax and semantics of
LTL and identify some important fragments. For this introduction, it is sufficient to
view model checking as a graph search problem, where the goal is to find a bad state
or, more generally, a cycle representing an infinite path violating the property.

The main obstacle to model checking is the size of the transition system, often
referred to as “the state space explosion” [96]. This graph grows exponentially in
the number of components and variables in the specification, mainly due to parallel
interleaving in concurrent systems, and the Cartesian product of data domains. Many
sequential algorithms exist to address the state space explosion, reducing the state
space by exploiting symmetries [29, 41, 20, 61], restricting the interleavings to be
checked [95, 63, 54, 1], or abstracting the data domains [27, 24]. Another direction is
to represent state spaces symbolically, applying powerful techniques such as Binary
Decision Diagrams (BDD) [23, 77] or satisfiability (SAT) [28, 16, 78]. Parallel
satisfiability is discussed in Chapter 1, Parallel Satisfiability, and parallel decision
diagrams in Chapter 13, Multi-core Decision Diagrams. Although these methods
greatly reduce the memory and time usage of model checking, the ever-growing
complexity of hardware and software designs has meant that, so far, the practical
application of model checking is still hindered by memory and time resources.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 459

Parallel Model Checking Algorithms — Pragmatics

This chapter focuses on recent advances in utilizing more hardware resources to solve
the model checking problem. In distributed model checking, the memory problem
is alleviated by distributing the state space over the memory of many computers in
some network (cluster, cloud). Recently, several new approaches to parallel model
checking emerged using multiple processors in a shared-memory machine to speed
up model checking computations. Both approaches are highly non-trivial, since graph
(search) algorithms must be redesigned to be fit for parallel computation. Next, we
consider parallel graph algorithms from pragmatic and theoretical points of view.

From a pragmatic point of view, obtaining good parallel speedups for graph
problems is notoriously hard [75, 73]. This is mainly caused by the irregularity
of graphs. The efficiency of parallel programs often depends on exploiting locality,
which can be predicted for regular data structures like matrices. However, state spaces
are irregular sparse graphs, whose shape highly depends on the model at hand. For
distributed algorithms, the consequence is that traversing a transition from a source
state in the graph often requires communication with the machine where the target is
stored, leading to a dramatic communication overhead. For multi-core computing,
the threads are continually looking up the location of target states in main memory.
Since main memory (and the memory bus) are a shared resource, memory-intensive
algorithms are hard to speed up on multi-core machines. As a consequence, practical
implementations pay a lot of attention to low-level details, such as local caching,
evading the need for locks using atomic instructions such as compare-and-swap, and
latency hiding by asynchronous communication. This chapter does not focus on these
implementation details, although they are essential to demonstrate that the treated
algorithms achieve speedup in practice.

Instead, we focus on the algorithmic aspects. We review the basic sequential
algorithms for LTL model checking in Section 12.3. These subproblems can be solved
by linear-time algorithms. However, today the only known linear time algorithms
heavily depend on the Depth-First Search (DFS) strategy, which (as we will explain
below) is hard to parallelize. This holds for LTL algorithms based on Nested Depth-
First Search as well as for those based on the analysis of the Strongly Connected
Components.

Another reason for our general preference for DFS lies in the nature of search.
If we use the algorithm to search for bugs (bug hunting), we can terminate as soon
as the first bug has been found. It would be a waste of resources if we were to first
compute the whole state space and then search only a small part to find the bug. The
DFS-based algorithms are generally well-suited for on-the-fly model checking, where
computing the state space and checking the properties are intertwined. This carries
over to parallel search. It is well known that parallel random search can achieve
superlinear speedups when the goal states are uniformly distributed [81, 72]. In case
of full verification of programs, this consideration is less important. We will present
parallel DFS-based algorithms in Section 12.4.

460 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Parallel Model Checking Algorithms — Theoretical Considerations

Finally, what does theory actually say? A well-known result [82] is that DFS is
inherently sequential. To understand this, we recall the class NC (Nick’s Class) of
problems that admit scalable parallel algorithms [56]: A problem is in NC if it can be
solved in poly-logarithmic time (logn)o(1) using a polynomial amount of hardware,
i.e., no(1) processors. Let P be the class of problems that admit a polynomial-time
algorithm. A problem is P-complete , if all problems in P can be reduced to it by
an NC algorithm. The canonical P-complete problem is CVP, the circuit valuation
problem (given a circuit, and its Boolean input values, determine the value of its
output). Although formally open, it is widely believed that NC does not contain
P-complete problems, so problems in P are “inherently sequential.” Note that if NC
contained a single P-complete problem, then all polynomial problems would be
parallelizable. Reif [82] actually showed that lexicographic DFS is P-complete by a
direct reduction to the CVP. Hence, given a graph and a fixed ordering of transitions
from each state, there is probably no parallel algorithm to even check whether node
x will be visited before node y in the DFS post-order, observing the fixed transition
ordering.

The following intellectual positions are possible in relation to this fact from theory:
First, one can decide to ignore this theoretical restriction. This is the position in
Section 12.4. We introduce various parallel random DFS algorithms for which we
have shown practical speedup, even though they are not poly-logarithmic. The main
motivation is that, in practice, the number of processors is much smaller than the
size of the graph. A practical speedup for graphs from 103 to 108 nodes does not
contradict the impossibility result in the limit case of (108)k processors.

The second position is to take the theoretical result seriously, and avoid DFS
algorithms. Parallel BFS (breadth-first search), and hence SCC decomposition, is in
NC [51], which can be shown by computing transitive closure with matrix multiplica-
tion. Several BFS-based model checking algorithms and SCC decomposition methods
have been designed. Although their worst-case time complexity is strictly more than
linear, they behave well on practical instances, and are even linear for many model
checking fragments. Moreover, since BFS-based algorithms can be parallelized, with
sufficiently many processors this approach should scale (even though the increased
work-complexity doesn’t admit a provably efficient parallel solution). Algorithms
OWCTY and MAP in Section 12.5 are an illustration of BFS-based algorithms in this
category.

The third possibility is to circumvent the theoretical results. Note that it is techni-
cally still possible that non-lexicographic DFS (without fixing the ordering of the
transitions in advance) is in NC. Actually, it has been proved that free DFS is in
NC indeed for planar graphs [57], and for general graphs the problem is known to
be in Random NC [3]. We do not claim complexity-theoretic results in this chapter.
Our random parallel free DFS algorithms will not provide a single global post-order
and, in the worst case, they don’t run in parallel logarithmic time. However, we have
proved that they provide sufficient ordering to solve the model checking problem,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 461

and we demonstrated have good speedups for practical problems. Eventually, this
approach might shed some light on this intriguing 30-year-old open problem.

12.2 Preliminaries: LTL Model Checking and Automata

The current section explains the theoretical foundation of LTL model checking. The
formal approach taken here is to interpret both the system and its specification as
an automaton. We will show that this automaton is exponential in the size of both
the system and the specification and develop the constructs required by the LTL
model checking algorithms in the subsequent section to efficiently handle such large
automata.

12.2.1 Automata-Theoretic Model Checking

Model checkers are tools that take two inputs: some model M of a system, and some
specification ϕ that should be satisfied by all possible behaviors of M. For instance
if M is a model of a road intersection with traffic lights and sensors, the property ϕ
could specify that whenever a car is sensed the light of its lane should eventually
become green. Note that such a property is not necessarily about the state of the
system: in this example it is about its possible behaviors, i.e., the evolution of its
state. Furthermore, the behaviors of this system are infinite.

Model checking [97] decides whether some model M satisfies some specification
ϕ (which we denote M |= ϕ). In the automata-theoretic approach, the model M is
first converted into an automaton KM whose language L (KM) represents the set of
all (infinite) behaviors of M. The negation of the formula ϕ is converted into an
automaton A¬ϕ whose language L (A¬ϕ) captures the forbidden behaviors. With
these objects, testing whether M satisfies ϕ amounts to checking the emptiness of the
product of the two automata: if L (KM ⊗A¬ϕ) = /0, then M |= ϕ . If L (KM ⊗A¬ϕ)
is found not to be empty, it means there exists a counterexample: a behavior of M
that invalidates ϕ .

12.2.2 Sequences and ω-Words

We shall use B= {⊥,�} to denote the set of Boolean values, ω = {0,1,2, . . .} for
the set of non-negative integers, and [n] = {0,1,2, . . . ,n−1} the first n of those. By
convention [0] = /0.

Let AP be a finite set of (atomic) propositions. An assignment is a function
x : AP → B that evaluates each proposition. We use BAP to denote the set of all
assignments of AP.

462 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

An infinite sequence over some set Σ is a function σ : ω → Σ that assigns an
element of Σ to each possible index. We use Σ ω to denote the set of infinite sequences
over Σ .

A finite sequence of length n over Σ is a function σ : [n]→ Σ . We use Σ ∗ for the
set of all finite sequences of any length n ≥ 0, and Σ+ for the set of finite sequences
of length n > 0.

To define a particular sequence, we denote it by the concatenation of its elements
xi ∈ Σ as σ = x0;x1;x2; . . ., meaning that σ(i) = xi.

For some infinite sequence σ ∈ Σ ω , we use σ i to denote the sequence obtained
from σ by removing its first i ≥ 0 elements; i.e., σ i(j) = σ(i+ j) for all j. We
denote by Inf(σ) ⊆ Σ the set of elements that appear infinitely often in σ , i.e.,
Inf(σ) = {s ∈ Σ | ∀i ∈ ω, ∃ j > i, σ(j) = s}.

In this chapter AP is assumed to be fixed, and infinite sequences of assignments,
i.e., elements of (BAP)ω , are called ω-words. Finally, a language is a (possibly
infinite) set of ω-words.

12.2.3 Linear-Time Temporal Logic

In model checking, ω-words are used to represent the different behaviors of the
system to check.

Linear-time Temporal Logic (LTL) formulas are typically used to specify the
property to verify on the system by specifying which ω-words should be accepted or
rejected. LTL formulas are constructed according to the following grammar, where
a ∈ AP:

ϕ ::=�|⊥|a |¬ϕ |ϕ ∨ϕ |ϕ ∧ϕ |ϕ Uϕ |ϕ Rϕ |Fϕ |Gϕ |Xϕ

Given an ω-word σ ∈ (BAP)ω and an LTL formula ϕ , we say that σ satisfies ϕ
(denoted σ |= ϕ) according to the following semantics. For any a ∈ AP and any LTL
formulas ϕ1 and ϕ2,

σ |=�
σ �|=⊥
σ |= a iff σ(0)(a) =�
σ |= ¬ϕ1 iff σ �|= ϕ1
σ |= ϕ1∨ϕ2 iff (σ |= ϕ1)∨ (σ |= ϕ2)
σ |= ϕ1∧ϕ2 iff (σ |= ϕ1)∧ (σ |= ϕ2)
σ |= ϕ1Uϕ2 iff ∃i ≥ 0,(σ i |= ϕ2)∧ (∀ j < i, σ j |= ϕ1)
σ |= ϕ1Rϕ2 iff ∀i ≥ 0,(σ i |= ϕ2)∨ (∃ j < i, σ j |= ϕ1)
σ |= Fϕ1 iff ∃i ≥ 0, σ i |= ϕ1
σ |= Gϕ1 iff ∀i ≥ 0, σ i |= ϕ1
σ |= Xϕ1 iff σ1 |= ϕ1

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 463

The language of a formula ϕ is the set of words that satisfy it: L (ϕ) = {σ ∈
(BAP)ω | σ |= ϕ}. Two LTL formulas are equivalent iff they have the same language:
ϕ1 ≡ ϕ2 ⇐⇒ L (ϕ1) = L (ϕ2). For example one can see that ¬FGa ≡ GF¬a.

The size of an LTL formula ϕ , denoted |ϕ|, is the number of symbols in ϕ . For
example |¬FGa|= 4.

12.2.4 Kripke Structures

A Kripke structure is an automaton with states labeled by assignments.

Definition 1 (Kripke Structure). AKripke structure is a tuple K =(Q, ι ,δ , �)where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×Q is a set of transitions,
• � : Q →BAP is a function labeling each state with an assignment.

The runs of K, denoted Runs(K), are the infinite sequences of states ρ ∈ Qω that
start with ι and follow transitions in δ :

Runs(K) = {ρ ∈ Qω | ρ(0) = ι and ∀i ≥ 0, (ρ(i),ρ(i+1)) ∈ δ}

If we naturally extend the labeling function � to runs, then each run ρ is associated
with an ω-word �(ρ) defined by �(ρ)(i) = �(ρ(i)). The language L (K) of the
Kripke structure is the set of words associated with all its runs: L (K) = {�(ρ) | ρ ∈
Runs(K)}.
Definition 2 (Deadlock-Free Kripke Structure). A Kripke structure is said to be
deadlock-free if all its states have at least one successor. In other words K =(Q, ι ,δ , �)
is deadlock-free if ∀s ∈ Q, ∃d ∈ Q, (s,d) ∈ δ .

12.2.5 Büchi Automata

Büchi automata can represent ω-regular languages. We shall define different flavors
of Büchi automata that correspond to combinations of the following two options:

• transition-based or state-based acceptance
• classical Büchi acceptance, or generalized Büchi acceptance.

While all the resulting automata have the same expressive power, they can have
different degrees of conciseness, and may require different emptiness-check pro-
cedures. Hence from the model checking point of view, these choices can affect
memory consumption and emptiness-check complexity.

464 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Definition 3 (TGBA). A Transition-based Generalized Büchi Automaton is a tuple
A = (Q, ι ,δ ,n,M) where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×BAP×Q is a set of transitions,
• n is an integer specifying a number of accepting marks,
• M : δ → 2[n] is a marking function that specifies a subset of marks associated

with each transition.

For a transition t ∈ δ we write ts for its source, t� for its label, and td for its
destination: t = (ts, t�, td).

The runs of A are infinite sequences of consecutive transitions:

Runs(A) = {ρ ∈ δ ω | ρ(0)s = ι and ∀i ≥ 0, ρ(i)d = ρ(i+1)s}

The accepting runs of A are those that have, for each acceptance mark, infinitely
many transitions with that mark:

Acc(A) =
{

ρ ∈ Runs(A)
∣∣∣ [n] = ⋃

t∈Inf(ρ)
M(t)

}

Let us also define the word �(ρ) associated with a run ρ by �(ρ)(i) = ρ(i)�. Now the
language L (A) of the automaton A is the set of words associated with its accepting
runs:

L (A) = {�(ρ) | ρ ∈ Acc(A)}
For convenience, we will also overload the δ notation and write δ (q) for the set

of outgoing transitions of any state q ∈ Q: δ (q) = {(s,x,d) ∈ δ | s = q}.
Definition 4 (SGBA). A State-based Generalized Büchi Automaton is also a tuple
A = (Q, ι ,δ ,n,M), with identical definitions for Q, ι , δ , and n, but this time the
marking function M associates marks with states: M : Q → 2[n]. The runs are defined
similarly. The accepting runs are those that have infinitely many states marked with
each acceptance mark:

Acc(A) =
{

ρ ∈ Runs(A)
∣∣∣ [n] = ⋃

t∈Inf(ρ)
M(ts)

}

and then the automaton’s language is still defined as L (A) = {�(ρ) | ρ ∈ Acc(A)}.
Definition 5 (SBA and TBA). State-based and Transition-based Büchi Automata
are particular cases of the above definitions where n = 1.

Figure 12.1 shows four automata with different acceptance conditions, all recog-
nizing the language of the LTL formula GFa ∧GFb: a and b should each hold
infinitely often, but not necessary at the same time. As usual, multiple transi-
tions of the form (s,x,d) and (s,y,d) are pictured as a single edge s dx,y .

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 465

2

0

1
ab

ab,ab

ab

ab,ab

ab

ab

ab,ab

ab,ab 0

(a) SBA

1

0

ab,ab

ab,ab

ab,ab

ab,ab

1

0

(b) SGBA

1

0

ab,ab

0ab,ab

ab,ab

ab,ab

(c) TBA

0
ab

0
1

ab
0

ab
1

ab

(d) TGBA

Fig. 12.1: Minimal deterministic automata recognizing L (GFa∧GFb). The SGBA
and TGBA use n = 2 accepting marks, while the SBA and TBA have n = 1 by
definition

Marked states and transitions are denoted using colored bullets such as 0 or 1 .
So the fact that M

(
(s,x,d)

)
= {0,1} is pictured as s dx

0 1 . Looking at the
automaton of Figure 12.1(b), the run ρ1 = (0,ab,1);(1,ab,1);(1,ab,0);(0,ab,1);
(1,ab,1);(1,ab,0); . . . is an accepting run for the word ab;ab;ab;ab;ab;ab; . . .
as it visits 0 and 1 infinitely often. The run ρ2 = (0,ab,1);(1,ab,1);(1,ab,1);
(1,ab,1); . . . is not accepting because it only visits 1 infinitely often. By compar-
ing the two definitions of Acc, it is clear that an SGBA A = (Q, ι ,δ ,n,M) can
be converted into a language-equivalent TGBA B = (Q, ι ,δ ,n,M′) by defining
M′(t) = M(ts). This amounts to pushing the acceptance marks onto the outgoing
transitions, as in Figure 12.2.

1

0

ab,ab
1

ab,ab 1

ab,ab
0

ab,ab0

Fig. 12.2: How to
interpret the SGBA
of Fig. 12.1(b) as a
TGBA

The automata of Figure 12.1 are minimal in the sense
that there does not exist language-equivalent automata with
the same acceptance condition and fewer states. This figure
is therefore an example showing how TGBAs can be more
concise than the other types of automata presented, but in
Section 12.2.8 we will also discuss some classes of properties
for which using SBAs is sufficient, i.e., no reduction can be
obtained by using generalized or transition-based acceptance.

Property 1. Any TGBA (Q, ι ,δ ,n,M) can be “degeneralized”
into a language-equivalent SBA with at most (n + 1) |Q|
states, or into a language-equivalent TBA with at most n · |Q|
states.

There exist several variants of degeneralization constructions, discussed for instance
by Gastin and Oddoux [49], or Giannakopoulou and Lerda [53], and improved by
Babiak et al. [7]. The automata of Figures 12.1(a) and (c) are typically what one
could obtain by degeneralizing the TGBA of Figure 12.1(d).

Property 2. For any LTL formula ϕ , there exists a language-equivalent TGBA with
O(2|ϕ|) states and n = O(|ϕ|) acceptance marks.

466 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Numerous translations from LTL to TGBAs exist, and are implemented in tools
such as ltl2ba [49], ltl3ba [6], or Spot’s ltl2tgba [37]. Now, combining
Properties 1 and 2, we get

Property 3. For any LTL formula ϕ , there exists a language-equivalent SBA with
O(|ϕ| ·2|ϕ|) states.

These upper bounds are rarely reached in practice. For instance Dwyer et al. [39]
define 55 LTL formulas1 that represent 11 intents (Absence, Response, Precedence,
etc) combined with five different scopes (Before, Between, After, etc). These 55
formulas have an average size of 16.75 (maximum 40), but the SBAs produced
by ltl2tgba (from Spot 2.1) have on average only 3.945 states (maximum 13).
Using TGBAs instead of SBAs is only marginally better: ltl2tgba produces
TGBAs with an average of 3.782 states (maximum 10); we will discuss this point in
Section 12.2.8.

These small automata, representing the negation of a property we want to check,
will be combined with a (potentially very large) Kripke structure representing the
state space of the model to verify.

Property 4 (Synchronized product). Let K = (Q1, ι1,δ1, �) be a Kripke structure,
and A = (Q2, ι2,δ2,n,M) be a TGBA. Then the TGBA K ⊗A = (Q′, ι ′,δ ′,n,M′)
where

• Q′ = Q1×Q2,
• ι ′ = (ι1, ι2),
• ((s1,s2),x,(d1,d2)) ∈ δ ′ ⇐⇒ (s1,d1) ∈ δ1∧ �(s1) = x∧ (s2,x,d2) ∈ δ2,
• M′(((s1,s2),x,(d1,d2)))= M

(
(s2,x,d2)

)
,

is such that L (K ⊗A) = L (K)∩L (A).

The product between a Kripke structure and a SGBA can be defined similarly,
with M′((s1,s2))= M(s2) as the only change.

Clearly |Q′|= |Q1| · |Q2|. However the states reachable from ι ′ can be a subset of
that, and only that subset needs to be explored to decide whether L (K⊗A) is empty.

12.2.6 The Emptiness-Check Problem

The emptiness-check problem can be presented as follows:

Given an automaton B = (Q, ι ,δ ,n,M), decide whether L (B) = /0.

The automaton B could be any type of automaton presented previously. We will
focus on TGBA, the more compact ones, as well as SBA, more frequently used
because of their simple structure.

1 http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.
shtml

http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 467

Property 5. If L (B) �= /0, then there exists a lasso-shaped accepting run, i.e., a run
ρ ∈Acc(B) for which there exist i ≥ 0 and j ≥ i such that ρ(i) = ρ(j). (Figure 12.3.)

To show the existence of such a run, consider an automaton B (a TGBA or SGBA)
and assume that L (B) �= /0. Then by definition of L (B), there exists an accepting
run π ∈ Acc(B), but that run is not necessarily lasso-shaped. The set Inf(π) contains
transitions of B that (1) are visited infinitely often by π , (2) cover all acceptance
marks (since π is accepting), (3) are all reachable from one another, and (4) are
reachable from the initial state. Then a lasso-shaped run ρ can be constructed by
building a prefix connecting the initial state of B to any transition t ∈ Inf(π), and then
building a cycle around t that visits all transitions of Inf(π). Note that for the lasso-
shaped run ρ , the set Inf(ρ) corresponds exactly to the transitions that appear on the
cycle. We therefore have Inf(ρ)⊇ Inf(π), which entails that ρ is also accepting.

Definition 6 (Accepting cycle). Given a TGBA (Q, ι ,δ ,n,M), and a finite sequence
of transitions c ∈ δ+ of length k. We say that c is a cycle if its transitions actually
form a cycle: ∀i < k, c(i)d = c(i+1 mod k)s.

We say that a cycle c is an elementary cycle if additionally |{c(i)s | i < k}|= k,
i.e., if c goes through k different states.

We say that a cycle c is an accepting cycle if its transitions visit each acceptance
mark at least once: ∀i ∈ [n],∃ j < k, i ∈ M(c(j)). Accepting cycles for SGBA are
defined likewise, replacing M(c(i)) by M(c(i)s).

Note that the cycle part of any lasso-shaped accepting run is an accepting cycle.
Combining this with Property 5 allows us to reduce the emptiness-check problem to
the search for an accepting cycle.

Property 6. For an automaton B, we have L (B) �= /0 if and only if B contains an
accepting cycle reachable from the initial state.

However the number of cycles can be infinite, so it is useful to consider the simpler
case where only elementary cycles need to be checked for acceptance:

Property 7. For an automaton B with n ≤ 1 acceptance marks, we have L (B) �= /0 if
and only if B contains an accepting elementary cycle reachable from the initial state.

The case with n = 0 is obvious, since any cycle would be accepting, and if a cycle
exists, an elementary cycle also exists. For n= 1, any accepting cycle c contains some

.
ρ(0) ρ(1) ρ(i−1) ρ(i) ρ(i+1) ρ(j−2)

ρ(j−1)

prefix cycle

ι

Fig. 12.3: A lasso-shaped run can be built from two finite sequences of transitions: a
(possibly empty) prefix and a (non-empty) cycle

468 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

transition c(i) such that M(c(i)) = 1, and there necessarily exists some elementary
accepting cycle around this transition. Note that this does not hold for n ≥ 2, as in
the example of Figure 12.4 where the only two elementary cycles are rejecting, but
they can be combined to form an infinite number of accepting cycles.

a1a 0

Fig. 12.4: This TGBA
has an infinite num-
ber of accepting cy-
cles; none are elemen-
tary

The goal of all emptiness-check algorithms presented
in the sequel is to establish the existence or absence of
such accepting cycles. Finding an accepting lasso-shaped
run is one direct way to prove the existence of a reachable
accepting cycle, but it is not the only one. Another one,
which is especially useful with generalized acceptance (n ≥
2), is to prove that the automaton has a (reachable) strongly
connected component that covers all acceptance marks. This
is formalized by Definition 7 and Property 8.

Definition 7 (SCC). In an automaton (Q, ι ,δ ,n,M), a partial strongly connected
component (partial SCC) is a nonempty set of states C ⊆ Q such that any ordered
pair of states of C can be connected by a sequence of consecutive transitions. If
additionally C is maximal with respect to set inclusion, we call it a maximal strongly
connected component (maximal SCC). Let us use Cδ = {(s,x,d) ∈ δ | s ∈C,d ∈C}
to denote the set of transitions induced by C.

We call an SCC C trivial if Cδ = /0. In a TGBA we say that a non-trivial SCC C
is accepting if Cδ covers all acceptance marks, i.e., ∀i ∈ [n], ∃t ∈ Cδ , i ∈ M(t). In
an SGBA a non-trivial SCC C is accepting if C covers all acceptance marks, i.e.,
∀i ∈ [n], ∃s ∈C, i ∈ M(s).

A rejecting SCC is either a trivial SCC, or a non-trivial SCC that does not cover
all acceptance marks.

Property 8. For an automaton B, we have L (B) �= /0 if and only if the initial state
can reach an accepting SCC.

Note that it does not matter whether the accepting SCC is partial. SCC-based
emptiness checks usually maintain a set of partial SCCs, to which they add new states
when cycles are discovered. For each (reachable) partial SCC C they maintain the
set of acceptance marks seen in C (that is SC =

⋃
t∈Cδ

M(t) in the case of TGBAs, or
SC =

⋃
s∈C M(s) for SGBAs), and they can report the non-emptiness of the automaton

as soon as one of these sets equals [n].
In the context of model checking, the automaton B to be checked for emptiness is

actually the product of a Kripke structure (representing the state space of the model
under verification) with an automaton capturing the behaviors invalidating an LTL
formula ϕ (the specification to check).

Theorem 1. Let ϕ be an LTL formula, A¬ϕ an automaton with n acceptance marks
such that L (¬ϕ) = A¬ϕ , and K a Kripke structure. The following statements are
equivalent:

1. L (K)⊆ L (ϕ),
2. L (K)∩L (A¬ϕ) = /0,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 469

3. L (K ⊗A¬ϕ) = /0,
4. K ⊗A¬ϕ has no reachable, accepting cycle;
or in case n ≤ 1 no reachable accepting elementary cycle,
5. K ⊗A¬ϕ has no reachable, accepting SCC.

The emptiness checks we will present either look for accepting elementary cycles
(when n ≤ 1) or accepting SCCs. However an important point is that they search for
those in the product K ⊗A¬ϕ . Because the Kripke structure K can be pretty large,
a classical optimization is to generate both the Kripke structure K and the product
K⊗A¬ϕ on the fly, as required by the needs of the emptiness-check procedure. Doing
so avoids generating any part of K that would never be reached in the product, and
it may also save a lot of time in case an accepting cycle is discovered early: the
emptiness check can then exit immediately without exploring the rest of the product.
For this on-the-fly construction to work, the emptiness check should only move
forward, i.e., from a given state (s1,s2) of the product, one may only compute its
successors, but not its predecessors. Originally, only the initial state (ι1, ι2) is known,
and the emptiness check may explore the successors of this state, as well as the
successors of any new state discovered this way. In such a setup, any cycle or SCC
we discover is necessarily reachable.

12.2.7 Implicit Models and Automata

We have seen in Property 2 that the size of the Büchi automaton can be exponential
in the size of the LTL formula, i.e., the number of symbols it contains. Not much has
been said about the size of the model M. To expand on this, we first need to make
some assumptions about its representation.

Definition 8. A model is a tuple M = (D,θ ,state-labels,next-state) where

• D =V1×·· ·×Vk is the data of the model composed of k Boolean variables,
• θ ∈ D is the initial state,
• state-labels : D → 2AP is a state label function, and
• next-state : D → 2D is a next-state function.

The data D of the model can be thought of as the values of all variables and
program (thread) counters in some imperative language. The set D represents all
potential states of the model. The next-state function provides an implicit encoding
of all transitions in the system from a given state. It is typically an implementation of
the system semantics of the individual program statements; for an example see [62].

The actual Kripke structure can be computed as an explicit representation of the
data that the model represents implicitly.

Definition 9. The Kripke structure KM = (Q, ι ,δ , �) of a model M =
(D,θ ,state-labels,next-state) is defined as follows:

• ι = θ ,

470 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

• Q is the smallest fixpoint of next-state that includes θ ,
• δ =

{
(s,d) ∈ D2 | d ∈ next-state(s)

}
, and

• �= state-labels.

The introduction mentioned that the graph of the system (the Kripke structure of
the model) is exponential in the number of components and variables. We can now be
more exact. Let n be an upper bound on the data domains, i.e., |Vi| ≤ n (0≤ i ≤ k).

Property 9. The number of states in the Kripke structure K = (Q, ι ,δ , �) is exponen-
tial in the number of variables in the model (k): |Q| ∈ O(nk).

The implicit definition of the Kripke structure can be extended to the product
automaton as well.

Definition 10 (Implicit Product Automaton). The implicit product automaton of
a model M = (D,θ ,state-labels,next-state) and a TGBA A = (Q, ι ,δ ,n,M) is the
implicit TGBA C = (Q′, ι ′,next-product,n,M′) where

• ι ′ = (θ , ι),
• Q′ = D×Q,
• (x,(d1,d2)) ∈ next-product((s1,s2)) ⇐⇒ (d1) ∈ next-state(s1) ∧

state-labels(s1) = x∧ (s2,x,d2) ∈ δ , and
• M′(((s1,s2),x,(d1,d2)))= M

(
(s2,x,d2)

)
.

Definition 11. The TGBA (Q′′, ι ′,δ ′,n,M′) generated from the implicit product
automaton (Q′, ι ′,next-product,n,M′) is defined by taking:

• Q′′ is the smallest fixpoint of next-product that includes ι ′,
• δ ′ =

{
(s,x,d) ∈ D2 | (x,d) ∈ next-product(s)

}
.

Property 10. By definition, the product TGBA of M and A in Definition 11 is the
same as KM ⊗A from Property 4.

Property 11. The number of states in the product structure KM ⊗A¬ϕ = (Q, ι ,δ ,n,M)
of a model M = (D,θ ,state-labels,next-state) and a TGBA A¬ϕ can be exponential
in the number of variables in the model (|D|= l, with data domains bounded by n)
and in the formula ϕ: |Q| ∈ O(nl ×2|ϕ|).

The implicit definition helps us to avoid storing all transitions of the Kripke
structure and its product, by recomputing them from the states. Moreover, entire
parts of the Kripke structure might never have to be generated as they are suppressed
by the synchronization of the product. The algorithms in the subsequent section will
therefore use the implicit definition. While this definition prevents algorithms from
doing backwards traversals (the inverse of next-state is not always computable), we
will see that this is not required.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 471

0

1 2

3 4

0 1

ab,ab

ab

ab

0 1
ab,ab

01

ab,ab

0
ab

0

ab

ab ab
0

1 2

3 4

ab,ab

ab

ab

ab,ab

ab,ab

ab

ab

ab ab0

0 0

Fig. 12.5: A weak TGBA (left) and an equivalent weak SBA (right). Both have two
accepting SCCs and one rejecting SCC. Inside each SCC, all transitions or states bear
the same marks. Their language is that of the formula (Fa∧G((b∧X¬b)∨ (¬b∧
Xb)))Rb, which is an LTL persistence

12.2.8 Simpler Subclasses

In 1990, Manna and Pnueli [76] presented a classification of temporal properties (i.e.,
languages expressed either as LTL or automata), into a hierarchy. Two subclasses are
of particular interest in the context of model checking [25]: guarantee and persistence
properties. The reason is that they can be represented by automata with additional
constraints that simplify their emptiness checks.

Let us call an LTL guarantee (ϕG) and an LTL persistence (ϕP) any property that
can be defined as an LTL formula using the following grammar, where a ∈ AP is
any atomic proposition. (ϕS and ϕR correspond to the dual classes of safety and
recurrence.)

ϕG ::=⊥ | � | a | ϕG ∨ϕG | ϕG ∧ϕG | XϕG | FϕG | ϕGUϕG | ¬ϕS

ϕS ::=⊥ | � | a | ϕS ∨ϕS | ϕS ∧ϕS | XϕS | GϕS | ϕSRϕS | ¬ϕG

ϕP ::= ϕS | ϕG | ϕP ∨ϕP | ϕP ∧ϕP | XϕP | FϕP | ϕPUϕP | ϕPRϕS | ¬ϕR

ϕR ::= ϕS | ϕG | ϕR ∨ϕR | ϕR ∧ϕR | XϕR | GϕR | ϕRRϕR | ϕRUϕG | ¬ϕP

For instance, GFa is a recurrence formula (ϕR), FGb is a persistence formula (ϕP),
but the conjunction of these two formulas GFa∧FGb does not belong to any of the
above classes.

LTL guarantee and LTL persistence formulas can be represented respectively by
terminal and weak automata.

Definition 12 (Weak Automaton). A TGBA (or SGBA) is weak if in any of its
SCCs all transitions (or states) have the same marks.

This definition implies that in each SCC of a weak automaton, either all cycles are
accepting, or all cycles are rejecting. Because of that, any weak TGBA (Q, ι ,δ ,n,M)
can be trivially converted into an equivalent SBA (Q, ι ,δ ,1,M′), with the same
transition structure, but defining M′ by M′(s) = [1] if there exists a transition t ∈ δ (s)

472 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

0 1 2 3

a

a
a

a

a

a

a

a,a

0 0
0 1

a

a

a,a

0

Fig. 12.6: Two terminal SBAs recognizing L (Fa). The left one was made artificially
more complex to illustrate how any terminal automaton can be simplified by com-
pacting all accepting SCCs into a single (and unique) state, and removing any SCCs
that are only reachable via an accepting SCC

such that M(t) = [n] and ts and td belong to the same SCC; or M′(s) = /0 otherwise.
Figure 12.5 illustrates this.

Weak automata can still express a large subclass of LTL properties. Many proper-
ties encountered in practice turn out to be weak or even simpler [11, 69].

An even simpler subclass of weak automata is terminal automata.

Definition 13 (Terminal Automaton). A TGBA (SGBA) (Q, ι ,δ ,n,M) is terminal
if it is weak, and if any of its accepting SCCs is complete: that is, for any accepting
SCCC ⊆ Q, any pair of states s,d ∈C within that SCC, and any assignment x ∈BAP,
there exists (s,x,d) ∈ δ .

The states that belong to accepting SCCs are called terminal states.

Note that because the accepting SCCs of terminal automata are complete, they
will accept all suffixes. Therefore any terminal automaton can be simplified into an
equivalent terminal automaton with a single terminal state looping over all possible
assignments. Figure 12.6 illustrates this.

Property 12. From any LTL guarantee (ϕG on page 471) one can build an equivalent
terminal automaton. Similarly, one can build a weak automaton equivalent to any
LTL persistence (ϕP).

The subclass of LTL guarantees is simple enough that typical LTL translation
algorithms [49, 6, 37] produce terminal automata naturally. A construction of weak
automata from LTL persistence properties is given by Černá and Pelánek [25], and is
implemented for instance in ltl2tgba.

The usefulness of terminal automata for model checking comes from the fact that
to prove the existence of an accepting run, we only need to reach a terminal state.
This fact also applies to the product with a Kripke structure, provided that the Kripke
structure is known to be deadlock-free (Definition 2).

Property 13. Let K = (Q1, ι1,δ1, �) be a deadlock-free Kripke structure, and A =
(Q2, ι2,δ2,n,M) a terminal automaton. L (A⊗K) �= /0 if and only if there exists a
reachable state (s1,s2) ∈ Q1×Q2 where s2 is a terminal state.

Indeed, the fact that K is dead lock-free implies that any prefix from ι1 to s1 can
be continued into a lasso-shaped accepting run on K, and the fact that s2 belongs to

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 473

an accepting and complete SCC means that any suffix can be accepted from there.
Therefore, upon reaching (s1,s2) it is clear that an accepting run can be found in
A⊗K.

In the subsequent section, we show that these simpler classes of automata also
allow for simpler algorithms to solve the emptiness-check problem.

12.3 Basic Sequential LTL Model Checking Algorithms

The current section presents sequential algorithms for checking emptiness of Büchi
automata. As discussed in the previous section, this problem can be solved in the
case of n ≤ 1 by showing that none of the elementary cycles are accepting. In the
generalized case with n ≥ 2, however, all cycles need to be considered according to
Theorem 1. Therefore, we present a specialized algorithm called Nested Depth-First
Search for the case where n ≤ 1 and an SCC-based algorithm for the general case. We
will show that the generality of the second algorithm comes at the cost of a slightly
higher resource consumption.

We also saw that the automaton to check is the product between the property
automaton A¬ϕ and the Kripke structure KM . Since this product can be large, a
classical technique these algorithms employ is to compute this product on the fly.
Before presenting the algorithms, we first discuss the on-the-fly technique and its
advantages.

12.3.1 On-the-Fly Algorithms

While the automaton A¬ϕ representing the specification is usually quite small (often
fewer than 10 states), the automaton KM can have billions of states, and the product
of these two automata is a Cartesian product of their states in the worst case (i.e.,
|KM ⊗A¬ϕ | ≤ |KM|⊗ |A¬ϕ |).

For efficiency reasons model checkers will therefore compute KM and KM ⊗A¬ϕ
on the fly, using the implicit definitions from Section 12.2.7. So instead of using the
static definition of product transitions δ , we use its implicit counterpart next-product.
This approach has various advantages:

• any part of KM that does not synchronize with A¬ϕ is not computed,
• we do not need to store the transitions of KM and KM ⊗A¬ϕ since these can

be recomputed when needed, and
• states can be deleted and recomputed, at the expense of re-explorations of

the automaton, thus allowing for trading of computation time for memory use.2

2 Various state space caching techniques have been invented that also ensure termination of the
model checking algorithm [55, 89].

474 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

The advantages are especially important when we recall that the number of states
in the product automaton is exponential in both the property and the system (see
Property 11). As memory is often a bottleneck for model checking, it would be
disastrous to store those as well since there might be up to quadratically more
transitions than states.

An important consequence is that these emptiness-check algorithms are only
allowed to move forward in the automaton: from a state of A, one can compute
the successors, but not the predecessors. This restriction comes from the fact that
the actions of the original model might not be reversible (it might be intractable to
compute the inverse of next-product). While respecting this constraint, the emptiness
check needs to explore the product automaton to find information about cycles or
SCCs.

12.3.2 Depth-First Search

This exploration can be done using one of the two classical graph traversal algorithms:
breadth-first search (BFS) or depth-first search (DFS). These algorithms iterate over
vertices of a graph (or states of an automaton). The evolution of both DFS and BFS
may be described as a process by which every state in the automaton is colored. At
the beginning a state has no color and, at some point, it becomes “activated” and
receives its color. In the general description of DFS below, we use ⊥ for “no color”
and � for “a color”. These algorithms only differ by the order in which states are
colored. In depth-first search, when choosing which state to explore next, children
are favored over siblings. In contrast, in a breadth-first search siblings are favored
over children. Even if both DFS and BFS have running time that is linear in the size
of the product automaton (i.e., the number of states plus the number of transitions),
most sequential emptiness checks are based on a DFS exploration since it can be
used to detect cycles easily.

Algorithm 12.1: Depth-First Search Algorithm
1 function SETUP (A = (Q, ι ,next-product,n,M))
2 DFS(A, ι)
3 function DFS (A = (Q, ι ,next-product,n,M),s)
4 s.color := �
5 forall t ∈ next-product(s) do

6 if td .color =⊥ then

7 DFS(A, td)

Algorithm 12.1 presents a DFS exploration for an implicit automaton A =
(Q, ι ,next-product,n,M). Lines 1–2 only set up the exploration and launch the DFS
exploration with the initial state ι of the automaton A. The main procedure (lines 3–

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 475

7) maintains for each state a Boolean color, initially set to ⊥, that keeps track of
“activated” states. Every time a state is visited, its field color is set to � (line 4). At
line 5 all successors of the currently visited state are processed: only new ones, i.e.,
with color =⊥, are recursively visited (line 7). The stack of recursive calls is also
called the DFS stack. A state that is colored � and is on the stack is called scheduled
or stacked. Once all its successors have been considered, it is popped off the stack,
or backtracked.

A closer look at this algorithm shows that DFS exploration by its nature supports
on-the-fly processing: only the initial state is used at the beginning (line 2) and the
predecessors of a state are never computed (line 5).

The emptiness of a terminal automaton A = (Q, ι ,next-product,n,M) (see Sec-
tion 12.2.8) can easily be verified using the above DFS. All we have to do is to
check whether M(t) = [n] (for transition-based acceptance) or M(ts) = [n] (for the
state-based case) in the for loop. The check is so simple that it can be done by a BFS
algorithm as well.

To detect elementary cycles of the automaton, the DFS algorithm has to be
extended to keep track of the states on the stack. Algorithm 12.2 does this. It first
marks the state s that is about to be explored gray at line 5. When backtracking over a
state (removing it from the (program) stack), its color is set to black (line 11). When
exploring the successor td of s at line 6, if td is in the DFS stack, a cycle has been
found. Indeed, the states in the DFS stack between td and s form a path and td is a
successor of s. Otherwise, if td is not on the DFS stack, no information about cycles
can be inferred.

The algorithm exploits this to check the accepting condition in the weak case
(Definition 12). Since in this case either all states on the cycle are accepting or none
are, the following solution is correct. At line 2, the automaton is first converted into
an equivalent state-based version. Then at line 7, the check for elementary cycles
is performed by checking whether td .color = gray. If additionally the state td is
accepting (M(td) = [1]), non-emptiness of the automaton is reported at line 8. We
only need to check the accepting mark on td (or s), and not the marks of other states
on the cycle, as all states in one SCC have the same mark by Definition 12 and
consequently all states on the same cycle also carry the same mark.

Edelkamp et al. [40] show how such simple algorithms can be used even in the
case when only part of the automaton is weak or terminal. In Section 12.4.1, we
discuss similar parallel variants.

Since the Büchi emptiness-check problem requires an inspection of all cycles to
exclude accepting cycles, most algorithms rely on a DFS exploration (with some
more elaborate cycle checks for general, non-weak TGBAs/SBAs as we will show in
the subsequent section on Nested-DFS). These algorithms either use DFS directly
to conclude emptiness by inspecting elementary cycles, exploiting Property 7, or
decompose the automaton into SCCs, exploiting Property 8. Nested-DFS falls in the
former category, while the SCC algorithm falls in the latter.

In contrast, a BFS exploration cannot easily detect cycles. Consequently, us-
ing BFS as exploration strategy requires a redesign of the LTL model checking
algorithms, as we will illustrate in Section 12.5.

476 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.2: Sequential Emptiness Check for Weak TGBAs Based on
DFS

1 function SETUP (A = (Q, ι ,next-product,n,M))
2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)
3 DFS(A′, ι)
4 function DFS (A = (Q, ι ,next-product,1,M),s)
5 s.color := gray
6 forall t ∈ next-product(s) do

7 if td .color = gray∧M(td) = [1] then

8 report non-empty

9 if td .color =⊥ then

10 DFS(A, td)

11 s.color := black

12.3.3 Nested-DFS

The Nested-DFS algorithm (NDFS) was originally proposed by Courcoubetis et al.
[31] and relies on the detection of accepting elementary cycles reachable from the
initial state. This algorithm focuses on SBA with n ≤ 1 and runs in time linear with
respect to the size of the graph. The algorithm accomplishes this by using DFS.
Its use of DFS is however not as simple as we have seen in the previous section,
because we cannot simply check the acceptance criterion on any state in the cycle as
is sufficient in the case of weak automata.

NDFS uses a first DFS to detect accepting states, i.e., states of the automaton
holding the unique acceptance mark. Traditionally this DFS is called blue-DFS since
it colors in blue all the states encountered during the exploration. When an accepting
state is about to be backtracked during this search, a second DFS is then invoked
with the accepting state as a seed. This DFS colors all states in red and thus it is
often called red-DFS. The goal of this second exploration is again to reach the seed
state. If this state, which is accepting, can be reached itself, an accepting run is
reported proving that the automaton has a non-empty language. Because the version
in Algorithm 12.3 contains several improvements, we first discuss its details.

The BLUEDFS function (lines 4–15) is similar to the DFS presented in Algo-
rithm 12.1. Nonetheless some improvements have been added to transform it into an
emptiness check. First of all, this algorithm uses two bits per state to keep track of
the associated colors. Four colors are used:

• white: the initial color of a state. We assume that states are white when they are
generated for the first time.

• cyan: the state is still in the DFS stack of the blue search.
• blue: all the direct successors of the state have been visited by the blue-DFS but
not yet by a red one.

• red: states that have been considered in both the blue- and the red-DFS.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 477

Algorithm 12.3: Nested Depth-First Search Algorithm
1 function NDFS (A = (Q, ι ,next-product,n,M))
2 assert(n = 1)
3 DFSBLUE (A, ι)
4 function DFSBLUE (A = (Q, ι ,next-product,1,M),s)
5 s.color := cyan
6 forall t ∈ next-product(s) do

7 if td .color = cyan∧ (M(ts) = [1]∨M(td) = [1]) then

8 report non-empty

9 else if td .color = white then

10 DFSBLUE (A, td)

11 if M(s) = [1] then

12 DFSRED (A,s)
13 s.color := red
14 else

15 s.color := blue

16 function DFSRED (A = (Q, ι ,next-product,1,M),s)
17 forall t ∈ next-product(s) do

18 if td .color = cyan then

19 report non-empty

20 else if td .color = blue then

21 s.color := red
22 DFSRED (A, td)

The BLUEDFS function starts by coloring any new state in cyan (line 5). This
color helps to detect accepting cycles directly inside the BLUEDFS (lines 7 and 8):
during this search, if the successor td of an accepting state s is cyan an accepting run
exists since there is a path from d to s and vice versa. Similarly, if td is accepting
and cyan, an accepting run exists. Otherwise, if td has not yet been visited (line 9) a
recursive call is performed (line 10).

Two cases are of interest when all the successors of a state have been visited, i.e.,
just before backtracking it from the blue search. If the state is not accepting (line 15),
its color becomes blue and the state is backtracked. Otherwise, the state is accepting
(line 11) and the algorithm launches a nested exploration using the REDDFS function.

This function uses the accepting state as a seed, which is treated specially: it
remains cyan during the red search and becomes red afterwards (line 13). This is
required to limit the algorithm to four colors (which can be stored in two bits).
The REDDFS function only looks for a state with the cyan color, i.e., a state that
belongs to the DFS stack of the blue exploration. Because the stack of the blue search
terminates in the seed, this condition is sufficient to demonstrate the reachability
of a cycle over an accepting state. Therefore, if a cyan state is detected in the red
search (line 18) then an accepting run exists and the automaton is reported to have a
non-empty language (line 19).

Because the red search therefore never crosses the stack of the blue search, it will
only explore blue states.

478 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

One can also note that all states visited by the REDDFS are marked red (line 21)
and thus will be ignored by other (blue or red) explorations. This makes NDFS linear
in the size of the input automaton (in terms of states and transitions). But why does
the red search not have to reset its visited states like the inner search of the previous
algorithm? It turns out that the DFS order of the blue search plays a crucial role here.
Consider the case where the red search is started from a seed s and it encounters a red
state. It can be shown that this state can never lead back to the cyan stack, because
that would contradict the depth-first order of the blue search. An intuition for this
property can be found in [48] and a detailed proof in [64].

Note that if the automaton has no accepting state the NDFS is optimal since states
and transitions are visited only by the blue-DFS.

Many improvements of this algorithm have been proposed [59, 50, 40] to faster
detect non-emptiness, reduce the size of accepting runs if they exist, or to reduce
memory footprint. Algorithm 12.3, derived from the work of Schwoon and Esparza
[87], presents a combination of all these optimizations.

12.3.4 Algorithms Based on SCC Decomposition

The algorithm presented in the previous section works only if the automaton to check
is a non-generalized Büchi automaton. If the input automaton is a generalized one,
the emptiness check of Tauriainen [94] can be used. This algorithm derives from the
NDFS and repeats the inner DFS several times (at worst n times, with n the number
of acceptance marks). The main drawback of this algorithm is that its complexity
depends of the number of acceptance marks: this reduces all the benefits of using a
generalized Büchi automaton.

Another idea to check for the emptiness of a generalized Büchi automaton is
to degeneralize this automaton (as described by Property 1) before checking its
emptiness. In this approach, the degeneralized automaton may have n · |Q| states,
with |Q| the number of states of the input automaton and n the number of acceptance
marks. Once again, this approach is not optimal since it depends of the number of
acceptance marks.

Another emptiness-check approach is to compute the accepting strongly connected
components of the generalized Büchi automaton. SCC-based emptiness checks [32,
52, 33, 4, 48] are still based on a DFS exploration of the automaton; they do not
require another nested DFS, have a linear time complexity and directly support TGBA.
These emptiness checks are based on the classical SCC decomposition algorithm
for directed graphs by Tarjan [90], which partitions the set of states according to the
SCC equivalence classes. Each partition is then associated with the set of acceptance
marks that appears inside the corresponding SCC to facilitate the emptiness check.

Intuitively, Tarjan’s algorithm maintains a separate stack (apart from the search
stack) of partial SCCs. Partial SCCs are enlarged when the DFS finds a cycle by
adding its states to the secondary SCC stack. Each partial SCC is associated with a
potential root, i.e., the state of the partial SCC that is the lowest on the stack. Thus,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 479

every time the partial SCC is enlarged, a new potential root may be selected. When
the root is backtracked, the DFS order guarantees that the entire SCC was visited and
is on the secondary stack. This is the moment when it is popped off the stack and the
SCC can be reported even before the algorithm finishes traversing the entire graph
(i.e., on the fly). To identify current roots the algorithm uses indices. Therefore, it
uses slightly more memory per state than the NDFS algorithm, which requires only
two bits per state.

We focus on a version of Tarjan’s algorithm that maintains partial SCCs in
a database, as it forms the basis of communicating partial SCCs in our parallel
algorithm (see Section 12.4.3). It was developed by Purdom [80] even before Tarjan’s
algorithm, and later optimized by Munro [79]. Like Tarjan’s algorithm it uses DFS,
but this is not explicitly mentioned (Tarjan was the first to do so). In this algorithm,
the secondary stack only stores roots as the partial SCC is kept in the database.
We also add the ability to collapse cycles into partial SCCs immediately (as in
Dijkstra [35, 47]).

The database with partial SCCs is implemented using a union-find data structure.
As its name suggests, a union-find is a data structure that represents sets and provides
efficient union and membership-check procedures. The union-find structure partitions
a set E of elements and associates a unique representative (an element of E) with
each partition. This structure offers the following methods on elements x,y ∈ E:

• MAKESET(x): creates a new partition containing the element x if x is not already
in the union-find.

• FIND(x): returns null if x is not in the union-find, otherwise returns the actual
representative of the partition containing x.

• SAMESET(x,y): returns a Boolean indicating whether x and y are in the same
partition.

• UNITE(x,y): merges the partitions containing x and y.

With this structure, the set E of elements is partitioned into disjoint subsets {S1,
. . . , Sm} where m corresponds to the number of disjoint subsets. The underlying data
structure of each subset Si is typically a reverse arborescence (an in-tree), represented
by a parent function p(x) ∈ Si for each x ∈ Si. A unique representative y is appointed
as the root of this in-tree. It is often designated with a self-pointer p(y) = y.

The parent function is usually implemented using an array of size |E| that stores,
for each element in |E|, the index of its parent in the tree. The array elements are
initialized to ⊥ representing the empty subset. The operation MAKESET(x) then
creates a singleton set consisting of its root p(x) := x. If two sets are merged with
UNITE(x,y), first the representativity of rx = FIND(x) and ry = FIND(y) is identified.
Then one of them, e.g., ry, is designated the new root by setting p(rx) := ry.

By compacting the paths in the in-tree, i.e., making leaves point directly to the
root, the operations on the structure can all be solved in quasi-constant, amortized
time [92]. Many variants on compaction schemes and unite strategies have been
studied by Tarjan and van Leeuwen [93].

Algorithm 12.4 presents the emptiness check [83] for TGBA. Two global variables
are used:

480 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.4: SCC-Based Emptiness Check
1 Union-find of 〈Q'{Dead}〉 : uf
2 Stack of 〈q ∈ Q,a ∈ 2[n], ingoing ∈ 2[n]〉 : roots
3

4 function SETUP (A = (Q, ι ,next-product,n,M))
5 uf.MAKESET(Dead)
6 SCCBASED(A, ι , /0)
7 function SCCBASED (A = (Q, ι ,next-product,n,M),s,acc)
8 uf.MAKESET(s)
9 roots.PUSH(〈s, /0,acc〉)

10 forall t ∈ next-product(s) do

11 if uf.SAMESET(td ,Dead) then

12 continue

13 else if uf.FIND(td) = null then

14 SCCBASED(A, td ,M(t))
15 else

16 roots.TOP().a ← roots.TOP().a∪M(t)
17 while ¬uf.SAMESET(td ,s) do

18 〈r,a, i〉 ← roots.POP()
19 roots.TOP().a ← roots.TOP().a∪ i∪a
20 uf.UNITE(r,roots.TOP().q)
21 if roots.TOP().a = [n] then

22 report non-empty

23 if roots.TOP().q = s then

24 roots.POP()
25 uf.UNITE(s,Dead)

1. The union-find uf (line 1), which stores the various partitions corresponding to
the SCCs discovered so far by the exploration. This structure maintains a special
partition Dead, which holds all states of already completed SCCs (without
accepting run), i.e., all states that cannot be part of an accepting run.

2. The roots stack roots (line 2), which contains tuples composed of: q the potential
root, a the set of acceptance marks (visited so far) associated with the SCC
containing q, and a special field ingoing. This special field keeps track of the
acceptance marks held by the ingoing transition. This information must be kept
since it is not directly available on TGBAs.

Lines 4 to 6 only set up the union-find with the special partition Dead, and then
call the recursive exploration through the SCCBASED function. This function takes
three parameters: the automaton to check, the state to explore, and the acceptance
mark held by the ingoing transition.

Lines 8 and 9 respectively insert the state into the union-find and the roots stack.
Lines 10 to 22 process all the successors of the current state s. If the destination td

of a transition is already Dead (lines 11–12) then the transition is just skipped since
it cannot lead to an accepting run. If the destination has not yet been visited (lines
13–14) the function is called recursively. Finally, the destination can be a part of an

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 481

SCC (trivial or not) that is not yet marked Dead. In this case, a cycle has been found
and partial SCCs stored in the roots stack (lines 16–20) must be merged. During this
merge the acceptance marks in the SCC are also merged (line 19). When all partial
SCCs have been merged, an accepting run exists iff the field a of the top of the roots
stack contains all acceptance marks. Note that this test could also be done during the
merge.

Finally, when the root of an SCC is about to be backtracked, all states belonging
to this SCC must be marked Dead. Line 25 performs this operation in quasi-constant
time, by virtue of the union-find data structure.

12.4 Multi-core, DFS-Based Solutions

12.4.1 Terminal and Weak Acceptance

In Section 12.3, we saw that the simplest classes of Büchi automata often allow for
simpler and more efficient algorithms. Here we show that checking emptiness of weak
and terminal automata can be done using a parallel version of DFS that preserves
enough of the depth-first order to still be able to find all elementary cycles. First, we
show how a simple parallel search can detect emptiness of terminal automata, as it
illustrates nicely what low-level ingredients are required for shared-memory parallel
algorithms.

Terminal Acceptance

Algorithm 12.5 shows a parallel search algorithm with a shared state set. To simplify
the acceptance condition, the algorithm first converts the terminal automaton, which
is by extension also a weak automaton, into an equivalent SBA A′ at line 4. Then it
schedules the initial state in the stack or the queue of the first worker Queues[0]. The
first worker will start exploring from this state and generate new states, as we will see
later, while a load balancer will take care that work arrives in the queues of the other
workers. When the initializations are completed, the algorithm launches the actual
search procedure in parallel at line 7. At the first encounter of an accepting state
the algorithm terminates at line 15, just like the sequential algorithm for terminal
acceptance discussed in Section 12.3.2.

Each worker perpetually calls the load balancer at line 10. When its queue is
non-empty (Q[p] �= /0), the load-balance function will merely return true. When a
worker has run out of work (Q[p] = /0), however, the function takes some work from
the queue of another thread and adds it to the local queue Q[p]. Only when the load
balancer detects termination, using a specialized termination detection algorithm [85],
will the load balancer return false, allowing the worker thread to exit the SEARCH
function.

482 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.5: A Parallel Search Algorithm for Checking the Emptiness
of Terminal Automata

1 global Queues[P]
2 global StateSet
3 function PAR-TERMINAL-CHECK (A = (Q, ι ,next-product,n,M),P)
4 Convert A into an equivalent SBA A′ (e.g. Figure 12.5).
5 Queues[0] := {ι}
6 StateSet := /0
7 SEARCH1(A′) || . . . || SEARCHP(A′)
8 report no-cycle

9 function SEARCH p (A = (Q, ι ,next-product,1,M))
10 while load-balance(Queues[p]) do

11 s := Queues[p].dequeue()
12 if StateSet.find-or-put(s) then

13 forall t ∈ next-product(s) do

14 if M(td) = [1] then

15 report cycle and terminate

16 Queues[p].queue(td)

The use of a load balancer has the advantage that no communication occurs while
workers still have work locally available (their queue is non empty). Only in the
extreme cases when a worker is without work, e.g., right after initialization and when
most of the state space has been processed, will the algorithm experience overhead
from additional synchronization. Specialized concurrent “deque” data structures
allow the load balancer to be particularly efficient [19].

For the rest, the parallel search function operates as expected: A state is taken from
the local queue at line 11, its successors are considered at line 13, and when a new
state is encountered it is added to the local queue at line 16. The worker thus traverses
the state space more or less independently, with one exception: visited states are
entered into a shared set StateSet. To atomically add states, this set implementation
has a find-or-put operation, which at the same time checks whether a state s is already
contained in the set, and when this is not the case, adds it to the set. It can be used to
“grab” new states and thus exclusively assign them to the worker that encounters a
state first.

The state set can be implemented efficiently as a concurrent hash table or tree
table data structure [71, 68]. Because the set of visited states accounts for almost
all memory use of the algorithm (recall from the previous section that transitions
do not need to be stored), and because workers diverge into different parts of the
(huge) state space, most lookups in the table do not collide, i.e., they access different
parts of the table. This is another efficient aspect of the algorithm; it exploits the
random memory characteristic of model checking algorithms (as also discussed in
the introduction) to increase parallelism.

In the sequential case, the algorithm yields a strict DFS order when implementing
Queues as a stack, and a strict BFS order when implementing Queues as a fifo-queue.
This parallel algorithm variant however violates a strict order as soon as workers

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 483

start encountering the same states. Because only one of them will win the race in
the find-or-put call, the others are forced to violate the order. For this reason, the
algorithm might just as well immediately try to “grab” each generated state td inside
the for loop by moving line 12 right before line 16 (the state set should be initialized
to {ι}). While this causes a more abnormal search order, it limits all duplication of
states on local stacks.

Various researchers have found ways to approach BFS more precisely in parallel
algorithms, while also limiting communication by introducing separate queues [2, 58].
A more precise order can have practical benefits, e.g., it allows the model checker to
find the shortest counterexample, but also mitigates the on-the-fly behavior of the
procedure. It is unknown yet whether (non-lexicographic) DFS can be preserved
efficiently as well (recall from the introduction that lexicographic DFS, with fixed
transition ordering, likely is not parallelizable according to theory). Nonetheless,
we now show that with a simple parallel algorithm, we can preserve enough of the
DFS order to find all elementary cycles, which is sufficient to tackle the LTL model
checking problem as the following sections show.

Weak Acceptance

Emptiness of weak automata is a little harder to compute than for terminal automata
because the algorithm still needs to inspect all elementary cycles. In Section 12.3.2,
we showed how DFS can solve it sequentially. Algorithm 12.6 does the same in
parallel. Again, to simplify the acceptance condition, the algorithm first converts the
terminal automaton to an equivalent SBA A′ at line 2. Then, the algorithm launches
the actual search procedure in parallel at line 3. All workers start searching from the
same initial state.

Algorithm 12.6: A parallel DFS algorithm for checking emptiness of weak
automata

1 function PAR-WEAK-CHECK (A = (Q, ι ,next-product,n,M),P)
2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)
3 PAR-DFS1(A′, ι) || . . . || PAR-DFSP(A′, ι)
4 report no-cycle

5 function PAR-DFS p (A = (Q, ι ,next-product,1,M),s)
6 s.gray[p] := true
7 forall t ∈ RANDOMIZE(next-product(s)) do

8 if td .gray[p]∧M(td) = [1] then

9 report cycle and terminate

10 if ¬td .gray[p]∧¬td .black then

11 PAR-DFS p(td)

12 s.black := true
13 s.gray[p] := false

484 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

The search procedure resembles the sequential DFS procedure of Algorithm 12.2,
with the exception that the stack states are now colored gray locally. This means
that workers’ stacks might overlap while searching through the state space. When
backtracked, however, the states are colored globally black, pruning the search space
for other workers. This is where the speedup of the parallel algorithm comes from.
To obtain the best performance, the search order of each parallel worker should be
randomized, so that workers are guided into different parts of the state space [65].
Although redundant due to the set inclusion, we nonetheless emphasize this with the
RANDOMIZE function.

To detect cycles, the algorithm uses the same stack-based check as its sequential
counterpart. It will not miss any cycles because of the parallel search for the following
reasons:

• It is possible to show that all black states always have black or gray states as
successors (gray for some worker).

• When a worker p ignores a state td for being black, and that state actually has a
path to its gray stack, then by induction on the cycle, it can be shown that there
is some other worker in a similar situation or able to find a path back to its stack.

• Because there are a finite number of workers, one will eventually find the cycle.

A full proof of correctness can be found in Laarman and Faragó [69].
Because of the use of DFS, the weak emptiness check algorithm looks simpler

than Algorithm 12.5. Indeed, it does not require a load-balancer, because work
distribution is achieved by letting stacks (partly) overlap. While it may be the case
that workers exclude each other from parts of the state space, there are easy ways to
remedy that [69]. Because of the lack of a load balancer, the stack can be completely
local (here it is maintained as part of the program stack). However, it is not the
case that the algorithm does without a global state set. The set is hidden behind the
color variables and implicitly accessed when these are referenced in the algorithm.
Therefore, an efficient concurrent hash table or tree data structure is again crucial for
its performance.

To detect non-progress properties, another subset of LTL, Laarman and Faragó [69]
introduce DFS-FIFO, an algorithm that utilizes a similar parallel DFS. It can be
used for checking emptiness of weak automata as well and improves the parallel
scalability by combining the search with a highly scalable BFS. A similar approach
was taken for parallel checking of weak LTL properties on timed automata in [34].
The parallel DFS approach has the additional benefit that it combines well with
state space reduction techniques, as these can implemented with the same on-the-fly
algorithm [70].

12.4.2 CNDFS

Two algorithms were presented simultaneously (LNDFS by Laarman et al. [66] and
ENDFS by Evangelista et al. [42]) that adapted the Nested-DFS (NDFS) algorithm

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 485

to multi-core architectures. Both share the principle of launching multiple instances
of NDFS that synchronize themselves to avoid useless state revisits, just like the
algorithm for checking emptiness of weak automata discussed in the previous section.
Although they are heuristic algorithms in the sense that, in the worst case, they reduce
to spawning multiple unsynchronized instances of NDFS, the experiments reported
by Laarman et al. [66, 65] show good practical speedups.

They were then combined and improved in the CNDFS algorithm by Evangelista
et al. [43]. This algorithm is both much simpler and uses less memory, making it
more compatible with exact compression techniques such as tree compression [68]
that can compress large states down to two integers.

CNDFS is presented in Alg. 12.7 for P threads. It is based on the principle of
SWARM worker threads (indicated by subscript p here), sharing information via colors
stored in the visited states: here blue and red. After randomly visiting all successors
(lines 13–15), a state is marked blue at line 16 (meaning “globally visited”), causing
the (other) blue-DFS workers to lose the strict postorder property.

If the state s is accepting, as in the sequential NDFS algorithm, a red-DFS is
launched at line 19 to find a cycle. At this point, state s is called “the seed.” All states
visited by DFSREDp are collected in Rp. If no cycle is found in the red-DFS, none
exists for the seed. Still, because the red-DFS was not necessarily called in postorder,
other (non-seed, non-red) accepting states may be encountered about which we know
nothing, except the fact that they are out of order and reachable from the seed. These
are handled after completion of the red-DFS at line 20 by simply waiting for them to
become red.

In this scenario there is always another worker that can color such a state red. The
intuition behind this is that there has to be another worker to cause the out-of-order
red search in the first place (by coloring blue) and, in the second place, this worker
can continue its execution because cyclic waiting configurations can only happen
for accepting cycles. These accepting cycles would however be encountered first,
causing termination and a cycle report (line 8). After completion of the waiting
procedure, CNDFS marks all states in Rp globally red, pruning other red-DFSs.

An efficient parallelization of the blue-DFS is absolutely essential for scalability,
since the number of blue states (all reachable states) typically exceeds the number of
red states (visited by the red-DFS). Since it was impossible to color both blue and red
while backtracking from the respective DFS procedures, CNDFS uses an intermediate
solution, using a wait statement as a compromise, leaving enough parallelism to
maintain scalability.

CNDFS only uses P+2 bits per state plus the sizes of R. In the theoretical worst
case (an accepting initial state), each worker p ∈ [P] could collect all states in Rp.
According to extensive experiments, the set rarely contains more than one state and
never more than thousands, which is still negligible compared to |Q|.

486 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.7: CNDFS, a Multi-Core Algorithm for LTL Model Checking
1 function CNDFS (ι ,P)
2 DFSBLUE1(ι) || . . . || DFSBLUEP(ι)
3 return no-cycle

4 function DFSREDp(A = (Q, ι ,next-product,n,M),s)
5 Rp := Rp ∪{s}
6 forall t ∈ RANDOMIZE(next-product(s)) do

7 if td .cyan[p] then

8 return cycle and terminate

9 if td �∈ Rp ∧¬td .red then

10 DFSREDp(A, td)

11 function DFSBLUEp(A = (Q, ι ,next-product,n,M),s)
12 s.cyan[p] := true
13 forall t ∈ RANDOMIZE(next-product(s)) do

14 if ¬td .cyan[p]∧¬td .blue then

15 DFSBLUEp(A, td)

16 s.blue := true
17 if M(s) �= /0 then

18 Rp := /0
19 DFSREDp(A,s)
20 await ∀s′ ∈ Rp s.t. M(s′) �= /0 : s �= s′ ⇒ s′.red
21 forall s′ ∈ Rp do

22 s′.red := true

23 s.cyan[p] := false

12.4.3 Multi-core/DFS-Based SCC Decomposition

To handle emptiness checking of TGBAs, a parallel SCC-based algorithm is required
as Theorem 1 indicates. Traditional parallel SCC algorithms [86, 46, 13, 98, 60, 88]
are BFS-based implementations of divide-and-conquer approaches, which are not
on the fly [18]. Also, these algorithms often exhibit an n× log(n) or quadratic-time
worst-case complexity. We therefore rely on DFS to detect SCCs in parallel since
DFS-based SCC detection can be both on the fly and linear time. The main difficulty
here, like in the previous section, is that a sufficient amount of the DFS order must
be preserved for correctly detecting cycles.

We first briefly discuss a fully synchronized approach and show how bottlenecks
impose limitations on the algorithm’s performance. Then we present a random
search/swarmed approach that performs linearly and show how this technique scales
for multiple workers.

Fully Synchronized Parallel SCC Algorithm

The general idea of the fully synchronized algorithm [74] is to have multiple non-
overlapping search instances. Every reachable state is visited by exactly one worker,

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 487

who globally takes ownership of the state. Searches are spawned from unvisited
successor states. Upon encountering a state taken by a different worker, the search
suspends until the state is marked as being completely explored. Otherwise, the
search proceeds similarly to Tarjan’s algorithm [91].

A cycle of suspended searches can occur as a consequence. In case no further
actions are taken, the algorithm may never finish. A map of suspended searches
is used to detect such cycles. If a worker suspends a search and detects a cycle of
suspended searches, it transfers all relevant states from the suspended searches to one
search and proceeds normally. For example, suppose that a worker visits edge v → w
and detects that w is part of a different search. Before suspending, it checks whether
the path w →∗ v can be found by traversing states from the suspended searches. If so,
a cycle is detected, which should be resolved by the current worker.

Maintaining the suspended map and resolving cycles of suspended searches
is a costly process. The sequential linear-time performance of Tarjan’s algorithm
reduces to a quadratic worst-case performance in the synchronized variant. For the
practical performance of the algorithm, two important cases can be distinguished:
graphs containing relatively large SCC sizes (|C| ∼ |Q|), often consisting of many
interconnections; and small SCCs, consisting of only a few states (|C| ∼ 1). The
synchronized algorithm exhibits good scalability for graphs containing only small
SCCs, since the different searches do not tend to interfere with each other. For
graphs with large SCCs, a fully synchronizing algorithm can pay a large performance
penalty if the worst-case time complexity is attained due to the wait-cycle checks.
On the other hand, this algorithm totally avoids any redundant explorations as
searches never overlap. Hence, while in appearance similar to the multi-core NDFS
approaches discussed in the previous subsection, the fully synchronous algorithm
has characteristics similar to the BFS-based algorithms that will be discussed in
Section 12.5.

Swarmed Parallel SCC Algorithm

A different approach is to detect SCCs in a swarmed fashion, similarly to CNDFS
(Section 12.4.2). The general idea of the algorithm is to spawn multiple instances of
a sequential DFS algorithm and communicate the fully explored SCCs in a shared
data structure [84]. An SCC is considered to be fully explored when all its successors
(direct or indirect) have been explored. As a consequence, an instance of the algorithm
can ignore all states belonging to a fully explored SCC. Thus, communicating fully
explored SCCs allows us to prune other DFSs since an instance will never traverse a
state that belongs to a fully explored SCC.

In this approach, two instances can still visit the same SCC (in a swarmed fashion)
until one of the instances detects that it has been fully explored. If the SCC contains
an accepting run, we want to be able to speed up its discovery. The multiple instances
can then share the acceptance marks discovered so far for each (partial) SCC. This
information helps us to find whether an accepting run exists. Suppose that we
have two instances of a classical SCC-based algorithm running on the example of

488 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Figure 12.7 without sharing acceptance marks. Neither of these instances can detect
an accepting cycle before δ0,δ1,δ2, and δ3 have all been visited. Let us now suppose
that they share acceptance marks and that the first instance i0 has visited δ1 and δ2
while the other instance i1 has visited δ0. When instance i1 discovers the transition δ3
it also discovers that s0 and s1 are in the same SCC. In this case, since i0 and i1 share
information about acceptance marks, they can detect the existence of an accepting
cycle.

s1

s0

δ2
1

δ3
δ0

2

δ1

Fig. 12.7: Sharing
acceptance marks

In the sequential SCC-based emptiness check (Algo-
rithm 12.4) the information about fully explored SCCs is al-
ready stored inside a union-find data structure with a dedicated
partition Dead. Lock-free versions of the union-find structure
exist [5]. A simple implementation of this structure is presented
in Algorithm 12.8. As mentioned in Section 12.3.4 each ele-
ment stored by the union-find maintains a field parent, which
represents a forest of reverse arborescences. In a parallel set-
ting this field must not be updated concurrently by two threads.
This can be done using a compare-and-swap (CAS) operation
(line 13 and 15). This operation is an atomic instruction used in

multithreading to achieve synchronization: CAS(m, v1, v2) compares the contents
of a memory location m to a given value v1 and, only if they are the same, modifies
the contents of that memory location to a given new value v2. The CAS operation
returns true if the modification was successful and false otherwise. A closer look to
Algorithm 12.8 shows that this structure is only lock-free and not wait-free because
of the spin-wait loops of lines 8 and 19. The rest of this union-find remains similar to
the sequential version apart from the use of atomic operations.

This union-find can then be shared among the multiple instances to communicate
fully explored SCCs. This structure can also be extended to store, for each partition,
a set of acceptance marks. This modification slightly impacts the interface of union-
find:

• When MAKESET(e) effectively creates a partition for e (because it did not exist
before), the associated acceptance set is /0.

• The UNITE function takes an extra argument representing the set of acceptance
marks that occur in the (partial) SCC. During this operation, the union-find must
propagate the acceptance set to the representative of the partition. This is costless
since this representative is already computed by the FIND function. Also note that
for implementation details, a union with the partition containing Dead always
returns /0.

This swarmed emptiness check is presented in Algorithm 12.9 and mostly relies on
the sequential SCC-based emptiness check presented in Algorithm 12.4. It performs
a DFS, maintains a roots stack, and uses a union-find to store partitions representing
partial SCC and Dead states. Nonetheless, some minor changes have been made:

• Only the union-find is shared among the threads. The roots stack is local to each
instance.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 489

Algorithm 12.8: Concurrent Union-Find Data Structure
1 function FIND (a)
2 if a.parent �= a then

3 a.parent := FIND(a.parent)
4 return a.parent
5 function UNITE (a,b)
6 x := a
7 y := b
8 while true do

9 x := FIND(x)
10 y := FIND(y)
11 if x = y then return

12 else if x < y then

13 if CAS(x.parent,x,y) then return

14 else

15 if CAS(y.parent,y,x) then return

16 function SAMESET (a,b)
17 x := a
18 y := b
19 while TRUE do

20 x := FIND(x)
21 y := FIND(y)
22 if x = y then return TRUE
23 else if x.parent = x then return FALSE

• Each instance p now maintains a local integer counterp (line 3). This integer is
only incremented (line 10) so it can be used to (locally) order states that have
been visited.

• For an instance p, each state s is associated with a live number, i.e., an integer
accessible via s.livenump. This live number is given according to counterp the
first time the state is visited by the thread p (line 11).

• Line 21 has been changed since SAMESET cannot be used to pop the roots stack
until the new root is discovered. Indeed, since the union-find is shared among all
threads, no assumptions about its internal state can be made.

It is worth noting that the union-find structure collects the acceptance marks
that are discovered by all threads. Thus, at line 23 the algorithm uses the global
uf structure to detect which acceptance marks have been found, by any worker, in
the partial SCC. This helps speed up reporting the existence of an accepting run.
Nonetheless, if an SCC is not accepting, its states cannot be marked Dead before a
thread has visited all the states and all the transitions of this SCC. This is a serious
drawback of this algorithm when the automaton to check is composed of a single
large SCC: in this case, the expected speedup is null. The next algorithm solves this
problem.

490 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.9: Swarmed SCC-Based Algorithm
1 Shared Union-find of 〈Q∪{Dead},a ∈ 2[n]〉 : uf
2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3 Local Integer counterp
4

5 function SETUP (A = (Q, ι ,next-product,n,M))
6 uf.MAKESET(Dead)
7 counter1 ← 0; . . . ; counterP ← 0
8 SWARMEDSCCBASED1(ι , /0) || . . . || SWARMEDSCCBASEDP(ι , /0)
9 function SWARMEDSCCBASED p (A = (Q, ι ,next-product,n,M),s,acc)

10 counterp := counterp +1
11 s.livenump := counterp
12 uf.MAKESET(s)
13 rootsp.PUSH(〈s,acc〉)
14 forall t ∈ RANDOMIZE(next-product(s)) do

15 if uf.SAMESET(td ,Dead) then

16 continue

17 else if uf.FIND(td) = null then

18 SWARMEDSCCBASED p(A, td ,M(t))
19 else

20 uf.FIND(s).a := uf.FIND(s).a∪M(t)
21 while td .livenump < rootsp.TOP().q.livenump do

22 〈r, i〉 := rootsp.POP()
23 uf.UNITE(r,rootsp.TOP().q, i)
24 if uf.FIND(s).a = [n] then

25 report non-empty

26 if rootsp.TOP().q = s then

27 rootsp.POP()
28 uf.UNITE(s,Dead, /0)

Improved Parallel Swarmed SCC Algorithm

The key aspects of the improved algorithm are to communicate partially found SCCs
and globally track the remaining work left for each SCC. The SCC algorithm is
presented in [18] and is applied to LTL model checking in [17]. It is presented in
Algorithm 12.10 and differs slightly from Algorithm 12.9.

The local counter and livenum have been replaced by globally tracking worker
IDs in the union-find structure. This worker set, w ∈ 2P, is a bitset that tracks which
worker threads are active in the current SCC. The MAKESET(p,s) is extended to set
the bit for worker p in the partial SCC of s, which is tracked in the representative of
the set. This worker set is used in line 14 to detect a cycle. Note that if worker p has
visited some state s in a partial SCC, every state of this partial SCC is considered to
have been visited before. This is valid since there is a path from every other state in
the SCC to s. Also note that multiple workers aid each other by concurrently adding
more states to the set, thus increasing the number of states that have been “visited
before.”

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 491

Algorithm 12.10: UFSCC Algorithm: Improved Swarmed SCC Algorithm
1 Shared Union-find of 〈Q∪{Dead},a ∈ 2[n],w ∈ 2P, list ∈ 2Q〉 : uf
2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3

4 function SETUP (A = (Q, ι ,next-product,n,M))
5 uf.MAKESET(Dead)
6 IMPROVEDSCC1(ι , /0) || . . . || IMPROVEDSCCP(ι , /0)
7 function IMPROVEDSCCp (A = (Q, ι ,next-product,n,M),s,acc)
8 uf.MAKESET(p,s)
9 rootsp.PUSH(〈s,acc〉)

10 while s′ ∈ uf.PICKFROMLIST(s) do

11 forall t ∈ RANDOMIZE(next-product(s′)) do

12 if uf.SAMESET(td ,Dead) then

13 continue

14 else if p /∈ uf.FIND(td).w then

15 IMPROVEDSCCp(A, td ,M(t))
16 else

17 uf.FIND(s).a := uf.FIND(s).a∪M(t)
18 while ¬SAMESET(s, td) do

19 〈r, i〉 := rootsp.POP()
20 UNITE(r,rootsp.TOP().q, i)
21 if uf.FIND(s).a = [n] then

22 report non-empty

23 uf.REMOVEFROMLIST(s′)
24 uf.UNITE(s,Dead, /0)
25 if rootsp.TOP() = s then

26 rootsp.POP()

In order to collaborate in detecting when an SCC has been fully explored, the
union-find structure has been further extended to track a list of Busy states in each
partial SCC. The idea is to initially keep a global list consisting of every state in the
SCC. Then, after concluding that no new knowledge can be obtained from a state, it
gets removed from the list and another state is chosen. In the algorithm this is shown
in lines 10 and 23. When all successors of state s′ have been handled (lines 11–22)
we can conclude that for every successor d of s′ we either have: (1) d is part of a
Dead SCC, or (2) d is part of the same SCC as s′. In the latter case, d has been
added to the list of Busy states and therefore s′ can be removed from the list. Multiple
workers pick states from the list, explore them, and correspondingly remove them
from the list to cooperatively reduce the number of states in the list. Once the list is
empty (exit condition for line 10), every state of the SCC has been fully explored
and the SCC can be marked Dead.

In the implementation, the union-find structure is extended such that every state
contains a worker set of size |P|, which is maintained (similarly to the acceptance set)
in the UNITE procedure. Every state in the structure also contains a list-next pointer
such that a cyclic list is formed of all states in the partial SCC. See Figure 12.8 for an
illustration. Combining two lists in the UNITE procedure is then realized by swapping

492 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Fig. 12.8: Cyclic list of Busy states. White nodes are Busy and gray nodes have been
removed from the list

two list pointers with a fine-grained lock to form a single list containing all states.
A Boolean flag is used to mark a state to be removed from the list. Workers then
traverse the list to find Busy states and update the next pointers such that the removed
states are detached from the list.

12.5 Distributed, BFS-Based Solutions

In shared-memory, parallel algorithms can exploit relatively fast accesses to concur-
rent data structures to dynamically distribute the search procedure over the processor
cores, as achieved in the previous section through the use of a shared state set. In the
distributed setting, such synchronous communication would be too costly. To solve
this problem, distributed algorithms statically partition the states over the workers,
using so called hash-based partitioning. Under this scheme, every state of the graph
to be stored is assigned to a single workstation that is responsible for its storage. The
function to assign an owner of a state is referred to as the partition or owner function.

This section discusses two algorithms suitable for distributed computation. Be-
cause the static partitioning works best in combination with the highly scalable
breadth-first search, the emptiness-check problem is first rephrased so that it can be
solved by an iterative approach. In the worst case, each iteration represents one pass
over the state space, but can be implemented with BFS. Nonetheless, for many inputs
the time complexity of this approach is still optimal and we demonstrate that the
emptiness check can even be made partially on the fly. At the end of this section, we
show how this approach compares to the DFS approaches in the previous section.

12.5.1 One-Way-Catch-Them-Young

The emptiness-check algorithm discussed in this section is built on top of a procedure
for topological sorting. It relies on the fact that vertices of a directed graph may
be topologically sorted if and only if the graph is acyclic. The topological sort

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 493

procedure may be effectively adapted for parallel processing without any increase
in the theoretical time complexity. While topological sort can directly detect the
presence of a cycle in a directed graph, it cannot distinguish between accepting and
non-accepting cycles. Therefore, it must be accompanied by another technique in
order to be used as a Büchi automata emptiness check. One of the options to achieve
accepting-cycle detection is to combine the topological sort procedure with a forward
reachability analysis that eliminates states not reachable from accepting states. The
algorithm relying on this combination is referred to as the OWCTY algorithm (One-
Way-Catch-Them-Young) [44, 26].

The idea of the OWCTY algorithm is to remove leading rejecting SCCs (SCCs
without accepting states) from the graph of the product Büchi automaton, then use
the topological sort procedure to remove leading accepting states that do not lie on a
cycle. This process is iterated until a fixpoint is reached. When the remaining graph
is empty, it contains no accepting cycle. When the remaining graph is non-empty, the
presence of an accepting cycle in the graph is guaranteed.

The OWCTY algorithm therefore uses two removal procedures, ELIM-NO-
ACCEPTING and ELIM-NO-PREDECESSORS, which alternate. See Algorithm 12.11
for details. ELIM-NO-ACCEPTING is a procedure that computes all states that are
reachable from an accepting state in the graph and removes the rest. Efficiently,
this procedure removes all leading SCCs that contain no accepting states at all.
Obviously, these SCCs must be rejecting. After that, all leading SCCs in the rest
of the graph contain an accepting state; however, they might all be trivial SCCs
(contain no edges). To detect whether there is a non-trivial leading SCC with an
accepting state in the graph, the trivial leading SCCs must be removed. For that,
the ELIM-NO-PREDECESSORS procedure is used. Note that after the removal of a
leading trivial SCC another trivial SCC may become leading. To deal with that the
ELIM-NO-PREDECESSORS procedure proceeds iteratively, and removes all trivial
SCCs from the top of the graph (mimicking the topological sort procedure). After
ELIM-NO-PREDECESSORS finishes, all leading SCCs in the remaining part of the
graph are non-trivial, hence a new round of the elimination is executed, starting again
with the ELIM-NO-ACCEPTING procedure.

To learn whether a state is a trivial leading component, the algorithm needs to
detect not-yet-removed predecessors of the state. To do so, the algorithm maintains an
integer value associated with every vertex to keep the number of not-yet-removed di-
rect predecessors, the so called indegree. The unique feature of the OWCTY algorithm
is that the indegrees are updated without the need to enumerate the predecessors of a
state. In fact, the algorithm only performs forward traversal procedures to maintain
the indegrees. This is exactly what the One-Way in the name of the algorithm stands
for. While this does not immediately make the algorithms on the fly (we do so in the
subsequent section), it does already avoid the costly need to store all edges of the
graph for reverse traversals as discussed in Section 12.3.1. To emphasize this fact,
we again use the implicit definition of the Büchi automaton, i.e., with next-product
instead of δ , as defined in Section 12.2.7.

The pseudo code of the OWCTY algorithm depends on the following notational
conventions. Distributed data structures R,Open, and OldR are referred to either in

494 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

a global way, in which case no subscript is used, or in a local (partitioned) way,
in which case the subscript denotes which part of a distributed data structure is
accessed. For example, a set of states R is a union over distributed data parts of
R denoted by R1, . . . ,Rn. Rp is used in procedure ELIM-NO-PREDECESSORSp to
denote that the algorithm accesses the local part of the data structure. The indegrees
are denoted as fields of the states, but in reality should be stored in the state set Rp,
which can be implemented as a hash map. At line 20, the indegree is set to 0 for
(newly encountered) accepting states, as these are the roots of the search tree, but
to 1 for other states, indicating that these are reachable from one accepting state. At
line 17, the indegree is incremented when other incoming edges of the state s are
found. Termination detection is implemented by TERMINATION.

12.5.2 MAP

Yet another approach to accepting-cycle detection in distributed memory is taken by
the algorithm MAP [21]. The main idea behind the algorithm is based on the fact that
each accepting state lying on an accepting cycle is its own predecessor. When the
algorithm computes the set of all accepting predecessors for every accepting state,
it is sufficient to check, whether any of the accepting states is present in its own
predecessor set. However, to compute and store all this information would be rather
expensive. The algorithm instead stores only a single unique representative of the set
of all accepting predecessors per state. Let us assume a linear ordering ≺ of vertices
(given; e.g., by their representation in memory), then the unique representative
could just be the maximal accepting predecessor (MAP). Let ⊥ be a unique value
that is the lowest in the order. We will present here a sequential version of the
MAP algorithm and explain in a subsequent section how it can be integrated into
the OWCTY algorithm to achieve a parallel version with on-the-fly properties. See
Algorithm 12.12 for the pseudocode of the sequential version of the MAP algorithm.

For a state u, we denote its maximal accepting predecessor in the graph G by
mapG(u). Clearly, if an accepting state is its own maximal accepting predecessor
(mapG(u) = u), then it lies on an accepting cycle. Unfortunately, the converse does
not hold in general. Assume that u is the largest accepting state on some accepting
cycle. It can happen that the maximal accepting predecessor of u lies outside the
cycle, i.e., mapG(u) = v for some accepting state v. However, for this accepting
state v either mapG(v) = v, in which case the presence of an accepting cycle can be
detected on v, or mapG(v)≺ v, in which case v is not part of any cycle in the graph.
In the latter case, v can safely be removed from the set of accepting states (or marked
as non-accepting). However, removing v from the set of accepting states invalidates
the value of mapG(u), which has to be recomputed.

The basic workflow of the algorithm is thus to compute maximal accepting
predecessors for accepting states in the graph, and when no accepting cycle can be
proved, to shrink the set of accepting states. These two steps are alternated until either
a cycle is found, or there are no more accepting states in the graph to be removed.

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 495

Algorithm 12.11: OWCTY Algorithm
1 global Open,R,OldR
2 function OWCTY(A = (Q, ι ,next-product,n,M))
3 R := Open := /0
4 o := owner(ι)
5 Openo := {ι}
6 REACH(A,Rp)
7 OldR := /0
8 while (R �= OldR)∧ (R �= /0) do

9 OldR := R
10 ELIM-NO-ACCEPTING1(A,R1) || . . . || ELIM-NO-ACCEPTINGn(A,Rn)
11 ELIM-NO-PREDECESSORS1(A,R1) || . . . || ELIM-NO-PREDECESSORSn(A,Rn)

12 if R �= /0 then report “accepting cycle” else report “no accepting cycle”
13 function REACHp (A = (Q, ι ,next-product,n,M),Rp)
14 while Openp �= /0∧¬TERMINATION(Open) do

15 s := Openp.dequeue()
16 if s ∈ Rp then

17 s.indegree := s.indegree+1
18 else

19 Rp.add(s)
20 s.indegree := if M[s] = [1] then 0 else 1
21 forall t ∈ next-product(s) do

22 o := owner(td)

23 Openo.queue(td)

24 function ELIM-NO-ACCEPTINGp (A = (Q, ι ,next-product,n,M),Rp)
25 forall s ∈ Rp do

26 if M[s] = [1] then

27 Openp.queue(s)

28 R′
p := /0

29 BARRIER() //Wait until all workers reinitialized R′
p

30 REACH(A,R′
p)

31 function ELIM-NO-PREDECESSORSp (A = (Q, ι ,next-product,n,M),Rp)
32 forall s ∈ Rp do

33 if s.indegree = 0 then

34 Openp.queue(s)

35 while Openp �= /0∧¬TERMINATION(Open) do

36 s := Openp.dequeue()
37 s.indegree := s.indegree−1
38 if s.indegree ≤ 0 then

39 Rp.remove(s)
40 forall t ∈ next-product(s) do

41 o := owner(td)

42 Openo.queue(td)

To compute the value of the mapG function, Algorithm 12.12 proceeds by the
principle of value propagation. Note that whenever some value is propagated to a

496 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Algorithm 12.12: MAP Algorithm
1 function MAP(A = (Q, ι ,next-product,n,M))
2 Waiting.add(ι)
3 oldmap(Q) := ⊥
4 ShrinkM := /0
5 while Waiting �= /0 do

6 while Waiting �= /0 do

7 seed := Waiting.dequeue()
8 PROPAGATE-MAP(A,seed,ShrinkM)

9 Waiting := ShrinkM
10 ShrinkM := /0
11 report “no accepting cycle”
12 function PROPAGATE-MAP(A = (Q, ι ,next-product,n,M),seed,ShrinkM)
13 oldmap(seed) := seed
14 map(seed) := ⊥
15 Seeds.queue(seed)
16 while Seeds �= /0 do

17 u := Seeds.dequeue()
18 if M[u] = [1]∧ (u �= oldmap(u)) then

19 if map(u)≤ u then

20 propagate := u
21 ShrinkM.add(u)
22 else

23 propagate := map(u)
24 ShrinkM.remove(u)

25 else

26 propagate := map(u)
27 forall t ∈ next-product(u) do

28 if propagate = td then

29 report “accepting cycle”
30 if map(td) = oldmap(ts) then

31 oldmap(td) := oldmap(ts)

32 map(td) := propagate
33 Seeds.queue(td)

34 else if (propagate > map(td))∧ (oldmap(td) = oldmap(ts)) then

35 map(td) := propagate
36 Seeds.queue(td)

state from which a low value had been propagated before, the new higher value
must be repropagated. Due to these duplicate propagations, this procedure requires
quadratic time with respect to the size of the graph.

An interesting property of the mapG function is that once computed, the values of
mapG partition the graph into subgraphs. More precisely, states that share the same
value of mapG may lie on a cycle, however, states that do not share the same value
of mapG cannot lie on the same cycle (they cannot be part of the same SCC). The
algorithm takes advantage of this observation and in the propagation phase it restricts
the propagation to only the subgraphs given by the same value of the mapG function

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 497

from the previous iteration. In particular, when exploring a transition t within a given
subgraph for the first time, it is the case that mapG(t

d) = oldmapG(t
s) (line 30);

later on, oldmapG(t
d) = oldmapG(t

s) is used to localise the exploration to a single
subgraph (line 34).

To do so, the algorithm maintains oldmap values for all states. Also note that
the subgraphs where the next iteration of map propagation is about to be computed
are rooted in the accepting states that were just shrunk. Note that some accepting
states may be temporarily recorded as roots of a subgraph, but later on they may
become dominated by some other accepting state, in which case they are no longer
considered to be roots (see line 24).

An interesting question is how to define the ordering with respect to which the
maximal accepting state is determined. It has been shown [22] that for every graph
an optimal ordering exists, however, to find it is as difficult as to define a DFS
postorder, which is hard to parallelize, and would bring us back to the algorithms in
Section 12.4.

12.5.3 Combining OWCTY and MAP

Algorithm MAP works on the fly, i.e., it is capable of reporting the presence of
accepting cycles without the need to explore the whole underlying graph. This is
not the case with algorithm OWCTY, as to properly compute the indegrees, the
whole graph has to be traversed. On the other hand, the time complexity of the
OWCTY algorithm is quadratic, while the time complexity of MAP is cubic. In [11]
a combination of the two algorithms has been presented to obtain the best of both
worlds. In particular, while performing the ELIM-NO-ACCEPTING procedure in the
OWCTY algorithm, it is possible to perform limited propagation of map values at the

Complexity Scalability Optimal On-the-fly TGBA

CNDFS O(V +E) + Yes Yes No
UFSCC O(V +E) + Yes Yes Yes
OWCTY

general Büchi O(V.(V +E)) ++ No No ?
weak Büchi O(V +E) ++ Yes No ?

MAP O(V 2 · (V +E)) ++ No Partially ?
OWCTY + MAP

general Büchi O(V · (V +E)) ++ No Partially ?
weak Büchi O(V +E) ++ Yes Partially ?

Table 12.1: Overview of distributed-memory algorithms for accepting-cycle detection.
Complexity is expressed in the number of vertices V , the number of edges E, and the
number of processes P

498 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

same time. The propagation is limited to a single visit of a state (no repropagation is
allowed). Still, if the algorithm finds an accepting state that is its own predecessor,
the accepting cycle may be reported and the algorithm may terminate without the
need for the whole exploration of the graph.

Table 12.1 provides an overview of all emptiness algorithms discussed in this
chapter. We use a subjective scale for the scalability of these algorithms, as a theoret-
ical treatise on the matter is out of the scope of this handbook. The DFS algorithms
feature optimal runtimes, but not necessarily good scalability. The BFS algorithms
on the other hand sacrifice the optimality property to attain better scalability. How-
ever, in practice, both approaches have been shown to scale well on multi-core
machines [43, 65, 12]. Moreover, in many important cases, i.e., for weak automata,
the OWCTY algorithm and its combination with MAP also achieve optimal runtime
in theory.

The integration of MAP into the OWCTY algorithm further yields some on-the-
fly behavior. While not completely on the fly, OWCTY tends to deliver shorter
counterexamples because of its use of BFS. Short counterexamples are important for
repairing errors in the model as they simplify error diagnosis. In practice, CNDFS has
been shown to also be able to yield similarly short counterexamples with increasing
parallelism [43], but it provides no guarantees about counterexample length. Thus far,
only the SCC algorithms are suitable for direct use on TGBAs. CNDFS likely cannot
be adapted to support TGBAs without increasing the complexity, but we consider the
combination of the BFS algorithms with TGBAs to be an open problem.

12.6 Conclusion

This chapter has revisited the automata-theoretic approach to LTL model checking in
Section 12.2. The starting point is a translation of an LTL formula into a (Transition-
based Generalized) Büchi Automaton. Fragments of LTL lead to weak or even
terminal automata. The LTL model checking algorithm is reduced to emptiness
checking of automata, which boils down to detecting accepting cycles.

To speed up cycle detection, we have introduced parallel algorithms for shared-
memory multi-core machines in Section 12.4. These algorithms are based on Depth-
First Search and come in two flavors: those based on Nested-DFS, and those based
on SCC detection. We showed instances of both.

Based on the observation that DFS is hard to parallelize, an alternative is to design
BFS-based algorithms to detect accepting cycles. We have done so in Section 12.5.
This type of algorithm is used in shared-memory machines, but was originally
designed for distributed clusters of machines connected by a fast communication
network.

Although this chapter has focused on the algorithmic ideas behind the various
parallel LTL model checking algorithms, we would like to stress that the algorithms
that we have explained are also available to the community in open-source tools. The

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 499

translations from LTL to automata are available in the Spot toolset3 [36, 38]. Various
DFS-based multi-core algorithms are available in the LTSmin toolset4 [67, 62].
Finally, the distributed and multi-core implementation of the BFS-based algorithms
are available through the DiVinE toolset5 [10, 14].

The scientific papers connected to the algorithms implemented in these tools
report on extensive experiments to investigate the practical efficiency and parallel
speedup on various benchmark suites of realistic examples, and on their performance
in international model checking competitions.

References

[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic par-
tial order reduction. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, pages
373–384, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2544-8.
doi: 10.1145/2535838.2535845. URL http://doi.acm.org/10.1145/
2535838.2535845.

[2] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader. Scalable Graph Exploration
on Multicore Processors. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC ’10, pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.
ISBN 978-1-4244-7559-9. doi: 10.1109/SC.2010.46.

[3] A. Aggarwal, R. J. Anderson, and M. Kao. Parallel depth-first search in general
directed graphs. SIAM J. Comput., 19(2):397–409, 1990. doi: 10.1137/0219025.
URL http://dx.doi.org/10.1137/0219025.

[4] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reacha-
bility and cycle detection for recursive state machines. In N. Halbwachs and
L. Zuck, editors, Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’05), volume
3440 of Lecture Notes in Computer Science, pages 61–76. Springer Berlin
Heidelberg, April 2005.

[5] R. Anderson and H. Woll. Wait-free Parallel Algorithms for the Union-find
Problem. In Proceedings of the Twenty-third Annual ACM Symposium on
Theory of Computing, STOC ’91, pages 370–380, New York, NY, USA, 1991.
ACM. ISBN 0-89791-397-3. doi: 10.1145/103418.103458. URL http:
//doi.acm.org/10.1145/103418.103458.

[6] T. Babiak, M. Křetínský, V. Řehák, and J. Strejček. LTL to Büchi automata
translation: Fast and more deterministic. In Proc. of the 18th Int. Conf. on

3 https://spot.lrde.epita.fr
4 http://fmt.cs.utwente.nl/tools/ltsmin
5 https://divine.fi.muni.cz

http://doi.acm.org/10.1145/2535838.2535845
http://doi.acm.org/10.1145/2535838.2535845
http://dx.doi.org/10.1137/0219025
http://doi.acm.org/10.1145/103418.103458
http://doi.acm.org/10.1145/103418.103458
https://spot.lrde.epita.fr
http://fmt.cs.utwente.nl/tools/ltsmin
https://divine.fi.muni.cz

500 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’12),
volume 7214 of LNCS, pages 95–109. Springer, 2012.

[7] T. Babiak, T. Badie, A. Duret-Lutz, M. Křetínský, and J. Strejček. Composi-
tional approach to suspension and other improvements to LTL translation. In
Proceedings of the 20th International SPIN Symposium on Model Checking of
Software (SPIN’13), volume 7976 of Lecture Notes in Computer Science, pages
81–98. Springer, July 2013. doi: 10.1007/978-3-642-39176-7_6.

[8] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.
[9] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model

checking with SLAM. Commun. ACM, 54(7):68–76, 2011. doi: 10.1145/
1965724.1965743. URL http://doi.acm.org/10.1145/1965724.
1965743.

[10] J. Barnat, L. Brim, and P. Rockai. DiVinE 2.0: High-performance model
checking. In Proceedings of the International Workshop on High Performance
Computational Systems Biology (HiBi’09), pages 31–32. IEEE Computer Soci-
ety Press, 2009.

[11] J. Barnat, L. Brim, and P. Ročkai. A time-optimal on-the-fly parallel algorithm
for model checking of weak LTL properties. In Proceedings of the 11th
International Conference on Formal Engineering Methods (ICFEM’09), volume
5885 of LNCS, pages 407–425, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] J. Barnat, L. Brim, and P. Ročkai. Scalable shared memory LTL model checking.
International Journal on Software Tools for Technology Transfer, 12(2):139–
153, 2010.

[13] J. Barnat, P. Bauch, L. Brim, and M. Cežka. Computing strongly connected
components in parallel on cuda. In 2011 IEEE International Parallel Distributed
Processing Symposium, pages 544–555, May 2011. doi: 10.1109/IPDPS.2011.
59.

[14] J. Barnat, L. Brim, V. Havel, J. Havlícek, J. Kriho, M. Lenco, P. Rockai,
V. Still, and J. Weiser. Divine 3.0 - an explicit-state model checker for mul-
tithreaded C & C++ programs. In N. Sharygina and H. Veith, editors, Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lec-
ture Notes in Computer Science, pages 863–868. Springer, 2013. ISBN
978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_60. URL http:
//dx.doi.org/10.1007/978-3-642-39799-8_60.

[15] S. Ben-David, C. Eisner, D. Geist, and Y. Wolfsthal. Model checking
at IBM. Formal Methods in System Design, 22(2):101–108, 2003. doi:
10.1023/A:1022905120346. URL http://dx.doi.org/10.1023/A:
1022905120346.

[16] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Proceedings of the 36th
Annual ACM/IEEE Design Automation Conference, DAC ’99, pages 317–320,
New York, NY, USA, 1999. ACM. ISBN 1-58113-109-7. doi: 10.1145/309847.
309942. URL http://doi.acm.org/10.1145/309847.309942.

http://doi.acm.org/10.1145/1965724.1965743
http://doi.acm.org/10.1145/1965724.1965743
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1023/A:1022905120346
http://dx.doi.org/10.1023/A:1022905120346
http://doi.acm.org/10.1145/309847.309942

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 501

[17] V. Bloemen and J. van de Pol. Multi-core SCC-Based LTL Model Check-
ing. In R. Bloem and E. Arbel, editors, Hardware and Software: Verifi-
cation and Testing: 12th International Haifa Verification Conference, HVC
2016, Haifa, Israel, November 14-17, 2016, Proceedings, pages 18–33, Cham,
2016. Springer International Publishing. ISBN 978-3-319-49052-6. doi:
10.1007/978-3-319-49052-6_2. URL http://dx.doi.org/10.1007/
978-3-319-49052-6_2.

[18] V. Bloemen, A. Laarman, and J. van de Pol. Multi-core On-the-fly SCC
Decomposition. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’16, pages 8:1–8:12,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4092-2. doi: 10.1145/
2851141.2851161. URL http://doi.acm.org/10.1145/2851141.
2851161.

[19] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

[20] D. Bošnački. A nested depth first search algorithm for model checking with
symmetry reduction. In D. A. Peled and M. Y. Vardi, editors, Formal Techniques
for Networked and Distributed Sytems, volume 2529 of LNCS, pages 65–80.
Springer Berlin Heidelberg, 2002. ISBN 978-3-540-00141-6. doi: 10.1007/
3-540-36135-9_5.

[21] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors are better
than back edges in distributed LTL model-checking. In A. J. Hu and A. K.
Martin, editors, Proceedings of the 5th International Conference on Formal
Methods in Computer-Aided Design (FMCAD’04), volume 3312 of Lecture
Notes in Computer Science, pages 352–366. Springer, November 2004.

[22] L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for Dis-
tributed LTL Model-Checking Based on Accepting Predecessors. In Proceed-
ings of the 4th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC 2005), pages 1–12, Lisboa, Portugal, 2005. TU Munchen.

[23] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, Aug. 1986.

[24] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the Fifth Annual
IEEE Symposium on Logic in Computer Science, pages 1–33, Washington, D.C.,
1990. IEEE Computer Society Press.

[25] I. Černá and R. Pelánek. Relating hierarchy of temporal properties to model
checking. In B. Rovan and P. Vojtáǎ, editors, Proceedings of the 28th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS’03), volume 2747 of Lecture Notes in Computer Science, pages 318–
327, Bratislava, Slovak Republic, Aug. 2003. Springer-Verlag.

[26] I. Černá and R. Pelánek. Distributed explicit fair cycle detection (set based
approach). In T. Ball and S. Rajamani, editors, Proceedings of the 10th Inter-
national SPIN Workshop on Model Checking of Software (SPIN’03), volume
2648 of Lecture Notes in Computer Science, pages 49–73. Springer Berlin
Heidelberg, May 2003.

http://dx.doi.org/10.1007/978-3-319-49052-6_2
http://dx.doi.org/10.1007/978-3-319-49052-6_2
http://doi.acm.org/10.1145/2851141.2851161
http://doi.acm.org/10.1145/2851141.2851161

502 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

[27] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement, pages 154–169. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000. ISBN 978-3-540-45047-4. doi: 10.1007/10722167_15. URL
http://dx.doi.org/10.1007/10722167_15.

[28] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[29] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions
in model checking, pages 147–158. Springer, 1998. ISBN 978-3-540-69339-
0. doi: 10.1007/BFb0028741. URL http://dx.doi.org/10.1007/
BFb0028741.

[30] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2000.

[31] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithm for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

[32] J.-M. Couvreur. On-the-fly verification of temporal logic. In J. M. Wing,
J. Woodcock, and J. Davies, editors, Proceedings of the World Congress on
Formal Methods in the Development of Computing Systems (FM’99), volume
1708 of Lecture Notes in Computer Science, pages 253–271, Toulouse, France,
Sept. 1999. Springer-Verlag. ISBN 3-540-66587-0.

[33] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks
for generalized Büchi automata. In P. Godefroid, editor, Proceedings of the
12th International SPIN Workshop on Model Checking of Software (SPIN’05),
volume 3639 of Lecture Notes in Computer Science, pages 143–158. Springer,
Aug. 2005.

[34] A. Deshpande, F. Herbreteau, B. Srivathsan, T. Tran, and I. Walukiewicz. Fast
detection of cycles in timed automata. CoRR, abs/1410.4509, 2014. URL
http://arxiv.org/abs/1410.4509.

[35] E. W. Dijkstra. EWD 376: Finding the maximum strong components in a di-
rected graph. http://www.cs.utexas.edu/users/EWD/ewd03xx/
EWD376.PDF, May 1973.

[36] A. Duret-Lutz. Manipulating LTL formulas using Spot 1.0. In Proceed-
ings of the 11th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA’13), volume 8172 of Lecture Notes in Com-
puter Science, pages 442–445, Hanoi, Vietnam, Oct. 2013. Springer. doi:
10.1007/978-3-319-02444-8_31.

[37] A. Duret-Lutz. LTL translation improvements in Spot 1.0. International
Journal on Critical Computer-Based Systems, 5(1/2):31–54, Mar. 2014. doi:
10.1504/IJCCBS.2014.059594.

[38] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In Proceedings
of the 14th International Symposium on Automated Technology for Verification
and Analysis (ATVA’16), volume 9938 of Lecture Notes in Computer Science,
pages 122–129. Springer, 2016.

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/BFb0028741
http://dx.doi.org/10.1007/BFb0028741
http://arxiv.org/abs/1410.4509
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 503

[39] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns
for finite-state verification. InM. Ardis, editor, Proceedings of the 2nd Workshop
on Formal Methods in Software Practice (FMSP’98), pages 7–15, New York,
Mar. 1998. ACM Press.

[40] S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit model check-
ing with HSF-SPIN. In Proceedings of the 8th international Spin workshop
on model checking of software (SPIN’01), volume 2057 of Lecture Notes in
Computer Science, pages 57–79. Springer-Verlag, 2001.

[41] E. A. Emerson and T. Wahl. Dynamic Symmetry Reduction, pages 382–396.
Springer, 2005. ISBN 978-3-540-31980-1. doi: 10.1007/978-3-540-31980-1_
25. URL http://dx.doi.org/10.1007/978-3-540-31980-1_
25.

[42] S. Evangelista, L. Petrucci, and S. Youcef. Parallel nested depth-first searches
for LTL model checking. In Proceedings of the 9th international conference on
Automated technology for verification and analysis (ATVA’11), volume 6996 of
Lecture Notes in Computer Science, pages 381–396. Springer-Verlag, 2011.

[43] S. Evangelista, A. Laarman, L. Petrucci, and J. van de Pol. Improved multi-core
nested depth-first search. In Proceedings of the 10th international conference
on Automated technology for verification and analysis (ATVA’12), volume 7561
of Lecture Notes in Computer Science, pages 269–283. Springer-Verlag, 2012.

[44] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In Proceedings of the fourth International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’01), volume 2031 of LNCS, pages 420–434. Springer-Verlag,
2001.

[45] L. Fix. Fifteen years of formal property verification in Intel. In O. Grumberg
and H. Veith, editors, 25 Years of Model Checking - History, Achievements, Per-
spectives, volume 5000 of Lecture Notes in Computer Science, pages 139–144.
Springer, 2008. ISBN 978-3-540-69849-4. doi: 10.1007/978-3-540-69850-0_8.
URL http://dx.doi.org/10.1007/978-3-540-69850-0_8.

[46] L. K. Fleischer, B. Hendrickson, and A. Pınar. On Identifying Strongly
Connected Components in Parallel, pages 505–511. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2000. ISBN 978-3-540-45591-2. doi:
10.1007/3-540-45591-4_68. URL http://dx.doi.org/10.1007/
3-540-45591-4_68.

[47] H. N. Gabow. Path-based depth-first search for strong and biconnected compo-
nents. Information Processing Letters, 74(3-4):107–114, February 2000.

[48] A. Gaiser and S. Schwoon. Comparison of algorithms for checking emptiness
on Büchi automata. In P. Hlinený, V. Matyás, and T. Vojnar, editors, Procedings
of Annual Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science (MEMICS’09), volume 13 of OASICS. Schloss Dagstuhl,
Leibniz-Zentrum fuer Informatik, Germany, Nov. 2009.

[49] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings of the 13th International Con-

http://dx.doi.org/10.1007/978-3-540-31980-1_25
http://dx.doi.org/10.1007/978-3-540-31980-1_25
http://dx.doi.org/10.1007/978-3-540-69850-0_8
http://dx.doi.org/10.1007/3-540-45591-4_68
http://dx.doi.org/10.1007/3-540-45591-4_68

504 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

ference on Computer Aided Verification (CAV’01), volume 2102 of Lecture
Notes in Computer Science, pages 53–65, Paris, France, 2001. Springer-Verlag.

[50] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in SPIN.
In S. Graf and L. Mounier, editors, Proceedings of the 11th International SPIN
Workshop on Model Checking of Software (SPIN’04), volume 2989 of Lecture
Notes in Computer Science, pages 92–108, Apr. 2004.

[51] H. Gazit and G. L. Miller. An improved parallel algorithm that computes the
BFS numbering of a directed graph. Inf. Process. Lett., 28(2):61–65, 1988. doi:
10.1016/0020-0190(88)90164-0. URL http://dx.doi.org/10.1016/
0020-0190(88)90164-0.

[52] J. Geldenhuys and A. Valmari. More efficient on-the-fly LTL verification with
Tarjan’s algorithm. Theoretical Computer Science, 345(1):60–82, Nov. 2005.
Conference paper selected for journal publication.

[53] D. Giannakopoulou and F. Lerda. From states to transitions: Improving trans-
lation of LTL formulæ to Büchi automata. In D. Peled and M. Vardi, editors,
Proceedings of the 22nd IFIP WG 6.1 International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE’02), volume 2529
of Lecture Notes in Computer Science, pages 308–326, Houston, Texas, Nov.
2002. Springer-Verlag.

[54] P. Godefroid. Using partial orders to improve automatic verification methods.
In Computer-Aided Verification, pages 176–185. Springer, 1991.

[55] P. Godefroid, G. Holzmann, and D. Pirottin. State-space caching revisited.
Formal Methods in System Design, 7(3):227–241, Nov. 1995.

[56] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, 1995.

[57] X. He and Y. Yesha. A nearly optimal parallel algorithm for constructing
depth first spanning trees in planar graphs. SIAM J. Comput., 17(3):486–491,
1988. doi: 10.1137/0217028. URL http://dx.doi.org/10.1137/
0217028.

[58] G. Holzmann. Parallelizing the spin model checker. In A. Donaldson and
D. Parker, editors, SPIN’12, volume 7385 of LNCS, pages 155–171. Springer,
2012. ISBN 978-3-642-31758-3. URL http://dx.doi.org/10.1007/
978-3-642-31759-0_12.

[59] G. J. Holzmann, D. A. Peled, and M. Yannakakis. On nested depth first search.
In J.-C. Grégoire, G. J. Holzmann, and D. A. Peled, editors, Proceedings of the
2nd Spin Workshop, volume 32 of DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, May 1996.

[60] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly
connected components (scc) in small-world graphs. In 2013 SC - Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–11, Nov 2013. doi: 10.1145/2503210.2503246.

[61] T. Junttila. On the Symmetry Reduction Method for Petri Nets and Similar
Formalisms. PhD thesis, Helsinki University of Technology, Laboratory for
Theoretical Computer Science, Espoo, Finland, 2003.

http://dx.doi.org/10.1016/0020-0190(88)90164-0
http://dx.doi.org/10.1016/0020-0190(88)90164-0
http://dx.doi.org/10.1137/0217028
http://dx.doi.org/10.1137/0217028
http://dx.doi.org/10.1007/978-3-642-31759-0_12
http://dx.doi.org/10.1007/978-3-642-31759-0_12

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 505

[62] G. Kant, A. Laarman, J. Meijer, J. Pol, S. Blom, and T. Dijk. LTSmin: High-
performance language-independent model checking. In C. T. Christel Baier,
editor, Proceedings of the 21st International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’15), volume 9035
of Lecture Notes in Computer Science, pages 692–707. Springer-Berlin, 2015.

[63] S. Katz and D. Peled. An efficient verification method for parallel and dis-
tributed programs, pages 489–507. Springer, 1989. ISBN 978-3-540-46147-
0. doi: 10.1007/BFb0013032. URL http://dx.doi.org/10.1007/
BFb0013032.

[64] A. Laarman. Scalable multi-core model checking. PhD thesis, University of
Twente, 2014.

[65] A. Laarman and J. van de Pol. Variations on multi-core nested depth-first search.
In PDMC’11, pages 13–28, 2011.

[66] A. Laarman, R. Langerak, J. van de Pol, M. Weber, and A. Wijs. Multi-core
nested depth-first search. In T. Bultan and P.-A. Hsiung, editors, Proceedings
of the Automated Technology for Verification and Analysis, 9th International
Symposium (ATVA’11), volume 6996 of Lecture Notes in Computer Science,
pages 321–335, Taipei, Taiwan, October 2011. Springer.

[67] A. Laarman, J. van de Pol, and M. Weber. Multi-core LTSmin: Marrying
modularity and scalability. In M. Bobaru, K. Havelund, G. Holzmann, and
R. Joshi, editors, NFM 2011, Pasadena, CA, USA, volume 6617 of LNCS, pages
506–511, Berlin, July 2011. Springer. doi: 10.1007/978-3-642-20398-5_40.

[68] A. Laarman, J. van de Pol, and M. Weber. Parallel Recursive State Compression
for Free. In A. Groce and M. Musuvathi, editors, SPIN 2011, LNCS, pages
38–56, London, July 2011. Springer. URL http://doc.utwente.nl/
77024/.

[69] A. W. Laarman and D. Faragó. Improved on-the-fly livelock detection.
In G. Brat, N. Rungta, and A. Venet, editors, NFM 2013, volume 7871
of LNCS, pages 32–47. Springer, 2013. ISBN 978-3-642-38087-7. doi:
10.1007/978-3-642-38088-4_3.

[70] A. W. Laarman and A. J. Wijs. Partial-Order Reduction for Multi-core
LTL Model Checking. In E. Yahav, editor, HVC 2014, volume 8855 of
LNCS, pages 267–283. Springer, 2014. ISBN 978-3-319-13337-9. doi:
10.1007/978-3-319-13338-6_20. URL http://dx.doi.org/10.1007/
978-3-319-13338-6_20.

[71] A. W. Laarman, J. C. van de Pol, and M. Weber. Boosting Multi-Core
Reachability Performance with Shared Hash Tables. In N. Sharygina and
R. Bloem, editors, FMCAD 2010. IEEE Computer Society, 2010. URL
http://dl.acm.org/citation.cfm?id=1998496.1998541.

[72] T. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms.
Commun. ACM, 27(6):594–602, 1984. doi: 10.1145/358080.358103. URL
http://doi.acm.org/10.1145/358080.358103.

[73] A. Lenharth, D. Nguyen, and K. Pingali. Parallel graph analytics. Commun.
ACM, 59(5):78–87, Apr. 2016. ISSN 0001-0782. doi: 10.1145/2901919. URL
http://doi.acm.org/10.1145/2901919.

http://dx.doi.org/10.1007/BFb0013032
http://dx.doi.org/10.1007/BFb0013032
http://doc.utwente.nl/77024/
http://doc.utwente.nl/77024/
http://dx.doi.org/10.1007/978-3-319-13338-6_20
http://dx.doi.org/10.1007/978-3-319-13338-6_20
http://dl.acm.org/citation.cfm?id=1998496.1998541
http://doi.acm.org/10.1145/358080.358103
http://doi.acm.org/10.1145/2901919

506 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, and Renault

[74] G. Lowe. Concurrent depth-first search algorithms based on Tarjan’s Algorithm.
International Journal on Software Tools for Technology Transfer, pages 1–
19, 2015. ISSN 1433-2779. doi: 10.1007/s10009-015-0382-1. URL http:
//dx.doi.org/10.1007/s10009-015-0382-1.

[75] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in par-
allel graph processing. Parallel Processing Letters, 17(1):5–20, 2007. doi:
10.1142/S0129626407002843. URL http://dx.doi.org/10.1142/
S0129626407002843.

[76] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings
of the sixth annual ACM Symposium on Principles of distributed computing
(PODC’90), pages 377–410, New York, NY, USA, 1990. ACM.

[77] K. L. McMillan. Symbolic Model Checking, pages 25–60. Springer US, Boston,
MA, 1993. ISBN 978-1-4615-3190-6. doi: 10.1007/978-1-4615-3190-6_3.
URL http://dx.doi.org/10.1007/978-1-4615-3190-6_3.

[78] K. L. McMillan. Interpolation and SAT-Based Model Checking, pages 1–
13. Springer, Berlin, Heidelberg, 2003. ISBN 978-3-540-45069-6. doi:
10.1007/978-3-540-45069-6_1. URL http://dx.doi.org/10.1007/
978-3-540-45069-6_1.

[79] I. Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letters, 1(2):56–58, 1971.

[80] P. Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10(1):
76–94, 1970.

[81] N. V. Rao and V. Kumar. Superlinear speedup in parallel state-space
search. Foundations of Software Technology and Theoretical Computer
Science, pages 161–174, 1988. URL http://dx.doi.org/10.1007/
3-540-50517-2_79.

[82] J. H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20:229–234, 1985.

[83] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Three SCC-based
emptiness checks for generalized Büchi automata. In K. McMillan, A. Mid-
deldorp, and A. Voronkov, editors, Proceedings of the 19th International
Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’13), volume 8312 of Lecture Notes in Computer Science, pages
668–682. Springer, Dec. 2013. doi: 10.1007/978-3-642-45221-5_44.

[84] E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Variations on parallel
explicit model checking for generalized Büchi automata. International Journal
on Software Tools for Technology Transfer (STTT), 19(6): 653-673, Apr. 2016.

[85] P. Sanders. Lastverteilungsalgorithmen für parallele Tiefensuche. number 463.
In Fortschrittsberichte, Reihe 10. VDI. Verlag, 1997.

[86] W. Schudy. Finding strongly connected components in parallel using o(log2n)
reachability queries. In Proceedings of the Twentieth Annual Symposium
on Parallelism in Algorithms and Architectures, SPAA ’08, pages 146–151,
New York, NY, USA, 2008. ACM. ISBN 978-1-59593-973-9. doi: 10.1145/
1378533.1378560. URL http://doi.acm.org/10.1145/1378533.
1378560.

http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1007/s10009-015-0382-1
http://dx.doi.org/10.1142/S0129626407002843
http://dx.doi.org/10.1142/S0129626407002843
http://dx.doi.org/10.1007/978-1-4615-3190-6_3
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/3-540-50517-2_79
http://dx.doi.org/10.1007/3-540-50517-2_79
http://doi.acm.org/10.1145/1378533.1378560
http://doi.acm.org/10.1145/1378533.1378560

12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic 507

[87] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In
N. Halbwachs and L. Zuck, editors, Proceedings of the 11th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’05), volume 3440 of Lecture Notes in Computer Science,
Edinburgh, Scotland, Apr. 2005. Springer.

[88] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based parallel
algorithms for strongly connected components and related problems. In 2014
IEEE 28th International Parallel and Distributed Processing Symposium, pages
550–559, May 2014. doi: 10.1109/IPDPS.2014.64.

[89] U. Stern and D. L. Dill. Combining state space caching and hash compaction. In
Methoden des Entwurfs und der Verifikation digitaler Systeme, 4. GI/ITG/GME
Workshop, pages 81–90. Shaker Verlag, 1996.

[90] R. Tarjan. Depth-first search and linear graph algorithms. In Conference records
of the 12th Annual IEEE Symposium on Switching and Automata Theory, pages
114–121. IEEE, Oct. 1971. Later republished [91].

[91] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[92] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM), 22(2):215–225, Apr. 1975.

[93] R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245–281, Mar. 1984.

[94] H. Tauriainen. Nested emptiness search for generalized Büchi automata. In
Proceedings of the 4th International Conference on Application of Concurrency
to System Design (ACSD’04), pages 165–174. IEEE Computer Society, June
2004.

[95] A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri
Nets (ICATPN’91), volume 618 of Lecture Notes in Computer Science, pages
491–515, London, UK, 1991. Springer-Verlag.

[96] A. Valmari. The state explosion problem. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets 1: Basic Models, volume 1491 of Lecture Notes
in Computer Science, pages 429–528. Springer-Verlag, 1998.

[97] M. Y. Vardi. Automata-theoretic model checking revisited. In Proceedings of
the 8th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’07), volume 4349 of Lecture Notes in Computer Science,
Nice, France, Jan. 2007. Springer. Invited paper.

[98] A. Wijs, J.-P. Katoen, and D. Bošnački. GPU-Based Graph Decomposi-
tion into Strongly Connected and Maximal End Components, pages 310–326.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-08867-9. doi:
10.1007/978-3-319-08867-9_20. URL http://dx.doi.org/10.1007/
978-3-319-08867-9_20.

http://dx.doi.org/10.1007/978-3-319-08867-9_20
http://dx.doi.org/10.1007/978-3-319-08867-9_20

	12 Parallel Model Checking Algorithms for Linear-Time Temporal Logic
	12.1 Introduction
	12.2 Preliminaries: LTL Model Checking and Automata
	12.2.1 Automata-Theoretic Model Checking
	12.2.2 Sequences and ω-Words
	12.2.3 Linear-Time Temporal Logic
	12.2.4 Kripke Structures
	12.2.5 Büchi Automata
	12.2.6 The Emptiness-Check Problem
	12.2.7 Implicit Models and Automata
	12.2.8 Simpler Subclasses

	12.3 Basic Sequential LTL Model Checking Algorithms
	12.3.1 On-the-Fly Algorithms
	12.3.2 Depth-First Search
	12.3.3 Nested-DFS
	12.3.4 Algorithms Based on SCC Decomposition

	12.4 Multi-core, DFS-Based Solutions
	12.4.1 Terminal and Weak Acceptance
	12.4.2 CNDFS
	12.4.3 Multi-core/DFS-Based SCC Decomposition

	12.5 Distributed, BFS-Based Solutions
	12.5.1 One-Way-Catch-Them-Young
	12.5.2 MAP
	12.5.3 Combining OWCTY and MAP

	12.6 Conclusion
	References

